
Available online at www.sciencedirect.com
www.elsevier.com/locate/imavis

Image and Vision Computing 27 (2009) 87–98
A hierarchical non-parametric method for capturing
non-rigid deformations q

Ady Ecker a,*, Shimon Ullman b

a University of Toronto, Canada
b Weizmann Institute of Science, Israel

Received 10 November 2005; received in revised form 30 September 2006; accepted 20 October 2006
Abstract

We present a novel approach for measuring image similarity based on the composition of parts. The measure identifies common sub-
regions between the images at multiple sizes, and evaluates the amount of deformation required to align the common regions. The
scheme allows complex, non-rigid deformation of the images, and penalizes irregular deformations more than coherent shifts of larger
sub-parts. The measure is implemented by an algorithm which is a variant of dynamic programming, extended to multi-dimensions, and
is using scores measured on a relative scale. The similarity measure is shown to be robust to non-rigid deformations of parts at various
positions and scales, and to capture basic characteristics of human similarity judgments.
� 2008 Published by Elsevier B.V.

Keywords: Image similarity; Non-rigid deformations; Relative dynamic programming; Overlapping patches
1. Introduction

Current approaches for measuring images similarity usu-
ally consist of two components. The first is based on feature
similarity, using features extracted from both images. The
features can range from simple templates to complex and
more abstract features such as SIFT features [3] or shape
context [4]. The second component is based on the amount
of distortion required to bring the two images into align-
ment. This is usually done using a linear transformations
or more complicated parametric transformations [4]. In this
paper we deal with the second component, in particular, the
question of how to capture non-rigid deformations between
images and how the deformations affect the similarity judg-
ment. Fig. 1 illustrates the sort of transformations we would
like to be able to extract and explain. At the bottom image of
Fig. 1, (a) stays in the same place, (b) moves rightwards and
0262-8856/$ - see front matter � 2008 Published by Elsevier B.V.

doi:10.1016/j.imavis.2006.10.006

q This work is based on a M.Sc. thesis [1]. A conference version of the
paper appeared in [2].

* Corresponding author.
E-mail addresses: adyecker@cs.toronto.edu (A. Ecker), shimon.ullman@

weizmann.ac.il (S. Ullman).
part (c) upwards. The similarity between the top and bottom
images is apparent for humans. With more subdivisions of
the image, this type of transformations can be made arbi-
trarily complex, since different sub-images undergo different
displacements. This cannot be adequately captured by a
parametric transformation. Although the last example is
artificial, it is clear that current methods do not cover the
range of image pairs that human would consider structurally
similar. For instance, a hand with some longer or shorter fin-
gers will still be considered a hand by humans. One can deal
with such variability by building specialized hand-detector.
However, no matter how strong the feature detectors are,
there will always be cases where the similarity is established
from the spatial layout of the features. While many methods
are designed to be robust to small non-rigid deformations
encountered in practice, we are interested in a method that
can explain in a principled manner a much wider range of
non-rigid deformations of image patches.

1.1. Related work

The method developed in this work is rooted in dynamic
programming methods for matching strings, such as edit

mailto:adyecker@cs.toronto.edu
mailto:shimon.ullman@

Fig. 1. The middle image was obtained by shifting patches (b) (right-
wards) and (c) (upwards). The bottom image was obtained by overlaying
the middle image on the top one. While the bottom and top images are
similar, no parametric transformation can explain this.

88 A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98
distance [5]. The main difficulty in applying the dynamic
programming paradigm directly to the problem at hand
is that two dimensional images have no natural scanning
direction. For example, it will not be useful to match the
two images in Fig. 1 by matching them in a fixed one-di-
mensional scan, by rows or by columns. There have been
several previous attempts to use dynamic programming
to evaluate similarity of images. In [6], the longest common
subsequence algorithm was used over the columns of a
matched template. In [7] and [8], shape contours were
aligned using dynamic programming. In [9], shapes were
represented by shock graphs, and a specialized edit dis-
tance algorithm was developed to align two skeleton-trees
in minimum cost of tree-transition operations. In [10], a
polygon triangulation was matched by dynamic program-
ming using an elimination order for the triangles. In [11],
the problem of matching parts-based model to an image
is considered. The cost of a match is based both on the sim-
ilarity between the parts to the image and on pairwise geo-
metric relationships between the parts. An approximation
to a dynamic programming procedure is developed to
make the problem tractable. An exact solution is possible
in case the graph representing the relationships between
the parts is a tree [12].

Our method differs substantially from the graph-based
approaches mentioned in that it works entirely on a two
dimensional grid. To do so, it became necessary to aban-
don a key property of the dynamic programming para-
digm, the definition of a global cost function. Instead, we
apply iterative steps that optimize a hierarchical objective
function. In order to interpret the similarity scores pro-
duced by the algorithm as it compares different image
patches, we normalize this score, using the empirical distri-
bution of scores generated by the algorithm for a class of
images.

