
ConQuer: Efficient Management of Inconsistent Databases

Ariel Fuxman, Elham Fazli, Renée J. Miller∗
{afuxman,elham,miller}@cs.toronto.edu

University of Toronto

ABSTRACT
Although integrity constraints have long been used to main-
tain data consistency, there are situations in which they may
not be enforced or satisfied. In this paper, we present Con-
Quer, a system for efficient and scalable answering of SQL
queries on databases that may violate a set of constraints.
ConQuer permits users to postulate a set of key constraints
together with their queries. The system rewrites the queries
to retrieve all (and only) data that is consistent with re-
spect to the constraints. The rewriting is into SQL, so the
rewritten queries can be efficiently optimized and executed
by commercial database systems.

We study the overhead of resolving inconsistencies dy-
namically (at query time). In particular, we present a set of
performance experiments that compare the efficiency of the
rewriting strategies used by ConQuer. The experiments use
queries taken from the TPC-H workload. We show that the
overhead is not onerous, and the consistent query answers
can often be computed within twice the time required to
obtain the answers to the original (non-rewritten) query.

1. INTRODUCTION
Integrity constraints have long been used to maintain data

consistency. Data design focuses on developing a set of
constraints to ensure that every possible database reflects
a valid, consistent state of the world. However, integrity
constraints may not be enforced or satisfied for a number of
reasons. In some environments, checking the consistency of
constraints may be too expensive, particularly for workloads
with high update rates. Hence, the database may become
inconsistent with respect to the (unenforced) integrity con-
straints. When data is integrated from multiple sources,
each source may satisfy a constraint (for example a key con-
straint), but the merged data may not (if the same key value
exists in multiple sources). More generally, when data is ex-
changed between independently designed sources with dif-
ferent constraints, the exchanged data may not satisfy the

∗Supported in part by NSERC and CITO awards.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

constraints of the destination schema.
One strategy for managing inconsistent databases is data

cleaning [9]. Data cleaning techniques seek to identify and
correct errors in the data and can be used to restore the
database to a consistent state. Data cleaning, when appli-
cable, may be very successful. However, these techniques
are semi-automatic at best, and they can infeasible or unaf-
fordable for some applications. Furthermore, committing to
a single cleaning strategy may not be appropriate for some
environments. A user may wish to experiment with differ-
ent cleaning strategies, or may desire to retain all data, even
inconsistent data, for tasks such as lineage tracing. Finally,
data cleaning is only applicable to data that contains errors.
However, the violation of a constraint may also indicate that
the data contains exceptions, that is, clean data that simply
does not satisfy a constraint.

In this work, we take an approach that is applicable to
databases with both errors and exceptions. We propose a
system, ConQuer, for managing inconsistent data.1 In Con-
Quer, a user may postulate a set of integrity constraints,
possibly at query time, and the system retrieves all (and
only) the query answers that are consistent with respect to
the constraints. In order to do this, ConQuer rewrites the
query into another SQL query that retrieves the consistent
answers. We illustrate the semantics of consistent query an-
swering and ConQuer’s rewriting strategy with an example,
and provide precise definitions in Section 2.2

Example 1. Consider the database of Figure 1, which
contains information about customers and their account bal-
ances. Assume that a user specifies that the key of the
customer relation should be custkey. Note that the database
violates this key constraint, perhaps because its data has been
integrated from many operational sources. Consider a query
that retrieves information about customers whose account
balance is over 1000.

q1: select custkey

from customer

where acctbal > 1000

If we execute this query over the instance of Figure 1, we
obtain {c1, c2, c3, c3}. This cannot be considered a “consis-
tent” answer for the following reasons. First, it may be the

1ConQuer stands for Consistent Querying.
2In the examples throughout the paper, we use queries mo-
tivated by those in the TPC-H workload, but simplified to
illustrate specific points. However, in the experiments of
Section 6, we use actual TPC-H queries.



custkey acctbal

t1 c1 2000
t2 c1 100
t3 c2 2500
t4 c3 2200
t5 c3 2500

Figure 1: Inconsistent instance of the customer rela-

tion

case that customer c1 has an account balance below 1000
(tuple t2). However, c1 is included in the answer because it
appears in another tuple (t1) which does satisfy the query.
Second, customer c3 appears in the answer twice. Since we
consider custkey to be the key of the relation, we do not
expect to have repeated values in the answer.

In this case, we would expect {c2, c3} to be the “consis-
tent” answer for query q1. The reason is that c2 appears in
a single tuple of the database, which satisfies the query and
does not violate the key constraint. Even though c3 appears
in two tuples (which therefore violate the key constraint),
both tuples satisfy the query.

ConQuer rewrites queries in order to obtain their consis-
tent answers. For q1, it would produce the following query
rewriting:

select distinct custkey

from customer c

where acctbal > 1000

and not exists (select *

from customer c’

where c’.custkey=c.custkey

and c’.acctbal ≤ 1000)

The rewritten query has two differences with respect to q1.
First, it uses the distinct keyword to ensure that each con-
sistent answer is returned the right number of times. In this
case, this ensures that c3 appears exactly once in the answer.
Second, it has a nested subquery related by not exists. The
purpose of this subquery is to filter out those key values that
satisfy q1 in some tuples, but violate it in others. In our
example, this subquery filters c1 from the answer because it
appears in tuple t2 with an account balance below 1000.

We will use a common definition of consistent query an-
swer based on the notion of repair [2]. For keys, a repair
is a subset of the inconsistent database containing exactly
one tuple per key value. A repair is one possible “cleaned”
version of the database. A query answer is then consistent
if it is an answer to the query in every repair. In con-
trast, for monotone queries (queries without negation such
as the query of Example 1), the original query executed on
an inconsistent database returns a set of possible answers.
A possible answer is an answer to the query in at least one
repair. In the next section, we will give a precise definition
of consistent answers for arbitrary queries and constraints
(not just keys).

In the absence of user input to decide between tuples that
violate a constraint, ConQuer provides the option of retain-
ing all tuples, rather than forcing the user to remove (or ig-
nore) the inconsistent data. Furthemore, our approach is or-
thogonal to any cleaning that may be done on the database.

In particular, ConQuer can be used interactively by users to
understand where the data is potentially inconsistent. For
example, if we take the difference between the result of the
original and rewritten queries of Example 1, we can detect
that customer c1 satisfies the query but is not a consistent
answer. This may indicate that its data should be cleaned.
As another example, a user may not be too concerned if
there are multiple tuples for a customer that differ on ad-
dress (something that can be corrected with a specialized
data cleaning tool for addresses like Trillium3), provided
that other important information, such as the market seg-
ment, is consistent.

Summary of Results. The main contributions of our work
are the following:

• We present algorithms for rewriting SQL queries into
SQL queries that return only consistent answers. Our
approach is fully declarative, requiring no procedural
pre- or post-processing. This enables us to apply our
techniques to much larger databases than any of the
existing consistent query answering systems.

