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1 Background

A sample of DNA is said to be sequenced if we can produce a string of symbols A, C, G, T which accu-
rately reflects the order of the nucleotides in the sample. For short snippets of DNA (≤ 500 nucleotides)
this problem is easy since there exist ‘DNA Sequencers’ which can identify the nucleotides in the sequence
based on their chemical properties. The problem is much harder when the DNA sample is significantly
longer, because we then face the problem of having to assemble the DNA fragments. For example an
entire genome can be billions of base pairs (b.p.) in length, and represents a colossal assembly problem.

Since genomes can potentially tell us a great deal about the organisms from which they are taken, it
is desirable to have a reliable method for sequencing them. As one might expect, there has been much
work done in the area of whole genome sequencing and different approaches exist. Since it is currently
infeasible to directly read sequences of more than about 500 nucleotides, these methods universally
include a step which decomposes the genome into thousands of short pieces (called reads) followed by
subsequent steps which reassemble the pieces once they have been directly sequenced. Whole genome
sequencing is therefore also referred to as ‘whole genome assembly’. Methods differ both in how they
decompose the genome and how they reassemble the sequenced reads.

The two main approaches to sequencing the human genome were pioneered by the publicly funded
international Human Genome Project (HGP) [Con01] as well as by Celera Genomics [VAM01], a private
company based in the United States. The public project’s strategy is called the ‘BAC-by-BAC Technique’,
and Celera’s technique is called ‘Whole Genome Shotgun Sequencing’.

1.1 The BAC-by-BAC Technique

Also called the ‘Hierarchical Shotgun Approach’, the BAC-by-BAC method gets its name from BACs,
or Bacterial Artificial Chromosomes. BACs are segments of human DNA which have been artificially
replicated by inserting them into the circular genome of e. coli bacteria, and allowing it to divide, thereby
also creating copies of the human DNA, which are later extracted.

The BAC-by-BAC technique works as follows:

1. Make many copies of the human genome to be sequenced.

2. Take a number of copies of the human genome, and split them up into much smaller strands of
DNA, each consisting of about 150 000 b.p.. Each of these strands is called a BAC, since the BAC
technique will be used to duplicate them. The high-level idea is that we will sequence the BACs,
and then use overlaps between the BACs as well as the locations of known genes to put all of those
sequences together, and thereby obtain a sequencing of the entire human genome. We therefore
must make sure that all of the BACs together not only contain the entire human genome, but that
the overlaps are sufficiently large for us to be able to reliably put them together again.

3. Before we are able to assemble the BACs we must first sequence all of them. Sequencing the BACs
is done analogously to sequencing the genome: we take each BAC, make copies of it using the e. coli
bacteria technique, and then randomly cut them up into small pieces which are approximately 4000
b.p. long. We take these and use our automated sequencing technology to sequence approximately
500 b.p. at each end. Each of these 500 b.p. sequences is called a ‘read’, and it tells us not only
what is on one strand of the DNA, but by complementary base pairing, it immediately gives us the
other strand as well. Since the reads are only 500 b.p. long at each end, we are left with a gap which
is about 3000 b.p. long for each fragment. It is also normal to use longer 40 000 b.p. pieces with a
much larger gap. The gap information will be useful later when putting the reads back together.
One important note is that each read is done from the 5

′

to the 3
′

end, so the two reads from each
fragment are from opposite strands, and opposite ends of the fragment. A fundamental difficulty
is that we do not know which strand each read is from, just that certain reads are from opposite
strands. With enough overlapping reads, it becomes possible to put them together in order to
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sequence each BAC. This is done by building a bidirected graph in which the nodes contain the
read information, and then finding a Hamiltonian Path (or something very close) in it. For more
information on this step, please refer to [Her06].

4. Once we have sequenced the BACs, we have to find out where they came from in the genome, and
then choose the smallest set of BACs that completely covers the entire genome. It is easy to see
that if we put the BACs together correctly, then the fact that we have sequenced them will give us
a correct sequencing of the entire human genome. The process of ‘tiling’ the genome in this way is
very expensive in human time, and in practice involves physically mapping the BACs to a copy of
the complete genome by using the locations of known genes.