Our algorithm is based on matching sub-patches of
the two images. Intuitively, two similar images consist
of similar subparts. As noted in [13], the converse also
holds: if two images have many similar overlapping
shape fragments, then with high probability the images
are similar. It is highly unlikely that overlapping patches
will be arranged in two configurations that are totally
dissimilar. The consequence is that relations among the
parts within each image can be ignored, since they are
captured indirectly by comparing overlapping patches.
Similar ideas appear in [14]. Related work in computer
graphics (e.g. [15]) demonstrated patch-based method
to be highly effective for texture synthesis. Recently,
there have been several successful demonstrations of
patch-based methods for segmentation and recognition
employing statistical learning from examples [16,17].
However, the problem of systematically identifying the
transformations of similar sub-patches in images has
not been studied previously.

2. The relative dynamic programming algorithm

In this section we present our similarity-measuring algo-
rithm, which we call RDP (Relative Dynamic Program-
ming) for reasons explained below. We describe an
implementation of RDP that measures the similarity
between grayscale images. Our aim is to identify patches
from the two images as similar if they contain many over-
lapping similar sub-patches. The question whether subparts
are similar is therefore recursive. This leads to an iterative,
bottom-to-top construction. The algorithm starts by
matching small patches, using a basic similarity measure,

(a)

(b)

(c)

(d)

Fig. 2. Hierarchical alignment of 1D images. (a) The two 8-pixels images
being compared. (b,c, and d) The best matches for the 4-pixels sub-patches
of the left image based on the movements of the 2-pixels sub-patches.

A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98 89
and computes the similarity of larger patches based on the
similarity of the smaller ones contained in them. The simi-
larity values between patches are stored in a table. At each
phase, the algorithm fills the table iteratively, based on the
table computed in the previous phase. The algorithm is a
dynamic programming algorithm in the sense that it re-uses
optimal solutions already obtained for sub-problems.

In contrast to standard dynamic programming algo-
rithms, the presented algorithm is extendible to more than
one dimension. This does not simply mean that we use a
multidimensional table. The crucial distinction is that in
our method image blocks can move in multidimensional
directions during the alignment process. The key that
enables flexible movements in multiple dimensions is the
fact that our algorithm builds the tables starting from
many initial points simultaneously, whereas standard
dynamic programming algorithms start from a single point
and require a scan order. This advantage comes at the price
that the objective function computed by the algorithm is
hierarchical, i.e. cannot be explicitly written down as a
function of the two images in a short way. We don’t start
by stating a global objective function and formulating the
iterative steps to optimize this function. We start by formu-
lating the iterative steps in a way that the resulting hierar-
chical function the algorithm computes will be robust to
small movements of subparts.

As a result, similarity scores have to be interpreted rela-
tively. The meaning of a score comes from comparison to
other scores produced by the same algorithm on other
inputs. Specifically, the score is the probability to obtain
lower values than the value computed by the similarity
computation. Note that even for standard dynamic pro-
gramming algorithms, such as edit distance [5], the inter-
pretation of the score depends on some assumptions on
the distribution of these scores. For example, suppose we
compare two strings and find that 5 edit operations are
required. The number ‘‘5’’ is not informative unless we
know how frequent it is in the domain of these strings.

2.1. Algorithm details

For expository reasons, we start by describing a simpli-
fied version of the algorithm in one dimension. The input
consists of two rows of N pixels, I1(0..N � 1),
I2(0..N � 1), where each pixel has grayscale value between
0 and 1. For simplicity assume that N is a power of 2.
A hierarchical alignment of the sort we consider is shown
in Fig. 2. At level h, where h = 1,2, . . ., log(N), the align-
ment matches sub-patches of size 2h taken from both imag-
es. The patches are equally spaced 2h�1 pixels apart, i.e. the
distance between patches is doubled as the level increases.
We allow sub-patches to shift one position (2h�1 pixels)
with respect to their parent patch. In Fig. 2, patches of
two pixels can match by moving up to one pixel with
respect to the four-pixel patch that contains them, and
patches of four pixels can move in steps of two pixels. With
each hierarchical alignment we associate a hierarchical
score. The smallest patches are compared using some basic
similarity function. At higher levels patches are compared
by combining the similarity scores between their sub-patch-
es. A penalty is added whenever the alignment chooses to
shift a sub-patch relatively to its parent patch. The goal
is to compute the minimal hierarchical score of hierarchical
alignments of this type. Note that the hierarchical score is
not a simple global objective function of the two images,
but has to be computed from the hierarchical alignment.
However, the hierarchical score is useful for ranking simi-
larities of images.

Next we describe the algorithm in more detail. The algo-
rithm proceeds in phases. In phase h, the algorithm com-
putes the similarity score between sub-patches of size 2h.
The final output is the similarity score of phase log(N),
when the patch size equals N.

Intermediate scores are stored in a similarity table for
use in the subsequent phase. We assume that each pixel
in I1 cannot move more than D pixels to its ‘‘true loca-
tion’’ in I2. The similarity table T(i,d) stores all possible
comparisons between patches whose centers are no more
than D pixels apart. More specifically, T(i,d) is the sim-
ilarity value between the patches whose left corners are
I1(i) and I2(i+d). T has pixel index i ranging from 0 to
N � 1 and displacement (offset) index d ranging from
-D to D (indexing based on the relative offset between
patches is a common compact way to store matrices of
small bandwidth. This representation is extendible to
multidimensional arrays). The structure of the table is
illustrated in Fig. 3. Some of the entries in the similarity
table are empty due to boundary overflows. From here
on we will ignore such details which are handled in the
implementation.