• We consider not only Select-Project-Join (SPJ) queries,
but also SQL’s bag semantics and queries with aggre-
gation. Our rewritings for these features are novel con-
tributions, and are needed to enable practical use in
analysis queries over an integrated and potentially in-
consistent data warehouse.

• We present a rewriting that works over the unchanged
(inconsistent) database and a second rewriting that
makes use of annotations attached to tuples indicat-
ing whether the tuple is known to be consistent. Such
annotations are appropriate for high performance envi-
ronments where the inconsistent data represents valu-
able data that cannot be removed. We show how such
annotations can be exploited using query optimiza-
tions specific to the semantics of consistent query an-
swering. These optimizations are highly effective and
would not be found by a standard optimizer.

• We present a performance study using the data and
queries of the TPC-H decision support benchmark.
Our study highlights the overhead of dynamically (at
query time) resolving inconsistencies when off-line clean-
ing is not possible (or not appropriate for the applica-
tion). We consider different degrees of inconsistency
(we experiment with databases in which up to 50% of
the database may be inconsistent) and database sizes
to understand the applicability of our approach.

In the next section, we precisely define consistent query
answering. Our query rewriting strategy for queries with-
out aggregation is presented in Section 3. In Section 4, we
consider queries with aggregation. In Section 5, we present
an optimization of the rewritings that exploits precomputed
information about constraint violations. In Section 6, we
present a performance study which uses queries from the
TPC-H decision support benchmark. In Section 7, we con-
sider related work in the area of consistent query answering.
We close the discussion in Section 8 with some conclusions
and directions for future work.

3www.trilliumsoftware.com



2. PRELIMINARIES

Throughout this paper, we take an unorthodox view of
constraints. The constraints that we consider do not re-
strict the valid database instances. Rather, they constrain
the set of valid (in our terminology consistent) answers that
can be obtained when posing a query on the database. To
avoid confusion, we will refer to such constraints as query
constraints. In this paper, we will consider sets of query
constraints which consist of at most one key constraint per
relation of the query.

Let R be a relational schema, and D be a database over
R. We are given a set of query constraints Σ, where the
database may be inconsistent with respect to Σ. We use a
common definition for consistent query answer that is based
on the concept of a database repair, defined by Arenas et al.
[2]. A repair DR of D is an instance of R such that DR sat-
isfies the query constraints of Σ, and DR differs minimally
from D. In this case, minimality is defined with respect to
the symmetric difference between D and DR, denoted as
∆(D, DR).

Dfn 1 (Repair [2]). Let D be a database. A database
DR is a repair of D with respect to Σ if DR satisfies Σ
and there is no database D′ satisfying Σ where ∆(D, D′) ⊂
∆(D, DR).

Notice that repairs need not be unique. In fact, even
for keys there may be an exponential number of them. Intu-
itively, each repair corresponds to one possible way of “clean-
ing” the inconsistent database. For keys, a repair will be a
subset of D that contains exactly one tuple for each key
value in D.

Example 2. In our example of Figure 1, we have the fol-
lowing four repairs: DR

1 = {t1, t3, t4}, DR

2 = {t1, t3, t5},
DR

3 = {t2, t3, t4}, DR

4 = {t2, t3, t5}. Each repair is a con-
sistent database that is as close as possible to the inconsistent
database of Figure 1.

The notion of repair is used to give a precise meaning to
query answering over inconsistent databases [2]. In partic-
ular, a consistent query answer is required to appear in the
result of a query on every repair of the inconsistent database.

Dfn 2 (Consistent Query Answer). Let D be a data-
base, q be a query, and Σ be a set of query constraints. The
consistent query answers for q on D are defined as the set

⋂

DR is a repair of D wrt Σ

q(DR)

In contrast to consistent answers, we could also consider
possible answers, where a possible answer is an answer on
some repair (that is, it is the union of the answers to q

over all the repairs). Note that when Σ includes only key
constraints and q is a monotone query, the original query q

on D returns the set of possible answers.
For set semantics, we are only concerned with finding the

set of tuples that occur in the query result for every repair.
Under bag semantics, the multiplicity of a tuple in the con-
sistent query answer is the minimum multiplicity from any
repair.

Our approach to compute consistent answers is based on
query rewriting. Specifically, given an SQL query q and a set

of key query constraints Σ, we will rewrite q into another
SQL query Qc that retrieves the consistent answers for q.
The rewriting is done independently of the data, and works
for every inconsistent database. Some rewriting strategies
for limited classes of queries have been proposed in the lit-
erature [2, 7]. The strategy presented in this paper is moti-
vated by our previous work on rewriting conjunctive queries
into first-order logic queries [11]. In Sections 3 and 4, we
consider not only conjunctive queries (that is, SPJ queries
with set semantics), but also queries with aggregation and
bag semantics.

In this paper, we consider sets Σ of query constraints that
consist of at most one key constraint per relation of the
query. A key query constraint declares a set of attributes
X as the key of a relation. Each attribute in X is a key
attribute, all other attributes of the relation are non-key at-
tributes.

To define the class of queries that can be handled by Con-
Quer, we first introduce the notion of a join graph [11].

Dfn 3 (join graph). Let q be a SQL query. The join
graph G of q is a directed graph such that:

• the vertices of G are the relations used in q; and

• there is an arc from Ri to Rj if a non-key attribute of
Ri is equated with a key attribute of Rj .

We present query rewritings for tree queries. Such queries
can have two kinds of joins. First, they can have joins be-
tween key attributes. Second, they can have joins from non-
key attributes of a relation (possibly a foreign key) to the
primary key of another relation. Arguably, these two types
of joins are the most commonly used in practice (and cer-
tainly the most common in standards like TPC-H).

Dfn 4 (tree query). We say that a select-project-join-
group-by query q is a tree query if (1) every join condition of
q involves the key of at least one relation; (2) the join graph
of q is a tree. We consider only queries containing equi-joins
(no inequality joins). The selection conditions may contain
comparisons (e.g., <) or functions. Each relation may be
used at most once in the query. The query may contain
aggregate expressions.

Note that the previous definition restricts the non-key to
key joins of the query to be acyclic, and does not permit
non-key to non-key joins (since every join must involve the
key of a relation).

3. JOIN QUERIES

In this section, we present ConQuer’s rewriting strategy
for tree queries without aggregation or grouping. In Section
4, we will consider a larger class of queries that includes
aggregation. We illustrate the rewriting approach with the
next example.