1.2 Whole Genome Shotgun Assembly

In [WM97], Weber and Myers developed a technique which can be automated to a greater degree
than the BAC-by-BAC method. They teamed up with Celera Genomics and its founder Craig Venter to
implement their new technique. Celera’s idea was to cut out the intermediate step of having to sequence
the BACs; instead, they split the original DNA sequence into 40 000 and 4000 b.p. segments directly
(these are called cosmids and plasmids, respectively), and from there to read them and then assemble the
reads for the whole genome. Since the splitting of the genome into the shorter pieces is relatively random,
ensuring that the entire genome gets covered requires the sequencing of base pairs approximately ten
times the size of the genome, or 3 · 1010 b.p.. This translates to approximately 6 · 107 reads.

This entire process is called ‘whole genome shotgun sequencing’, since the process of fragmenting
DNA strands is reminiscent of the tiny shot pellets coming out of a shotgun. With a sufficient number
of reads, it is not hard to see that the entire problem of sequencing the human genome is just a (much)
larger version of the problem of sequencing a BAC.

2 Project Motivation

Although Celera’s methodology is the current state-of-the art, there are certainly improvements that
can be made in the sequencing of the human genome. In particular, there are two obvious areas where
it can be improved. These areas form the motivation of our project.

2.1 Lowering Cost

The first area where genome sequencing can be improved is by lowering the cost, both in terms of time
and in terms of dollars. Both Celera’s technique and the HGP’s technique are enormously expensive,
and incredibly slow. The goal within the foreseeable future is to bring the cost of sequencing a genome
down to under $10,000, and to bring the time required to under a day. The current technology is not
anywhere even close to this goal, suggesting that enormous improvements can be made.

2.2 Improving Confidence

Although both results were widely lauded by the media as well as the general scientific community,
there have also been many legitimate criticisms of their methodology.

The literature contains two academic (rather than financial) criticisms of the two sequencing projects.
The first criticism is that Celera’s technique is over hyped, much of their data was ‘borrowed’ from the
HGP, that Whole Genome Shotgun Assembly is not cheaper or faster than the BAC-by-BAC technique,
and that a number of myths have evolved concerning Celera’s results. Many such criticisms are leveled
by Green in [Gre02]. In fairness to Celera, many of these criticisms involve secondary issues which would
be considered superficial by theoretical computer scientists who are only interested in how accurate the
results are rather than whether they benefitted from the HGP’s work, etc..
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The second type of criticism is more serious [Gre97]. One of the major flaws with both the HGP as
well as Celera’s techniques is that their algorithms and methodology are reliant on ad hoc heuristics and
are not solidly grounded in theoretical computer science, and that there are no guarantees or theoretical
bounds known which allow us to have confidence in the results. This criticism is perhaps best expressed
in [WLS02]: nobody is saying that there definitely are serious flaws with mankind’s attempts to sequence
the human genome, but rather that there are no guarantees that the results are correct.

If runtime and confidence bounds could be rigorously proven for a sequencing algorithm, that would
certainly be an improvement.

2.3 Future Technology

The two goals of lowering the cost of sequencing in terms of dollars and time, as well as improving
the confidence we have in assembly algorithms are the motivation for our project. Given the current
sequencing technology, it would be difficult to do much better than Celera or the HGP. However, as
this technology improves, it will be possible to implement assembly algorithms which meet both of these
goals. However, we do not need to wait for this sequencing technology to be invented before designing
appropriate algorithms which utilizes it; as is so often the case in computer science, we can design the
algorithms so that they are ready and waiting well before they can be implemented.

It is impossible to predict what kinds of sequencing technologies will be invented in the future, but the
most promising one on the horizon seems to be ‘nanopore technology’. The two human genome sequencing
projects relied on sequencing technology that is very accurate, but only for DNA segments that are
approximately 500 b.p. long. Recent research into nanopores at Harvard [CGB+04] gives researchers hope
that within a few years, we will have sequencing technology capable of reading DNA segments containing
approximately 100 000 − 150 000 b.p., albeit with an error rate of about 30%. More information on
nanopores can be found below in Section 3.

The ultimate goal for sequencing technology is to build sequencers that can accurately read billions
of base pairs in an entire genome just like an entire piece of cloth being fed through a sewing machine.
Such technology would clearly make assembly algorithms unnecessary, but this seems very far off. In
the foreseeable future, it is reasonable to assume that sequencers will continue to be constrained by the
limitation of only being able to read DNA fragments which are considerably smaller than the size of a
entire genome, and that assembly algorithms will be necessary for a number of years.