The first phase is executed using a basic similarity func-
tion D applied to the intensity values of two 2-pixels patch-
es. Here D is a distance (or dissimilarity) function, meaning
that values close to zero reflect higher similarity.

I1 I2

D(i,i+2)

D(i,i+3)

D(i,i−2)

D(i,i−1)

D(i,i−3)

D(i,i)

D(i,i+1)

T(i,δ)

3

2

1

0

−1

−2

−3
i i

Fig. 3. The similarity table for one-dimensional images. Each entry in the table T stores the similarity score between sub-patches of I1 and I2. The first
index denotes the patch’s corner in I1, and the second index denotes the relative offset of the patch in I2.

90 A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98
T ði; dÞ ¼ Dð½I1ðiÞ; I1ðiþ 1Þ�; ½I2ðiþ dÞ; I2ði; dþ 1Þ�Þ ð1Þ

The basic similarity function could range from simple tem-
plate matching such as L2 to more complicated functions
such as comparing features over two larger windows cen-
tered at the locations of these patches. The choice and eval-
uation of basic similarity functions are beyond the scope of
this paper. The function we used in our implementation is
described in Appendix A.

We next compare the two inputs in a manner that will be
robust to small distortions between the images being com-
pared, and make the measurement symmetric with respect
to the two inputs. To allow for small distortions, we main-
tain two tables M1, M2, of the same dimensions as T. These
two tables are introduced for efficiency reasons, since the
algorithm will reuse the values stored in them several times.
M1 stores the minimum of the comparisons of patches
from I1 to three possible patches from I2:

M1ði; dÞ ¼ minðT ði; d� 1Þ þ c1; T ði; dÞ; T ði; dþ 1Þ þ c1Þ
ð2Þ

M2 stores the minimum of the comparisons of patches of I2

to three possible patches in I1. The offsets are adjusted so
that the three patches in I1 will point to the same patch
of I2:

M2ði;dÞ¼minðT ði�1;dþ1Þþc1;T ði;dÞ;T ðiþ1;d�1Þþc1Þ
ð3Þ

The minima are weighted in such a way that a local dis-
placement has a fixed cost c1. This cost was introduced to
give preference to coherent displacements, which are cap-
tured in the offset index, over irregular movements, which
are captured in the minimum operation. Coherent move-
ment of a large sub-patch results in a single penalty at some
stage of the hierarchical framework, while many incoherent
movements of sub-patches in various directions result in
multiple penalties during the process.

The similarity comparisons used by the algorithm are
symmetric in the input images. To see why it is advanta-
geous to perform such bidirectional comparison, consider
a case where I1 = (0, 1,0,1,0,1, . . .), I2 = (0, 1,1,0,1,1,. . .).
Each sub-patch of two pixels in I1 can find an exact mate
in I2 by moving no more than a single position, but the
‘‘11’’ sub-patches of I2 have no corresponding mates in
I1, and we would like such an odd patch to affect the sim-
ilarity measure.

Assume we know the empirical distribution of the values
in M1 and M2 (the way this distribution is estimated is dis-
cussed later). We normalize every value in the tables M1

and M2 by this distribution. The normalization gives us
better control over the numbers processed by the algorithm
since we learn from the distributions how frequent a simi-
larity score is in a particular domain of patches. After nor-
malization, the entries are expected to be distributed
uniformly between 0 and 1.

In the iterative step, the algorithm computes the simi-
larity of double-size patches at doubled distances from
each other. The similarity score T(i,d) of the next phase
is based on six similarity values between sub-patches that
were computed and normalized in the previous phase:

v1 ¼ M1ð2i; 2dÞ; v2 ¼ M1ð2iþ 1; 2dÞ; v3 ¼ M1ð2iþ 2; 2dÞ;
v4 ¼ M2ð2i; 2dÞ; v5 ¼ M2ð2iþ 1; 2dÞ; v6 ¼ M2ð2iþ 2; 2dÞ

ð4Þ

Since patches double in each round, the range of indexes
is halved (0 6 i < N/2h, �D/2h

6 d 6 D/2h). T(i,d) is a
weighted geometric mean of v1, . . .,v6 normalized by its
empirical distribution. The rational for taking the geomet-
ric mean is that we would like evidences of high similarity
(values close to 0) to have high influence on the combined
score. In the implementation we actually multiply the val-
ues of max(vi, e), to prevent the possibility of zero prod-
uct. A product of zero would propagate through all the
stages of the algorithm and will result in perfect match
at the last phase. This situation may happen in practice
due to image discretization or inaccurate measure of the
distribution by which we normalize.

A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98 91
We used weights to put more emphasis on sub-patches
that contain salient features such as boundaries. Following
Moravec [18], for each point i we compute

W ðiÞ ¼
X2

j¼�2

ðIðiþ jÞ � IðiÞÞ2 ð5Þ

(for two dimensional images the sum is over a square win-
dow). This weight gives higher emphasis to edge points
with a large intensity gradient. We assign a weight w for
each patch by averaging W(i) over the points i in that patch
(we used a minimal weight value to insure that uniform
patches get a small positive weight). To compute the com-
bined measure we define:

L ¼
X6

i¼1

wi logðviÞ
 ! X6

i¼1

wi

 !,
ð6Þ

The weighted geometric mean is then T(i,d) = 2L. The rep-
resentation 2L is more efficient because it uses a single raise-
to-power operation. The computation of logarithms in L is
avoided by normalizing vi directly to the logarithm of its
tabulated distribution.