Example 3. Consider a query q2, which retrieves the or-
ders placed by customers with an account balance over 1000.

q2: select o.orderkey

from customer c, order o

where c.acctbal>1000 and o.custfk=c.custkey



order customer

order clerk cust cust acct
key fk key bal

s1 o1 ali c1 t1 c1 2000
s2 o2 jo c2 t2 c1 100
s3 o2 ali c3 t3 c2 2500
s4 o3 ali c4 t4 c3 2200
s5 o3 pat c2 t5 c3 2500
s6 o4 ali c2
s7 o4 ali c3
s8 o5 ali c2

Figure 2: An inconsistent database with order and

customer relations

with Candidates as (

select distinct o.orderkey

from customer c, order o

where c.acctbal>1000 and o.custfk=c.custkey),

Filter as (

select o.orderkey

from Candidates Cand

join order o on Cand.orderkey=o.orderkey

left outer join customer c

on o.custfk=c.custkey

where c.custkey is null or c.acctbal≤1000)

select orderkey

from Candidates Cand

where not exists (select * from Filter F

where Cand.orderkey = F.orderkey)

Figure 3: The rewriting Qc
2 for query q2

The query constraints are that orderkey should be the key
of relation order, and custkey should be the key of relation
customer. We will consider the database of Figure 2, where
both relations are inconsistent with respect to the query con-
straints.

The consistent query answers for q2 on the database are
{o2, o4, o5}. The reason that order o1 is not a consistent
answer is that c1, the customer that placed order o1, is not
known (for certain) to have an account balance over 1000.
The order o3 is not a consistent answer because it might
have been placed either by customer c2 or c4, the latter of
which is not a tuple in the customer relation.

In Figure 3, we show a query rewriting Qc
2 that computes

the consistent answers for q2. Notice that there are two sub-
queries named Candidates and Filter. Candidates cor-
responds to the original query q2, except that it uses the
distinct keyword. The reason for this is that orderkey

is a key, and therefore its values appear exactly once in ev-
ery repair. In this case, the result of applying Candidates

to the database is {o1, o2, o3, o4, o5}. The query Filter re-
turns the orders that should be “filtered out” from the result
of Candidates because they are not consistent answers. In
this case, Filter returns {o1, o3}. The order o1 is returned
by Filter because tuple s1 joins with tuple t2, which corre-
sponds to a customer whose account balance is below 1000
(c.acctbal≤1000 in the Filter). The order o3 is in Filter

because o3 appears in tuple s4. This tuple does not satisfy
the join condition of q2 because c4 does not appear in re-

with Candidates as (

select distinct o.orderkey, o.clerk

from customer c, order o

where c.acctbal>1000 and o.custfk=c.custkey),

Filter as (

select o.orderkey

from Candidates Cand

join order o on Cand.orderkey = o.orderkey

left outer join customer c

on o.custfk=c.custkey

where c.custkey is null or c.acctbal≤1000

union all

select orderkey

from Candidates Cand

group by orderkey

having count(*) > 1)

select clerk

from Candidates Cand

where not exists (select * from Filter F

where Cand.orderkey = F.orderkey)

Figure 4: The rewriting Qc
3 for query q3

lation customer. Notice that Filter computes a left-outer
join between order and customer. Since tuple s4 does not
join with any tuple of customer, o3 appears together with a
null value for attribute custkey in the left-outer join. There-
fore, the condition c.custkey is null is satisfied, and o3
is returned by the filter.

The rewriting Qc
2 finally retrieves the orders in the result

of Candidates that are not in Filter (i.e., they are not
filtered out). In this case, it returns {o2, o4, o5}, which is
the consistent answer.

To generalize the previous example to an algorithm for
tree queries, we must consider how to handle projection.
Note that query q2 returns the key of the relation at the
root of the join graph. But if we modify it to return other
attributes instead, we must augment the rewriting. We il-
lustrate this in the next example.

Example 4. Consider a query q3 which retrieves the clerks
who have processed orders for customers with a balance over
1000.

q3 : select o.clerk

from customer c, order o

where c.acctbal>1000 and o.custfk=c.custkey

Note that the only difference with query q2 of the previ-
ous example is that we are projecting on clerk instead of
orderkey. We will again consider the inconsistent database
of Figure 2, and the key query constraints orderkey and
custkey.

A query rewriting Qc
3 that computes the consistent answers

for q3 is given in Figure 4. Note that in the Candidates sub-
query, we project not only on clerk but also on orderkey.
The reason is that the “filtering” must be done based on the
key of the relation. In general, we will filter using the key
attributes of the relation at the root of the join graph of the
query (order in this case). If we apply Candidates over the
database we get {(o1, ali), (o2, jo), (o2, ali), (o3, pat), (o4, ali),



(o5, ali)}. As in the previous example, the tuples for o1 and
o3 should be filtered out. Additionally, in this case, we should
filter out the tuples for o2. The reason is that the clerk of
o2 may be jo in some repairs, and ali in others. Hence,
o2 should not contribute its clerks to the consistent query
answer of q3. This is captured with the second subquery of
Filter in Figure 4.

The rewriting Qc
3 finally takes the tuples of the result of

Candidates whose order is not retrieved by Filter, and
projects on the clerk attribute. The final result is {ali, ali},
which is the consistent answer. Notice that the rewriting
computes not only the fact that ali is a consistent answer,
but also the correct multiplicity.

In Figure 5, we give the rewriting algorithm Rewrite-

Join for tree queries without aggregation. The subquery
Candidates corresponds to the original query, except for its
select clause. First, this clause uses the distinct keyword.
Second, it projects on the key attributes of the root relation
of the join graph (denoted as Kroot). We will call the values
computed by Candidates the candidates for the consistent
answers.

We assume that all tuple variables have the name of the
relations of the original query. This condition can be re-
laxed, as long as tuple variables are used consistently in the
expressions NSC, LOJ and KJ . Furthermore, for nota-
tional convenience, we take the liberty of treating vectors of
attributes as if they were a single attribute.

The first subquery of Filter returns the set of candidates
that are not present in the query answer from at least one
repair. To ensure that Filter considers all candidates, there
is an inner join between Candidates and the relation at the
root of the join graph (Rroot). The relation Rroot is joined
with the rest of the relations of the original query (expression
LOJ ). Since we want to be able to detect the cases in which
non-key to key joins are not satisfied, we need to perform a
left-outer join rather than an inner join. This can be done in
our case because we are considering queries whose join graph
is a tree. In particular, the left-outer join of the relations is
obtained starting at the relation at the root of the join graph
(tree), and recursively traversing it in the direction of its arcs
(that is, from a relation joined on a non-key attribute to a
relation joined on its key). We denote the expression with
LOJ , and present the procedure to construct it in Figure 6.

We can now explain the where clause of the first subquery
of Filter. First, it contains an expression KJ that consists
of the key-to-key joins of the query. These joins do not
need to be considered in the left-outer join LOJ . To under-
stand why, notice that if a candidate satisfies a key-to-key
join, then it must satisfy it in every repair (since every key
value appears in every repair). Second, the subquery checks
whether there is a tuple which does not satisfy a join of the
original query. This is done by checking whether there is a
null value in the left-outer join. Finally, it checks whether
there is some selection condition of the original query that
is not satisfied (expression NSC).

The second subquery of Filter takes care of the projected
attributes of the original query, as explained in Example 4.
Finally, the query rewriting returns the tuples for the can-
didates that were not filtered out. RewriteJoin is a correct
query rewriting algorithm for tree queries without aggrega-
tion, as stated in the next theorem.