Genome assembly algorithms (or whether they are even necessary) invariably reflect the sequencing
technology from which they get their inputs. Just as Celera and the HGP’s algorithms reflect the current
state of the art in sequencing technology, the aim of this project is to design algorithms which reflect
near future sequencing technology which is capable of obtaining much longer reads with a high error
rate.

3 Project Overview

In this section we give a high-level overview of our project. We start by providing a more detailed
account of nanopore technology, and explain how it can be used in a two-stage assembly algorithm. The
first stage is the building of what we call a ‘scaffold’. The second stage is the correction of the errors in
the scaffold.

3.1 Nanopore Technology

Nanopores are a new technology being developed at Harvard for sequencing DNA. A nanopore is a
tiny 2-4 nm hole in a silicon nitride membrane, as shown below in Figure 1.
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Figure 1: A nanopore probe reading a string of DNA. http://www.mcb.harvard.edu/branton/

The idea is to take fragments of DNA and place them in a solution such that the strands are on one
side of the membrane. The opposite side of the membrane is positively charged, and therefore attracts the
negatively charged DNA strands via electrophoresis, which then travel through the nanopore. A second
voltage across the nanopore allows us to read the bases as they pass through. This process allows us to
sequence DNA fragments which are much longer than the current state of the art allows, but it also has
a much higher error rate. As already stated in the previous section, researchers hope that within a few
years we will have sequencing technology capable of reading DNA fragments containing approximately
100 000 − 150 000 b.p., with an error rate of approximately 30%, where errors include substitutions,
omissions, and insertions.

For more information on nanopores, please refer to [Har]and [CGB+04].

3.2 Scaffolds

The key idea behind this project is the use of a ‘scaffold’. A scaffold is an entire sequenced genome,
but with up to 30% error. Once we have such a scaffold, we can then use it to get an accurate sequencing
of the entire genome by removing its errors. In effect, the scaffold-based assembly algorithms that we
propose consist of two parts: the first part consists of building the scaffold, and the second consists of
removing the scaffold errors.

3.3 Scaffold Building Algorithm

Under the assumption that nanopore technology is mature enough so that we are able to efficiently
and cheaply read DNA segments containing 100 000 − 150 000 b.p. with a 30% error rate, building
a scaffold can be done considerably faster and more cheaply than the current costs in terms of time
and money of sequencing genomes. Simply use the standard graph-theoretic approach that is used in
shotgun sequencing: obtain a sufficient number of error-prone reads from the nanopores in order to
completely cover the genome, create nodes containing these reads, and build the standard bidirected
graph as described in Section 1. Finally, find a Hamiltonian Path (or something very close to it) in this
graph using the same techniques that were used by the HGP and by Celera. Of course, when building
the bidirected graph, instead of putting in edges for reads which overlap almost perfectly, we must now
use a more liberal definition of overlap which includes the potential 30% error on each end of the read.

Although the techniques being used are almost identical to those used in the HGP and by Celera,
building the scaffold would be considerably cheaper. This is for two reasons. Firstly, the reads given
to us by nanopores are twenty to thirty times larger than those given to us by the current state of the
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art sequencing hardware. This means that the bidirected graph that we build will have less than one
twentieth as many nodes. But secondly, since the reads are so much longer, we can demand a much
larger overlap, and thereby reduce the number of ‘false edges’ that we include in our graph. In effect,
we will need fewer reads to build a much smaller graph that contains fewer erroneous edges, which in
turn means that the bidirected graph will be much easier to solve. Assuming that nanopore reads are
about as expensive as the current reads being used, this translates into an assembly problem which can
be solved much more cheaply and quickly, and with less computer power than before.

After this process is complete, we are left with the entire scaffold genome.

3.4 Consensus Algorithms

Once we have a scaffold, we enter the second phase of our algorithm, the removal of errors. In order
to remove these errors, we will describe two different algorithms called ‘consensus algorithms’. These are
described in below Section 4.