This process is then iterated over with increased patch
sizes, as illustrated in Fig. 4. Each phase involves comput-
ing the minima tables M1 and M2, normalizing their values
by an empirical distribution, and storing the normalized
weighted geometric means in the T table.

Our implementation uses separate distributions for each
phase. It is possible to sample the distribution of phase
h + 1 only after the distribution of phase h had been com-
puted. To build the distributions, we pick a set of image
pairs, and build the distributions in phases. At phase h

we compute similarity scores for patches of size 2h-1 from
the tables of all pairs of images simultaneously. Note that
there is no need to sample the similarity scores of full-size
images, because normalizing the final score will not change
the relative order of the final scores.

We end the description of the algorithm with a cross-res-
olution extension, designed to deal with scale changes in
the images. Scale changes need not be homogenous over
the images: some parts of the image may expand while
Patch size = N?

Input images Set patch size = 2 Compute basic
similarity measure

Store normalized
scores in table T

Yes

Output the
similarity score

Build minima
tables M1,M2

Double the
patch size

Geometric mean of
sub-patches' scores

NoNormalize
the scores

Fig. 4. High-level flowchart of the algorithm.
other parts may shrink. It might happen that within an
expanding part some subparts will in fact shrink in size,
and this property of non-uniform scaling is therefore
recursive.

To deal with scale variations, we add an additional
dimension to all of our data structures. First, we construct
a pyramid for the images. Denote by I(r) the image I at res-
olution r. Our aim is to compare sub-patches of I1(r) to
sub-patches of I2 at resolutions r � 1, r, r + 1 and store
these values in the similarity table T(r,z, i,d).
z 2 {�1,0,1} is the resolution offset. The corresponding
resolution of I2 is r + z. Given two patches, we compute
the weighted geometric mean 2L of the evidences of their
parts as before. Two additional cross-resolution terms are
computed. If the two patches are at the same resolution
(i.e. z = 0), the central sub-patch from I1 is tested to fit
the low-resolution version of the whole patch from I2,
and vice versa:

V high-low ¼minðT 0ðr;1;2iþ 1;dÞ;T 0ðrþ 1;�1; i;2dþ 1ÞÞþ c2

ð7Þ

where T 0 denotes the normalized similarity table of the pre-
vious phase. The term is taken with a cost c2 in order to
prevent possible ‘‘drift’’ to base the comparison on repeat-
ed low-resolutions of both-patches. The last term to com-
pute is the similarity between the two low-resolution
versions of both patches:

V low�low ¼ T 0ðr þ 1; zþ 1; i; dÞ þ c3 ð8Þ

This term is important because it allows the algorithm to
ignore non-similar details at high resolution. Finally, the
similarity score of the two patches is:

T ðr; z; i; dÞ ¼ minð2L; V high-low; V low–lowÞ ð9Þ
Fig. 5. Arrays of overlapping patches. (a) Original 32 · 32 image. (b,c),
and (d) – Three levels of overlapping patches of sizes 16,8,4, where each
patch shares pixels with its neighbors.

Fig. 6. The similarity score between two patches in two dimensions is computed from the sub-patches, the low-resolution and the cross-resolution
similarities.

92 A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98
The scheme carries on naturally to two dimensions. The
sub-patches compared at phase h are squares of size
2h · 2h, as illustrated in Fig. 5. The data structures are
extended by additional two indices. T(r,z, i1, i2,d1,d2)
represents the similarity value between two sub-patches
of I1(r) and I2(r + z). i1 and i2 are the array coordinates
 A B

1
Bars of one pixel width
shifted one pixel.

2
Bars of two pixels widt
upwards and the right p

3
Diagonal pattern. Each
directions.

4
Uneven displacement o
shifted non-uniformly b

5 Random displacement o

6 Diagonal stripes. Each q

7
The outer part of B stay
part is in low resolution

8
B has the original resolu
resolution.

9
Each quadrant in B is e
quarters of A.

10
Quadrants of diagonal s
movement.

Fig. 7. Test 1: synthetic patterns und
of the patch corner in I1. d1 and d2 are the displacement
of the patch of I2 relative to the projection of i1 and i2 on
I2(r + z). Each patch is covered by nine sub-patches. When
the minima tables are computed, each sub-patch is allowed
to move one array position left, right, up, down or diago-
nally. The terms involved in the similarity score are shown

. The left part is the same. The right part is

h. The left part is shifted two pixels
art two pixels leftwards.

quarter moves one pixel in opposite

f horizontal bars. The black bars are
y 0 to 8 pixels.

f squares.

uadrant movers differently.

s at the same resolution, while the inner
.

tion, low resolution and doubled low

ither low or high resolution version of the

tripes in different resolutions plus slight

ergoing non-rigid deformations.

A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98 93
in Fig. 6. The complexity of the algorithm, as well as the
storage requirement, is O(N2D2).

The algorithm can also recover the optimal aligning
transformation between the images. This could be done
by marking at each minimum operation where this mini-
mum has come from. By keeping track of intermediate
data-structures one can identify the parts in the images that
mostly contributed to the similarity score (e.g. in case of
partial occlusion).