RewriteJoin(q, Σ)

Given a query q of the form

select S
from Rroot, R1, . . . , Rm

where KJ and NKJ and SC

order by O

where
Rroot is the relation at the root of the join graph
KJ is a conjunction of key-to-key join predicates
NKJ is a conjunction of nonkey-to-key join predicates
SC is a conjunction of selection predicates

Let
Kroot be the attributes of the key of Rroot
K1, . . . , Km be the attributes of the keys of R1, . . . , Rm

NSC be the negation of the selection predicates SC of q
LOJ be the left outer-join of the join graph of q,

obtained as shown in Figure 6

The rewriting Qc of q is the following:

with Candidates as (
select distinct Kroot, S
from Rroot, R1, . . . , Rm

where KJ and NKJ and SC)
Filter as (

select Kroot
from Candidates C

join Rroot on C.Kroot = Rroot.Kroot
left outer join LOJ

where KJ and
(R1.K1 is null or ... or Rm.Km is null
or NSC)

union all
select Kroot
from Candidates C
group by Kroot
having count(*)>1)

select S
from Candidates C
where not exists (select * from Filter F

where C.Kroot = F.Kroot)
order by O

Figure 5: Query rewriting algorithm for queries

without aggregation

Theorem 1. Let q be a tree query without aggregate op-
erators, and Σ be a set of query constraints containing at
most one key constraint per relation. Then, the rewriting
RewriteJoin(q, Σ) computes the consistent query answers
for q wrt Σ on every database D.

4. AGGREGATION QUERIES
In this section, we present ConQuer’s rewriting strategy

for tree queries that may have grouping and aggregation.
The obvious extension of the semantics of consistent answers
is to return values for the aggregate expressions that hold in
every repair. However, as we motivate in the next example,
this may be overly restrictive in some cases.

Example 5. Consider a query q4 that retrieves the sum
of all account balances in the customer relation. Again,
custkey is the key query constraint.



LOJ(T ):
Let R be the relation at the root of T

If T is a leaf then return
else

Let T1, ..., Tm be the subtrees of the root of T

for i = 1 to m

Let Ni be non-key attrs of R that are
equated with the key Ki of Ri

return “R1 on R.N1 = R1.K1

left outer join . . .

left outer join Rm on R.Nm = Rm.Km

left outer join LOJ(T1)

left outer join ...

left outer join LOJ(Tm)”

Figure 6: Left outer-join of join graph T

cust nation mkt acct
key key segment bal

t1 c1 n1 building 1000
t2 c1 n1 building 2000
t3 c2 n1 building 500
t4 c2 n1 banking 600
t5 c3 n2 banking 100

Figure 7: Inconsistent instance of customer

q4 : select sum(acctbal) as sumBal

from customer

We will consider the inconsistent database of Figure 7. In
this case, there are four repairs: DR

1 = {t1, t3, t5}, DR

2 =
{t1, t4, t5}, DR

3 = {t2, t3, t5} and DR

4 = {t2, t4, t5}. In
repair DR

1 , the sum of account balances is 1600; in DR

2 , it is
1700; in DR

3 , 2600; and in DR

4 , 2700. Hence, the consistent
query answers to q4 are empty. In fact, it suffices to have
one customer with two (inconsistent) account balances in
order to have an empty answer for the aggregation on all
customers.

Arenas et al. [3] proposed to return bounds for the ag-
gregate expressions, rather than exact values. For instance,
in the previous example we can say that 1600 ≤ sumBal ≤
2700. In order to consider such ranges, we need to slightly
modify the semantics of consistent query answers to what
we call range-consistent query answers.

We will consider SQL queries of the following form:

select G, agg1(e1) as E1, . . . , aggn(en) as En

from F
where W
group by G

where G is the set of attributes we are grouping on, and
agg1(e1), ..., aggn(en) are aggregate expressions with func-
tions agg1, . . . , aggn, respectively. We will assume that the
select clause renames the aggregate expressions to E1, ...,

En. Notice that we are focusing on queries where all the at-
tributes in the group by clause appear in the select clause.
This is a restriction because, in general, SQL queries may

have some attributes in the group by clause which do not
appear in the select clause (although not vice versa).

In the definition of range-consistent query answers, we will
give a range for each value of G that is a consistent answer.
Therefore, we will use a query qG that consists of q with all
the aggregate expressions removed from the select clause:

qG: select G

from F
where W
group by G

We now introduce the definition of range-consistent query
answers, and illustrate it with an example.

Dfn 5 (Range-Consistent Query Ans). Let D be a
database, q be a query, and Σ be a set of query constraints.
We say that (t, r) is a range-consistent query answer for q

on D if

1. t is a consistent answer for qG on D, where qG is query
q with all the aggregate expressions removed; and

2. r = (minE1, maxE1, . . . , minEn, maxEn), and for each
i such that 1 ≤ i ≤ n:

• minEi ≤ ΠEi(σG=t(q(D
R))) ≤ maxEi for every

repair DR; and

• ΠEi(σG=t(q(D
R))) = minEi, for some repair DR;

and

• ΠEi(σG=t(q(D
R))) = maxEi, for some repair DR.

Example 6. Consider the following query, which retrieves
the total account balance for customers in the building sector,
grouped by nation. Again, custkey is a key query constraint.

q5: select nationkey, sum(acctbal)

from customer

where mktsegment = ’building’

group by nationkey

Let qG be query q5 with its aggregate expression removed.

qG: select nationkey

from customer

where mktsegment = ’building’

group by nationkey

Consider again the database of Figure 7. It is easy to see
that nation n1 is the only consistent answer to qG. There-
fore, the range-consistent answer consists of a range of val-
ues for n1.

Recall that there are four repairs for the database: DR

1 =
{t1, t3, t5}, DR

2 = {t1, t4, t5}, DR

3 = {t2, t3, t5} and DR

4 =
{t2, t4, t5}. The result of applying q5 on the repairs is the
following: q5(D

R

1 ) = {(n1, 1500)}; q5(D
R

2 ) = {(n1, 1000);
q5(D

R

3 ) = {(n1, 2500)}; and q5(D
R

4 ) = {(n1, 2000)}. Hence,
the consistent answers to q5 is the set {(n1, 1000, 2500)}, be-
cause the sum of the account balances for customers in the
building sector and nation n1 is:

• between 1000 and 2500, in every repair;

• 1000 in repair DR

2 ;

• 2500 in repair DR

3 .



Before presenting the rewriting that computes the range-
consistent query answers, let us illustrate the approach with
some examples.

Example 7. Suppose that we want to obtain a rewriting
that computes the range-consistent answers for query q5 of
the previous example. We are going to obtain upper and
lower bounds for the account balance of each customer, and
then sum the account balances. As in the previous section,
we are going to filter some of the customers. We will use
the filter for qG, which can be obtained using the algorithm
RewriteJoin of Figure 5. Intuitively, the filter retrieves the
customers which appear in some tuple that does not satisfy
qG.