We conclude this section by a brief summary of the main
principles used in the similarity measure, independently
from the specific implementation details. The similarity
measure compares images recursively based on the similar-
ities of sub-structures. The composition of sub-structures is
flexible, allowing small distortions, shifts and non-uniform
changes of scale within the sub-parts. The computed trans-
formation is a composition of a large number of intermedi-
ate transformations overlaid one on top of the other. When
these transformations are coherent the score is small since
the transformation is captured at a higher level of the com-
putation (larger patch size or lower resolution). The output
is optimal with respect to the hierarchical score we defined,
in the sense that among all hierarchical alignments that we
consider it has the smallest hierarchical score. Unlike stan-
dard dynamic programming algorithms, the hierarchical
score is not a simple global function of the images that is
B1 B2 B3 B4 B
D(Ai,Bj)

A1 0.008 0.008 0.914 0.844 0.6

A2 0.008 0.008 0.336 0.055 0.1

A3 0.906 0.336 0.008 0.234 0.1

A4 0.477 0.117 0.445 0.008 0.1

A5 0.445 0.063 0.07 0.055 0.0

A6 0.805 0.664 0.047 0.281 0.3

A7 0.633 0.297 0.992 0.602 0.9

A8 0.961 0.125 0.523 0.219 0.7

A9 0.289 0.289 0.133 0.375 0.4

A10 0.805 0.438 0.055 0.281 0.3

Fig. 8. RDP scores on test 1. No errors on this set (our implementation norm
score).
being optimized. The hierarchical score depends on the dis-
tributions of similarity scores in the particular domain of
patches (which depend on the algorithm that measures
these scores). The hope is that if the recurrence is designed
properly, the global solution will have the desired
properties.

3. Results

We evaluated the performance of the similarity measure
described above by applying it to several image test sets of
size 32 · 32 pixels. Four test set are described in Figs. 7–12.
The first two test sets are synthetic patterns designed to
evaluate and demonstrate the properties of the RDP simi-
larity measure. Fig. 7 describes the first test set in detail. It
is made of ten image pairs, labeled (A) and (B). In each
pair, the image labeled (B) was derived from (A) by some
transformation, such as local shifts and deformations of
image parts. In all the examples, the similarity between
the two members of the pair is evident and compelling
for human observers. However, capturing and explaining
these non-rigid transformations is not trivial, and most
existing measures for comparing image regions will fail to
reflect the similarity of the image pairs. For instance, in
the second pair of test 1, the left part moves vertically while
the right part moves horizontally. Even if we apply a global
5 B6 B7 B8 B9 B10

56 0.844 0.211 0.547 0.508 0.695

02 0.094 0.203 0.219 0.172 0.227

41 0.016 0.898 0.781 0.133 0.016

56 0.141 0.164 0.117 0.438 0.148

08 0.164 0.938 0.891 0.586 0.32

44 0.008 0.641 0.25 0.023 0.117

84 0.727 0.008 0.016 0.57 0.859

89 0.133 0.055 0.016 0.25 0.172

92 0.086 0.297 0.305 0.008 0.008

59 0.344 0.586 0.281 0.023 0.008

alizes the score using a table such that 0.008 � 1/128 is the lowest possible

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

D(Ai,Bj)

A1 0.500 0.500 0.502 0.468 0.495 0.498 0.490 0.500 0.500 0.515

A2 0.500 1.000 0.473 0.468 0.509 0.488 0.494 0.500 0.500 0.485

A3 0.504 0.524 0.375 0.496 0.480 0.494 0.481 0.471 0.555 0.477

A4 0.500 0.500 0.473 0.453 0.494 0.493 0.422 0.472 0.500 0.491

A5 0.491 0.472 0.513 0.560 0.387 0.523 0.482 0.543 0.495 0.502

A6 0.500 0.500 0.470 0.500 0.518 0.241 0.499 0.446 0.531 0.501

A7 0.500 0.500 0.505 0.518 0.503 0.497 0.144 0.406 0.644 0.574

A8 0.500 0.500 0.478 0.518 0.606 0.449 0.511 0.125 0.572 0.511

A9 0.500 0.500 0.481 0.500 0.507 0.557 0.633 0.586 0.500 0.429

A10 0.500 0.500 0.539 0.500 0.475 0.518 0.501 0.554 0.469 0.501

Fig. 9. Scores of cross-correlation on test 1. Errors are underlined. Error rate = 0.45.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

D(Ai,Bj)

A1 0.023 0.063 0.281 0.523 0.852 0.586 0.266 0.75 0.18 0.477

A2 0.156 0.055 0.18 0.32 0.406 0.477 0.141 0.727 0.391 0.656

A3 0.117 0.25 0.016 0.477 0.609 0.438 0.117 0.531 0.25 0.477

A4 0.492 0.641 0.352 0.008 0.055 0.422 0.492 0.102 0.508 0.078

A5 0.609 0.516 0.797 0.141 0.375 0.813 0.211 0.391 0.281 0.148

A6 0.391 0.445 0.617 0.336 0.102 0.016 0.453 0.945 0.234 0.57

A7 0.32 0.211 0.352 0.156 0.063 0.102 0.031 0.391 0.492 0.102

A8 0.914 0.742 0.922 0.359 0.969 0.977 0.313 0.047 0.961 0.703

A9 0.211 0.266 0.555 0.297 0.75 0.266 0.211 0.156 0.039 0.227

A10 0.391 0.266 0.203 0.055 0.055 0.234 0.203 0.336 0.313 0.086

Fig. 10. Test 2: synthetic pairs of patches with similar form. The similarity scores of RDP are shown, and errors underlined. Error rate = 0.2. The error
rates of L2 and correlation are 0.35 and 0.3.

94 A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

D(Ai,Bj)

A1 0.07 0.516 0.742 0.367 0.914 0.508 0.664 0.398 0.633 0.484

A2 0.383 0.055 0.063 0.141 0.211 0.141 0.141 0.773 0.711 0.102

A3 0.508 0.18 0.055 0.094 0.148 0.055 0.094 0.773 0.578 0.07

A4 0.57 0.352 0.141 0.055 0.141 0.063 0.063 0.633 0.82 0.055

A5 0.891 0.477 0.094 0.094 0.031 0.055 0.172 0.961 0.828 0.102

A6 0.445 0.148 0.141 0.172 0.141 0.047 0.055 0.75 0.891 0.141

A7 0.375 0.367 0.094 0.055 0.25 0.102 0.07 0.094 0.07 0.07

A8 0.844 0.703 0.414 0.281 0.656 0.539 0.188 0.023 0.688 0.422

A9 0.578 0.555 0.477 0.25 0.57 0.477 0.422 0.656 0.055 0.516

A10 0.68 0.25 0.141 0.07 0.102 0.141 0.102 0.695 0.82 0.055

Fig. 11. Test 3: icons of flowers. The similarity scores of RDP are shown, and errors underlined. Error rate = 0.1. The error rate of both L2 and
correlation is 0.4.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

D(Ai,Bj)

A1 0.031 0.055 0.797 0.898 0.047 0.055 0.188 0.18 0.055 0.055

A2 0.055 0.031 0.773 0.922 0.055 0.055 0.141 0.086 0.055 0.055

A3 0.609 0.805 0.031 0.039 0.656 0.516 0.492 0.453 0.594 0.82

A4 0.719 0.898 0.055 0.047 0.523 0.523 0.383 0.125 0.75 0.555

A5 0.063 0.078 0.484 0.578 0.047 0.063 0.055 0.117 0.055 0.078

A6 0.055 0.055 0.758 0.781 0.055 0.039 0.188 0.125 0.055 0.094

A7 0.141 0.078 0.578 0.688 0.063 0.078 0.055 0.055 0.055 0.094

A8 0.164 0.258 0.242 0.484 0.359 0.281 0.234 0.039 0.203 0.359

A9 0.055 0.055 0.609 0.875 0.055 0.055 0.063 0.234 0.039 0.055

A10 0.055 0.055 0.852 0.93 0.055 0.078 0.141 0.234 0.055 0.039

Fig. 12. Test 4: real images of butterflies. The similarity scores of RDP are shown, and errors underlined. Error rate = 0.05. The error rates of L2 and
correlation are 0.35 and 0.25.

A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98 95

Test 5 Test 6 Test 7

0.031 0.031 0.031

0.031 0.047 0.031

0.039 0.055 0.031

0.047 0.055 0.031

0.055 0.055 0.031

0.055 0.094 0.047

0.055 0.180 0.055

0.055 0.180 0.055

0.055 0.234 0.055

Fig. 13. Evaluation of RDP’s robustness. Test 5: change of scale. Test 6:
rotation. Test 7: noise.

96 A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98
rigid transformation before computing a point-wise metric
such as L2, half of the pixels will be misaligned. The simple
patterns in this example already pose conceptual difficulties
to many methods based on local features, since any local
feature computed on the left image will match multiple fea-
tures on the right image (except for the centers of those
images). Thus, evaluating which of these matches is ‘‘cor-
rect’’ becomes an optimization problem that has no exact
solution using only affine transformations. In contrast,
our method allows sub-patches to move independently
and captures the transformation locally. While some fea-
ture-based methods will penalize for the small movement
of each feature a bit, our method will penalize only for
the movement of the two parts as wholes.

The evaluation is summarized in the tables shown in
Figs. 8–12. Each test set consists of 10 pairs of similar
images. A comparison of an image to its similar pair was
considered as an error when the similarity score of the cor-
rect match was not the minimum of the comparisons to the
other 10 possible images along the row or the column of
the image. Ideally, the elements on the diagonal of the
tables should be the minimal score along their rows and
columns. The mistake rate of a test is the number of error
out of the 20 possible. We compared the scores of RDP
with L2 and correlation (transformed linearly to [0, 1]).
The performance of RDP on test sets 1–4 is shown in Figs.
8, 10, 11 and 12. The error rates of RDP on these tests are
0, 0.2, 0.1 and 0.05. In comparison, the error rates of L2

are 0.5, 0.35, 0.4 and 0.35. The error rates of correlation
are 0.45 (Fig. 9), 0.3, 0.4 and 0.25. One can see that the
results obtained by RDP are superior to standard distance
functions used to compare images, such as L2 and correla-
tion. The basic reason is that in the RDP comparison, parts
of the images can undergo different deformations simulta-
neously and still be matched.