Consider again the database of Figure 7. When we apply
the filter to the customer table, c2 and c3 are filtered out.
The customer c1 is not filtered because its two tuples (t1 and
t2) satisfy query qG. In repairs DR

1 and DR

2 , c1 contributes
an account balance of 1000. In DR

3 and DR

4 , it contributes
2000. Therefore, it contributes a minimum of 1000 and a
maximum of 2000. We can capture this with the following
query:

with UnFilteredCandidates as (

select custkey, nationkey,

min(acctbal) as minBal,

max(acctbal) as maxBal

from customer c

where mktsegment = ’building’

and not exists (select * from Filter

where c.custkey=Filter.custkey)

group by custkey, nationkey)

The result of applying UnFilteredCandidates to the in-
consistent database is {(c1, n1, 1000, 2000)}. Notice that the
filter is necessary because we would otherwise get the tuple
(c2, n1, 500, 500) in the result, which states that customer
c2 contributes an amount of 500 in every repair. This is
not correct, since in repairs DR

2 and DR

4 (i.e., the repairs
where t4 appears), customer c2 does not satisfy query qG and
therefore does not contribute to the sum of account balances.
Therefore, c2 contributes a minimum of 0 and a maximum
of 500. This is captured with the following query:

with FilteredCandidates as (

select custkey, nationkey,

0 as minBal,

max(acctbal) as maxBal

from customer c

where mktsegment = ’building’

and exists (select * from Filter

where Filter.custkey=c.custkey)

and exists (select * from QGCons

where QGCons.nationkey=c.nationkey)

group by custkey, nationkey)

The result of FilteredCandidates is {(c2, n1, 0, 500)}.
In addition to checking that the customer is filtered, we check
that the nation (i.e., the attribute in the group by of the
original query) appears in the result of the consistent an-
swers to qG (denoted as QGCons in the query). This is nec-
essary because we do not want to retrieve ranges for the
nations that are not consistent answers.

Finally, we obtain the range-consistent answers by sum-
ming up the lower and upper bounds for each nation in the

result of FilteredCandidates and UnfilteredCandidates,
as follows:

select nationkey,

sum(minBal),sum(maxBal)

from (select * from FilteredCandidates

union all

select * from UnfilteredCandidates)

group by nationkey

In the previous example, all the numerical values were
positive. The following example shows how to produce a
rewriting that deals with negative values as well.

Example 8. Consider query q5, and a database with the
following customer relation. The only difference with the
relation of Figure 7 is that the account balance in tuple t3 is
negative.

cust nation mkt acct
key key segment bal

t1 c1 n1 building 1000
t2 c1 n1 building 2000
t3 c2 n1 building -500
t4 c2 n1 banking 600
t5 c3 n2 banking 100

The repairs are the same as in the previous example. The
result of applying q5 on the repairs is the following: q5(D

R

1 ) =
{(n1, 500)}; q5(D

R

2 ) = {(n1, 1000)}; q5(D
R

3 ) = {(n1, 1500)};
and q5(D

R

4 ) = {(n1, 2000)}. Thus, the range-consistent an-
swer to q5 is {(n1, 500, 2000)}.

As in the previous example, customer c1 is unfiltered, and
customers c2 and c3 are filtered. Also, c1 contributes to the
upper and lower bound of account balances, and c3 does not
contribute to any of them. On the other hand, the account
balance of customer c2 in tuple t3 contributes to the lower
bound of the sum of account balances, as opposed to the up-
per bound in the previous example. This is because in the
repairs where customer c2 appears in tuple t3, the total ac-
count balance is reduced rather than increased. In the repairs
where customer c2 does not satisfy query qG (i.e., t4 is in
the repair) the contribution to the total account balance is
zero. We capture this with the following query:

with FilteredCandidates as (

select custkey, nationkey,

min(acctbal) as minBal,

0 as maxBal

from customer c

where mktsegment = ’building’

and exists (select * from Filter

where Filter.custkey=c.custkey)

and exists (select * from QGCons

where QGCons.nationkey=c.nationkey)

group by custkey, nationkey)

Notice that the only difference with FilteredCandidates

from the previous example is that there is a value of zero in
maxBal, instead of minBal.

The full rewriting RewriteAgg for tree queries (with ag-
gregation and grouping) is given in Figure 8. The query
QGCons retrieves the consistent answers to qG. It is not in-
cluded in the figure because it can be obtained by applying



RewriteAgg(q, Σ)

Given a query q of the form

select G, agg1(e1) as E1, . . . , aggn(en) as En
from F

where W

group by G

Let
Rroot be the relation at the root of the join graph of q,
Kroot be the attributes of the key of Rroot,
qG be query q with all the aggregate expressions removed
QGCons be the query that obtains the consistent answers

for qG, using RewriteJoin
Filter be the filter subquery of QGcons

The rewriting Qrc of q is the following:

with UnFilteredCandidates as (
select Kroot, G, min(e1) as minE1, max(e1) as maxE1,

..., min(en) as minEn, max(en) as maxEn
from F

where W

and not exists (select * from Filter
where F.Kroot = Filter.Kroot)

group by Kroot, G),
FilteredCandidates as (
select Kroot, G,
case when minE1 > 0 then 0 else min(e1) as minE1,
case when maxE1 > 0 then max(e1) else 0 as maxE1,

...,
case when minEn > 0 then 0 else min(en) as minEn,
case when maxEn > 0 then max(en) else 0 as maxEn
from F

where W

and exists (select * from Filter
where F.Kroot = Filter.Kroot)

and exists (select * from QGCons
where F.G = QGCons.G)

group by Kroot, G ),
select G, agg1(minE1), ..., aggn(minEn), ...,

agg1(maxE1), ..., aggn(maxEn)
from (select * from FilteredCandidates

union all
select * from UnfilteredCandidates)

group by G

Figure 8: Rewriting for queries with aggregation

the rewriting algorithm RewriteJoin of the previous sec-
tion. Recall that in the examples we obtained lower and up-
per bounds for each customer and nation. The customer was
the key attribute of the relation at the root of the join graph
(denoted by Kroot in the algorithm). The nation was the at-
tribute we were grouping on (denoted with G). Thus, in the
algorithm we obtain bounds for the attributes Kroot and G.
We take the liberty of denoting by F.Kroot=Filter.Kroot

and F.G=QGCons.G the join between all the attributes of
Kroot and G (associated to the appropriate relations of F)
with the corresponding attributes of Filter and QGCons.
The query UnFilteredCandidates obtains the bounds for
the values of Kroot that are not filtered, and therefore con-
tribute to both bounds. The query FilteredCandidates

obtains the bounds for the values that are filtered, and
therefore may contribute zero to some of the bounds. The
case statements are used to select the appropriate upper

order customer

order clerk cust cons cust acct cons
key fk key bal

s1 o1 ali c1 y t1 c1 2000 n
s2 o2 jo c2 n t2 c1 100 n
s3 o2 ali c3 n t3 c2 2500 y
s4 o3 ali c4 n t4 c3 2200 n
s5 o3 pat c2 n t5 c3 2500 n
s6 o4 ali c2 n
s7 o4 ali c3 n
s8 o5 ali c2 y

Figure 9: Annotated version of the database of Fig-

ure 2

and lower bounds, depending on whether they are positive
or negative values. This generalizes the strategy presented
in Example 8 for negative values. The final result is ob-
tained by aggregating the upper and lower bounds from
UnFilteredCandidates and FilteredCandidates using the
aggregation functions of the original query.