The performance of the method should not be under-
stood just from the statistical rate of success, because the
numeric results depend on how confusing the images are,
as well as on several implementation details. The score
depends on the distributions used (we sampled the distri-
butions for each test separately), the basic similarity
function (we applied the basic similarity measure
described in the appendix over patches of 4 · 4 pixels
centered around the 2 · 2 patches), the choice of cost
constants and the weight of the background in the imag-
es. In all of these tests we used the same constants:
c1 = c2 = 0.05, c3 = 0.2/(h � 1), so that the cost for com-
parison in low resolution decreases with the phase h of
the algorithm.

We investigated how the similarity score of our implemen-
tation varies under controlled image deformations. The
results are shown in Fig. 13. In test 5, the images are scaled
by factors of 1,0.95, 0.9, . . ., 0.55. The score below each
image is the similarity to the top image (the scores do not
vary smoothly because we used tabulated distributions). In
test 6, the images are rotated by 0�, 5�, 10�, 15�, . . ., 45�. Test
7 evaluates the behavior of the score under different levels
of noise (the score is shown below each pair). For compari-
son, the averaged L2 distance between the last pair is 0.327.
These examples suggest that the scores are robust to small
changes in scale, small rotations and noise.

We also examined the dependency of the algorithm on
specific factors such as the empirical distributions and the
use of symmetric, bi-directional computation. We conclud-
ed that performing a bi-directional computation slightly
improves the accuracy on the expense of running time. In
practice, normalizations by the empirical distributions are
not always necessary. On the other hand, there are situa-
tions where not using the correct distribution can lead to
convergence of the similarity score to zero. This may hap-
pen because at each phase we take the minimum of several
scores, and in general we would expect the similarity score
to decrease as these operations are iterated. We tested the
algorithm with five levels in the hierarchy and expect that

A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98 97
fewer levels would diminish this problem. Additional
details are provided in [1].

4. Discussion

We presented a general framework for assessing the sim-
ilarity of image regions based on the composition of parts.
The measure uses a basic similarity measure, such as correla-
tion, only for simple local sub-parts, and then evaluates the
similarity between the regions by identifying common sub-
parts. The scheme allows complex, non-rigid deformation
of the images, and penalizes irregular deformations (small
sub-parts that move independently) more than coherent
shifts of larger sub-parts. The operations are performed effi-
ciently by a dynamic programming like implementation.

Our implementation demonstrated the qualitative prop-
erties of the scheme. No domain-specific features have been
detected, and there was no need to specify the spatial con-
figuration of the parts. The parts within each image are not
identified explicitly. The algorithm matches systematically
a large number of overlapping sub-patches. Similar over-
lapping patches impose similar configuration. The dynamic
programming procedure looks for an optimal transforma-
tion that aligns the patches of both images. This transfor-
mation is not a global transformation, but a composition
of multiple local transformations of sub-patches at various
sizes. The aligning transformation has many degrees of
freedom that allow for highly flexible matching. The
method involves a phase of collecting statistics regarding
the distribution of similarity scores in the domain of the
images. The scheme is biologically plausible because it is
based on multiple simple operations, and it can be imple-
mented in neural networks and parallel hardware.

Our experiments show that the RDP implementation is
superior to L2 and correlation. The algorithm can deal with
various types of non-rigid transformations, where parts of
the images can undergo different types of deformations at
the same time. Objects that are perceptually similar are
often judged by the algorithm to be similar, even when a
direct comparison does not detect such similarity. This sup-
ports the assumption that perceptual similarity is based in
part on common substructures shared by the objects under
comparison.

However, the current implementation of the RDP
method is still inferior to humans’ similarity assessment.
Two main causes for inaccuracy have been identified in tes-
tings. The first weakness is the saliency measure for
regions. Small but important regions in the images may
have large impact on the perceived similarity. The second
issue neglected by our scheme is invariant topological
properties of shapes. In particular, the method does not
identify and match the contours of the shapes. It does
not examine whether the shapes are connected, closed or
contain holes. This is in contrast to humans’ perception,
which can use at least some aspects of these properties [19].
It was encouraging to observe that low error rates were
achieved even though the ability to match contours was
not considered in the design of our implementation. Incorpo-
rating some pre-processing for contour detection or
enhancement is likely to further improve the performance
of the similarity measure and its agreement with human
perception.

The principles of the RDP algorithm are general and
can be extended to higher dimensions. For instance, it is
possible to deal with independent rotations of sub-patches
by adding an additional dimension to the tables and com-
paring each patch to several rotated versions of the patch
from the other image. The same method could be used
for the alignment of 3D volumes represented as sets of vox-
els, or the alignment of cube-patches in video sequences.
These possibilities and extensions remain for future
research.
Acknowledgement

S.U. was supported by EU IST Grant FP6-2005-015803
and ISF Grant 7-0369.
Appendix A

In this appendix we describe a variant of cross correla-
tion that we used as our basic similarity function to com-
pare sub-patches. We found this variant to be more
effective than correlation since it takes into account the dif-
ference in the mean brightness of the patches. In a real
world application global brightness normalization could
be performed before applying this operation to local sub-
patches.