Theorem 2. Let q be a tree query that may contain ag-
gregate expressions (with functions MAX, MIN, SUM), and Σ
be a set of query constraints containing at most one key
constraint per relation of the query. Then, the rewriting
RewriteAgg(q, Σ) computes the range-consistent query an-
swers for q with respect to Σ on every database D.

5. ANNOTATED DATABASES
If the query constraints are known in advance, ConQuer

can process the database offline in order to store information
about constraint violations. In particular, it can annotate
every tuple of the database with a flag that states whether
the tuple (might) violate a key constraint. This flag is then
used to produce optimized query rewritings. Note that a
standard query optimizer would not be able to exploit the
annotations because it is unaware of their semantics (and
the semantics of consistent query answering in general).

In Figure 9, we show an annotated version of the database
of Figure 2. The annotations are made assuming that the
attribute orderkey is the key of the order relation, and
custkey is the key of the customer relation. Note that
the schema of every relation is augmented with an attribute
cons that stores the annotation. If the value of cons in a tu-
ple is ′y′, then the tuple satisfies the key constraint; a value
of ′n′ indicates that it might violate the constraint. We
illustrate the optimized rewriting with the next example.

Example 9. We will consider again query q2 from exam-
ple 3, which retrieves the orders placed by customers with an
account balance over 1000. The query constraints are again
that orderkey and custkey are keys of their relations. We
assume that ConQuer knows them in advance, and has pro-
duced the annotated database of Figure 9.

q2: select orderkey

from customer c, order o

where c.acctbal>1000 and o.custfk=c.custkey

Note that tuples s8 and t3 have a value of ′y′ in their cons
attributes, meaning that they do not violate any constraint.



If we join s8 with t3, we get a tuple that satisfies query q2.
Furthermore, it is easy to see that this will be the only tuple
in the result for order o5. Thus, it must be a consistent
answer.

In general, if a tuple is produced from the join of tuples
that satisfy the constraints, it is a consistent answer. Thus,
it is not necessary to consider it in the Filter subquery of
the rewriting. Note, however, that this is not the case even
if some (but not all) of the tuples that are joined satisfy
the constraints. For example, consider the join of tuple s1
(annotated with ′y′) and tuple t1 (annotated with ′n′). If we
join them, we get a tuple that satisfies q2. However, it is
not a consistent answer because the result of joining s1 with
another tuple (t2) does not satisfy the query.

To keep track of the join of tuples violating a constraint,
we augment the Candidate subquery of the rewriting with an
addition attribute consCand. This is a numerical attribute
that calculates the number of tuples involving, in this case,
an order that joins with tuples violating a constraint. If
this value is greater than zero, the tuple might not be in
the consistent answer. The Candidates subquery for this
example is the following:

select o.orderkey

sum (case when (c.cons=’n’ or o.cons=’n’)

then 1 else 0 end ) as consCand

from customer c, order o

where c.acctbal>1000 and o.custfk=c.custkey),

group by o.orderkey

In the rewriting presented in Section 3, the Filter sub-
query joins all tuples of Candidates with the relation at the
root of the tree (order in this case). Then, it performs a
(possibly costly) left-outer join with all other relations of
the original query. We can now avoid joining all tuples of
Candidates because we can select only those whose value of
consCand is greater than zero. This is because a value of
zero in this attribute means that the tuple is known to be in
the consistent answer and, therefore, cannot be filtered out.
The following is the Filter subquery for this example.

select o.orderkey

from Candidates Cand

join order o on Cand.orderkey=o.orderkey

left outer join customer c

on o.custfk=c.custkey

where Cand.consCand>0

and c.custkey is null or c.acctbal≤1000

Note that the only difference with the Filter of Figure 3
is that we add the condition Cand.consCand>0 to the where

clause. Although it is up to the query optimizer to perform
this selection before the joins, the results of the next section
show that it consistently chooses the appropriate strategy.
The final subquery of the rewriting is the same as in Figure
3. That is, it returns the orders from Candidates which do
not appear in Filter.

6. EXPERIMENTAL EVALUATION
In this section, we report results for the experiments that

we performed in order to quantify the overhead of the rewrit-
ings produced by ConQuer. The experiments use realis-
tic queries (taken from the TPC-H specification) and large
databases.

6.1 Setup

The experiments were performed on a Dell Optiplex 170L
PC with a 2.8 Ghz Intel Pentium 4 CPU and 1 GB of RAM
(80 % of which was allocated to the database manager). The
queries were run on DB2 UDB version 8.1.8 under Windows
XP Professional.

We present experimental results for six queries taken from
the TPC-H specification, which are representative of a va-
riety of features supported by our approach. For example,
they all have aggregation, and range from one to six joins.4

We focus on queries 1, 3, 4, 6, 10, and 12 of the stan-
dard. In Figure 10, we summarize the main characteristics
of these queries. For each query, we give the number of re-
lations in the from clause, the selectivity (high means more
tuples satisfy the query), the number of attributes in the
select clause, and the number of those attributes which
are in aggregate expressions. The queries in the TPC-H
specification are parameterized, and the standard suggests
values for these parameters. In the experiments, we used
the suggested values in all the queries. The selectivity we
report in Figure 10 takes these parameters into account.

Relations Selectivity ProjAttrs AggrAttrs
Q1 1 high 10 8
Q3 3 low 4 1
Q4 2 low 2 1
Q6 1 low 1 1
Q10 4 low 8 1
Q12 2 low 3 2

Figure 10: Queries used in the experiments

The TPC-H specification assumes that databases are con-
sistent with respect to the primary keys of the schema. For
the experiments, we assumed that primary keys are not
part of the schema, but are rather specified as query con-
straints. The rewritings that we produced take these query
constraints into account.

We experimented with a number of (inconsistent) databases,
considering the following parameters:

• The size s of the database. We considered databases
of 100 and 500 MB, and 1 and 2 GB. A database of 1
GB has 8 million tuples.

• The percentage p of the database that is inconsistent.
For example on a 1 GB instance (8 million tuples)
where p is 50%, there are 4 million tuples that vio-
late the key constraints of the query. We created the
databases in such a way that every relation has the
same value of p as the entire database. We experi-
mented with values of p of 0, 1, 5, 10, 20, and 50. We
deliberately consider high values of p to test the limits
of our approach.