We define the inter-correlation between two vectorized
patches x and y with expectations EðxÞ ¼ �x and EðyÞ ¼ �y:

ICðx; yÞ ¼ Eððx� �yÞðy � �xÞÞffi
Eðx� �yÞ2Eðy � �xÞ2

q ð10Þ

By definition IC(x,y) = 0 when the denominator is 0. Prop-
erties of this expression are listed below:

1. ICðx; yÞ ¼ Eððx��xÞðy��yÞÞ�ð�x��yÞ2ffi
ðEðx��xÞ2þð�x��yÞ2ÞðEðy��yÞ2þð�x��yÞ2Þ
p

2. jIC(x,y)j 6 1. This follows from the Cauchy-Schwarz
inequality. Having a bounded range is more convenient
to work with compared to metrics such as Sum of
Squared Differences (SSD).

3. jICðx; yÞj ¼ 1() y ¼ �xþ aðx� �yÞ for some constant
a„0. The proof is by equating to 0 the discriminant of
the non-negative quadratic expression: Eðaðx� �yÞ�
ðy � �xÞÞ2.

By taking expectations it follows that �y ¼ �xþ að�x� �yÞ.
At the extremes of IC(x,y), either a = �1 or �x ¼ �y. Substi-
tuting y by �xþ aðx� �yÞ in the IC formula, we get:

ICðx; yÞ ¼ þ1() y ¼ �xþ aðx� �xÞ and a > 0

98 A. Ecker, S. Ullman / Image and Vision Computing 27 (2009) 87–98
ICðx; yÞ ¼ �1() ðy ¼ �xþ aðx� �xÞ and a < 0Þ or

ðy ¼ �y þ �x� xÞ

IC(x,y) = 1 if and only if x and y have the same mean,
and their deviations from this mean are up to a positive
constant factor. IC(x,y) = �1 in two cases. The first pos-
sibility is that both vectors have the same mean, and
their deviation from this mean is a linear reflection.
The second possibility is that they have different means,
but the distribution around their means is an exact
reflection.
References

[1] A. Ecker, Images Similarity Based on the Distributions of Similar
Substructures, M.Sc. thesis (2002), Weizmann Institute of Science.

[2] A. Ecker, S. Ullman, A hierarchical non-parametric method for
capturing non-rigid deformations, in: Proceedings of the Second
Canadian Conference on Computer and Robot Vision 2005, pp.
50–56.

[3] D.G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2) (2004) 91–110.

[4] S. Belongie, J. Malik, J. Puzicha, Shape matching and object
recognition using shape contexts, IEEE Transactions on Pattern
Analysis and Machine Intelligence 24 (4) (2002) 509–522.

[5] A. Apostolico, Z. Galil, Pattern matching algorithms, Oxford
University Press, 1997.

[6] A.L. Ratan, W.E.L. Grimson, and W.M. Wells III. Object detection
and localization by dynamic template warping, In Proceedings of
IEEE International Conference on Computer Vision and Pattern
Recognition (1998), 634-640.

[7] R. Basri, L. Costa, D. Geiger, D. Jacobs, Determining the similarity
of deformable shapes, Vision Research 38 (1998) 2365–2385.
[8] E. Milios, E.G.M. Petrakis, Shape retrieval based on dynamic
programming, IEEE Transactions on Image Processing 9 (1) (2000)
141–147.

[9] P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia, A tree-edit distance
algorithm for comparing simple, closed shapes, In Proceedings of
ACM-SIAM Symposium on Discrete Algorithms (2000), 696-704.

[10] P.F. Felzenszwalb, Representation and detection of deformable
shapes, IEEE Transactions on Pattern Analysis and Machine
Intelligence 27 (2) (2005) 208–220.

[11] M.A. Fischler, R.A. Elschlager, The representation and matching of
pictorial structures, IEEE Transactions on Computers 22 (1) (1973)
67–92.

[12] P.F. Felzenszwalb, D.P. Huttenlocher, Pictorial structures for object
recognition, International Journal of Computer Vision 61 (1) (2005)
55–79.

[13] E. Sali, S. Ullman, Combining class-specific fragments for object
classification, in: Proceedings of the British Machine Vision Confer-
ence 1999, pp. 203–213.

[14] R.C. Nelson, A. Selinger, A cubist approach to object recognition, in:
Proceedings of IEEE International Conference on Computer Vision
1998, pp. 614–621.

[15] A.A. Efros, T.K. Leung, Texture synthesis by Non-parametric
Sampling, in: proceedings of IEEE international conference on
computer vision 1999, pp.1033–1038.

[16] B. Leibe, A. Leonardis and B. Schiele, Combined object categoriza-
tion and segmentation with an implicit Shape Model, in: ECCV’04
Workshop on Statistical Learning in Computer Vision (2004).

[17] J. Winn, J. Shotton, The Layout Consistent Random Field for
Recognizing and Segmenting Partially Occluded Objects, in: Pro-
ceedings of IEEE International Conference on Computer Vision and
Pattern Recognition 2006, pp. 37–44.

[18] H.P. Moravec, Towards Automatic Visual Obstacle Avoidance, in:
Proceedings of the International Joint Conference on Artificial
Intelligence 1977, 584.

[19] S.E. Palmer, Structural aspects of visual similarity, Memory and
Cognition 6 (2) (1978) 91–97.

	A hierarchical non-parametric method for capturing non-rigid deformations
	Introduction
	Related work

	The relative dynamic programming algorithm
	Algorithm details

	Results
	Discussion
	Acknowledgement
	Appendix A
	References