• The number of tuples n that share a common key value
(and hence violate the key constraint), for every key

4Some of the TPC-H queries cannot be handled by our ap-
proach because they contain such features as left-outer-joins
or disjunction. There are also queries with nested sub-
queries. However, many of them can be decorrelated and
unnested.



value in the inconsistent portion of the database. For
example, if n = 2, then every key value in the in-
consistent portion of the database appears in exactly
two tuples. We experimented with values of n ranging
from 2 to 50. Note that p and n together determine
the level of inconsistency of the database.

Since the TPC-H data generator (dbgen) creates instances
that do not violate the primary key constraints, we devel-
oped a simple program that generates inconsistent databases.
The program works as follows. Suppose that we want to
generate an inconsistent database of 1 GB where p = 10%
and n = 2. The program first invokes the TPC-H data
generator and creates a consistent instance of size 0.95 GB.
Then, it selects two sets of tuples of size 0.05 GB from the
database. The tuples are selected randomly from a uniform
distribution. One of the sets is used to draw the key values
of the conflicting tuples that the program will introduce to
the database; the other set is used to obtain non-key values.

For each query q, we used ConQuer to generate a rewrit-
ten query that takes annotations into account, and another
which does not assume an annotated database. In the fol-
lowing, we will say that the queries produced by the former
strategy are annotation-aware.

Our rewritings contain some common subexpressions spec-
ified with the WITH clause (such as Candidates and Filter).
In the experiments, we found that running times improve
considerably when the results of these subexpressions are
temporarily stored rather than computed several times for
the same query. For some queries, the DB2 optimizer real-
ized that materialization was the best strategy, but for oth-
ers it did not. So to have a consistent comparison, we mate-
rialized all common subexpressions using temporary tables.
We include the materialization time in the query running
times. Furthermore, we ensured that these materialized re-
sults were not cached across runs of the queries.

We created indices for the query constraints and for the
annotations (the attribute cons). Notice that, since we con-
sider databases that violate the key query constraints, they
cannot be defined as unique keys. For each index, we created
statistics using the DB2 RUNSTATS command.

6.2 Experimental Results

In Figure 11, we compare the running times of all queries
with the rewritings produced by ConQuer.5 The results
correspond to a 1 GB database with 5% of inconsistency and
n = 2. Although the rewritten queries are more expensive,
the overhead is reasonable if we take into account that, in
general, consistent query answering is much more onerous
than standard query answering [4, 5].

We calculate the overhead of the rewritten queries as tr−to

to

,
where to and tr are the running times of the original and
rewritten queries, respectively. For the annotation-aware
rewritings of all queries except Q1, the overhead is below
0.52 times the running time of the original query. For the
ones that do not use annotations, the overhead is less than
0.86 for all queries except Q1. We will justify the high over-

5To facilitate the comparison of the running times of the
other queries, we leave the running times for the rewritings
of Q1 out of scale. The running time of the annotation-
aware rewriting for Q1 is 8.3 minutes. The other rewriting
runs in 10.1 minutes.

Q1 Q3 Q4 Q6 Q10 Q12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
un

ni
ng

 t
im

e 
(m

in
ut

es
)

Original query
Rewritten query, annotation−aware
Rewritten query, not annotation−aware

8.3 10.1 

Figure 11: Running time for all queries on a 1 GB

database

head of the rewritings of Q1 momentarily. Of the two rewrit-
ing strategies, the one that is annotation-aware consistently
produces more efficient rewritings. The difference in the
running times of the two rewritings ranges from 4% (Q3) to
26% (Q6). We will shortly show a study where the savings
of the annotation-aware rewritings are even greater.

We argue that the overhead of the rewritten queries is
dominated by the size of the answer to the original query
(without considering grouping). This is certainly the case in
the database used for the experiments of Figure 11, where
the rewritings for Q1 have the largest overhead. If we re-
move all grouping from Q1, we get a result set of 5.9 million
tuples. The size of the result set for all the other queries
is below 120,000 tuples. We justify our conjecture in terms
of the query rewriting algorithm RewriteAgg of Figure 8.
In that figure, note that the rewritten queries are obtained
as the union of two queries: UnfilteredCandidates and
FilteredCandidates. The former selects tuples that are
not in Filter. The latter selects tuples that are in Filter

and in QGCons. QGCons is the query that obtains the consis-
tent answers for the original query without aggregation and
grouping. Thus, it is obtained with the algorithm Rewrite-

Join of Figure 5. In this algorithm, the rewritten query re-
turns the tuples in the result of Candidates which are not in
the result of Filter. Note in Figure 5 that Filter focuses
solely on tuples that come from the result of Candidates. In
turn, Candidates is obtained from the original query (with-
out grouping and aggregation) except for some changes to
its select clause.

We also studied the effect of the amount of inconsistency
in the database. Here, we report results for one query (Q6)
that is representative of the trend that we observed on the
other queries as we varied the values of p and n for databases
of 1 GB. In Figure 12, we present the running times for
databases with a varying percentage p of inconsistency (from
0 to 50%) for a fixed n = 2. We can observe that p has little
influence on the running time of the original query and the
rewriting that is unaware of annotations. The size of the
result set of Q6 remains constant as we vary the value of
p because all databases are of the same size. This is yet
another evidence that the size of the result set of the original



query has a considerable impact on the running time of the
rewritten queries.

The annotation-aware rewriting is considerably influenced
by p. In Figure 12, the overhead of the annotation-aware
rewritings ranges from 0.02 (for p = 0%) to 0.56 (for p =
50%). The reason for this is that the annotation-aware
rewriting is designed to focus as much as possible on the
consistent portion of the database, and thus benefits if the
database has a low value of p. Note that on the totally
consistent database, the running times of the original query
and its annotation-aware rewriting are very close (the over-
head is 0.02). Thus, this rewriting is particularly useful for
databases that are almost consistent (i.e., the value of p is
close to zero).

01 5 10 20 50
0

0.5

1

1.5

p

E
xe

cu
ti

on
 T

im
e 

(m
in

ut
es

)

Original query
Rewritten query, annotation−aware
Rewritten query, not annotation−aware

Figure 12: Running time of Q6 over p

In Figure 13, we present the running times for Q6 over
databases with varying values of n and a fixed p = 10%.
Note that the value of n has little influence on the running
time of any of the two alternative rewritings.

2 4 7 10 20 50
0

0.5

1

1.5

n

E
xe

cu
ti

on
 T

im
e 

(m
in

ut
es

)

Original query
Rewritten query, annotation−aware
Rewritten query, not annotation−aware

Figure 13: Running time of Q6 over n

Finally, we studied the scalability of our approach. For
this, we employed databases of 100 MB, 500 MB, 1 GB, and
2 GB. To ensure a consistent comparison, we present results
for databases where the total number of tuples violating
the constraints is kept constant. In particular, in Figure 14
we present results for databases with 400,000 inconsistent
tuples. Thus, the values of p are 2.5, 5, 10, and 50 for the
2 GB, 1 GB, 500 MB and 100 MB databases, respectively.
In all databases, we kept n = 2. In the figure, we report the
running time of the annotation-aware rewritings for queries
4, 6, and 12. It can observed that the running times grow
in a linear fashion with the size of the database.

0.1 0.5 1 2
0

0.5

1

1.5

2

2.5

Size (GB)

R
un

ni
ng

 t
im

e 
(m

in
ut

es
)

Query 4
Query 6
Query 12

Figure 14: Running time of the rewritten queries

over database size

7. RELATED WORK

There has been considerable work on the semantics and
complexity of consistent query answering. We do not re-
view all of this work, but instead concentrate on results
that are the most related to building practical consistent
query answering systems. The computational complexity of
the consistent query answering problem has been thoroughly
studied in the literature, for different classes of queries and
constraints [4, 5]. In the case of SPJ queries with one key
query constraint per relation, the problem is known to be
co-NP complete in general [4, 5]. However, there remain
large practical classes of queries for which the problem is
much easier to compute.

First-order query rewritings are relevant in our context
because queries in first-order logic can be translated into
SQL. Arenas et al. [2] were the first to propose a first-order
rewriting algorithm, which is applicable to a class of queries
called quantifier-free. This class is quite restricted as it re-
quires all attributes to appear in the select clause (and
hence prohibits most projections), unless an attribute has
been equated to another attribute that is in the select

clause. This work was the foundation for Hippo [6], which,
to the best of our knowledge, is the only existing system
for consistent query answering on large databases. How-
ever, the approach taken by Hippo is quite different from



ConQuer. First, Hippo is not based on query rewriting.
Rather, it takes the more procedural approach of producing
a Java program which computes the consistent answers. Al-
though the program does interact with a RDBMS back-end,
most of the processing is done by processing a main memory
(conflict-graph) data structure that contains all the tuples
that violate the constraints. Hippo extends the select-join
query class of Arenas et al. [2] to consider union (disjunc-
tion), an operation we are not considering.

The rewriting algorithm presented in this paper is moti-
vated by our previous work on rewriting conjunctive queries
(that is, SPJ queries with set semantics) into first-order
logic queries [11]. In the current work, we consider not only
conjunctive queries but also SPJ queries with aggregation,
grouping, and bag semantics. Furthermore, in our previ-
ous work, we were not concerned with the running time of
the rewritten queries. In principle, first-order queries can
be translated into SQL. However, the queries produced in
[11] have a high level of nesting (proportional to the number
of relations in the query) and are therefore very inefficient.
The rewriting algorithm in our current work produces SQL
queries with at most one level of nesting and, as shown in
Section 6, reasonable running times.

Our work on aggregation is inspired by [3], which was
the first to propose the use of ranges as a semantics for
consistent query answering for aggregate expressions, but
considers queries with just one aggregated attribute and no
grouping. We extend these results to consider general ag-
gregation queries with grouping.

There are a number of systems for consistent query an-
swering that rewrite queries into powerful logics. Infomix
[10, 12] is a notable example of such an approach. In In-
fomix, queries are rewritten into disjunctive logic programs.
Such programs are computationally more expensive than
SQL, but also more expressive and permit rewritings over a
very rich class of query constraints. For example, Infomix
considers general functional, inclusion, and exclusion query
constraints. These systems focus on expressiveness, more
than efficiency and scalability, and therefore address a dif-
ferent design point than the one we are considering. To give
an idea of the scale of the difference, one of the few experi-
mental studies available in the literature [10] reports results
for databases with at most 100 tuples violating key query
constraints (over a database of 50,000 tuples). In contrast,
one of our experiments was performed on a database with
4 million inconsistent tuples (over a total of 8 million tu-
ples). Results for Hippo have also only been reported for
a database of up to 300,000 tuples. Hippo constructs an
in-memory conflict graph which may limit the number of
possible conflicts than can be considered [6, 7].

Finally, it is worth noting that the semantics of consis-
tent query answers is similar to that of certain answers that
is widely accepted as an important semantics for data inte-
gration [1]. For certain answers, the set of possible worlds
are the legal instances of a global database, rather than the
repairs of an inconsistent database.

8. CONCLUSIONS

We have presented the ConQuer system that, given a
set of key query constraints, rewrites SQL queries to SQL
queries that return only the consistent answers. We use a
strong semantics for “consistent”. An answer is consistent if

every repair supports the answer. Such a semantics is useful
for identifying potential inconsistencies in a database. How-
ever, our rewritings extend naturally to a semantics based
on voting (find answers supported by at least two repairs),
or a semantics under which each tuple is given a probability
of being correct [8]. We are currently experimenting with
rewritings which return the most probable answer over an
inconsistent database in which each tuple is assigned a prob-
ability of being consistent.

Acknowledgements. We thank Nick Koudas, Mariano
Consens, Periklis Andritsos, and Denilson Barbosa for their
feedback and help.

9. REFERENCES

[1] S. Abiteboul and O. M. Duschka. Complexity of
answering queries using materialized views. In PODS,
pages 254–263, 1998.

[2] M. Arenas, L. Bertossi, and J. Chomicki. Consistent
Query Answers in Inconsistent Databases. In PODS,
pages 68–79, 1999.

[3] M. Arenas, L. Bertossi, and J. Chomicki. Scalar
Aggregation in FD-Inconsistent Databases. In ICDT,
pages 39–53, 2001.

[4] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability
and complexity of query answering over inconsistent
and incomplete databases. In PODS, pages 260–271,
2003.

[5] J. Chomicki and J. Marcinkowski. Minimal-Change
Integrity Maintenance Using Tuple Deletions. To
appear in Information and Computation. CoRR
cs.DB/0212004, 2004.

[6] J. Chomicki, J. Marcinkowski, and S. Staworko.
Computing Consistent Query Answers using Conflict
Hypergraphs. In CIKM, pages 417–426, 2004.

[7] J. Chomicki, J. Marcinkowski, and S. Staworko.
Hippo: A System for Computing Consistent Answers
to a Class of SQL Queries. In EDBT, pages 841–844,
2004.

[8] N. Dalvi and D. Suciu. Efficient Query Evaluation on
Probabilistic Databases. In VLDB, pages 864–875,
2004.

[9] T. Dasu and T. Johnson. Exploratory Data Mining
and Data Cleaning. John Wiley, 2003.

[10] T. Eiter, M. Fink, G. Greco, and D. Lembo. Efficient
Evaluation of Logic Programs for Querying Data
Integration Systems. In ICLP, pages 163–177, 2003.

[11] A. Fuxman and R. J. Miller. First-Order Query
Rewriting for Inconsistent Databases. In ICDT, pages
337–351, 2005.

[12] D. Lembo, M. Lenzerini, and R. Rosati. Source
Inconsistency and Incompleteness in Data Integration.
In KRDB, 2002.