3.5 Error Model

For the purposes of this project we have used an error model which assumes that errors are uniformly
distributed and independent within our scaffold. It may be the case that nanopore errors are not actually
independent of one another. Errors may come as quite large sequences of mistakes, rather than isolated
substitutions. We feel justified in overlooking this problem since we are assuming that our scaffolds are
constructed of numerous nanopore reads. Even if the errors within a single such read are not totally
independent, the position of and lengths of the sequences of errors across all the reads will be roughly
independent and uniformly distributed. Essentially, the errors may be clustered, but they will be locally
clustered and these local clusters will be spread uniformly across the reconstructed scaffold. This seems
like a reasonable conclusion if we assume that we will be using shotgun assembly to build the scaffold
from the nanopore reads in the first place.

We have also not included insertions or deletions in our error model. There are numerous examples
in computational biology of simple models which can be extended relatively easily to include insertions
and deletions, and we feel that this is true of our model. Our model can be easily generalized to include
deletions and insertions by using Needleman-Wunsch instead of simple discrepancy counting to score how
well a read maps to a scaffold. This could be a potential avenue for future development of this project.

4 Consensus Algorithm Details

Our consensus algorithms are so called because they work to remove the errors in our scaffold by
mapping reads to the scaffold until each index has a sufficiently high number of reads. We then take the
majority, or consensus, of the reads at each index. In this way, we use the power of probability to wash
out the error.

Below, we describe and analyze two such probabilistic algorithms, the ‘Long’ and ‘Short’ consensus
algorithms. In order to analyze the algorithms we require formal definitions of the main objects involved.

Definition 1. A genome G of length n is a random String of n symbols taken from {A, C, G, T}.
Definition 2. Let G be a genome of length n. A δ-scaffold S for G is a string of n symbols taken from
{A, T, C, G}, in which each position i in S has a probability of δ of differing from the ith position of G.

Definition 3. Let G be a genome of length n. A k-read (or simply read) from G is a length k substring
of G chosen uniformly at random.

These definitions assume that genomes act like random strings. Though this is clearly a simplification,
it is not an unreasonable model to use given the probabilistic nature of our algorithm. Our experimental
results for the short consensus algorithm in Section 6 correspond very closely to its analysis using this
model. More complicated models for genomes could most likely be readily incorporated into the analysis.
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4.1 Long Consensus Algorithm

The Long Consensus algorithm is the most simple. If we can build scaffolds very quickly and very
cheaply, then the obvious thing to do is to build many independent scaffolds, align them, and for each
index in the genome take the consensus (majority) of the base in that location to be the correct answer.
This is where the Long Consensus algorithm gets its name: the alignment is done on strings which are
long with respect to the size of the genome.

This algorithm can be easily implemented by keeping four parallel arrays in memory (one for each
base) that are as long as the scaffolds. Initialize them all to zero, and for every scaffold read, increment
the appropriate parallel array at that index. Finally, once all of the scaffolds have been processed, simply
take the consensus at each index, and output that as the genome. In the case of ties, simply output one
of the arbitrary bases which tied.

4.1.1 Long Consensus Algorithm Analysis

The Long Consensus algorithm can be analyzed to give us very good guarantees of accuracy. In fact,
the analysis shows that one does not need very many scaffolds in order to obtain very accurate results.

Theorem 4. The long consensus algorithm requires m =
⌈

2 log ε
log δ

⌉

δ-scaffolds to generate a consensus

genome with expected accuracy ≥ 1 − ε.

Proof: We prove an upper bound on the coverage required for the long consensus algorithm to produce
a genome that is (1− ε)×100% correct. We do so by bounding the coverage required at a single position
of the consensus to ensure that the position has a probability of 1 − ε of being correct. Assuming that
the error at each position is independent we immediately expect that (1 − ε)n positions of the genome
will be correct.

The consensus genome is comprised of m δ-scaffolds over the alphabet {A, C, G, T} each of which has
length n. If we stack these scaffolds, we produce an n×m matrix, X where position xi,j denotes the ith

symbol of the jth scaffold. Each column of this matrix produces its most frequent entry as its consensus
symbol.

We are interested in fixing a column i of X and calculating how many entries m the column must
have in order to ensure that its consensus symbol has probability at most ε of being incorrect.

Without loss of generality, suppose that the ith symbol of the true genome is A. For each entry xi,j ,
we define four Bernoulli Random Variables, xi,j = A, xi,j = T , xi,j = C, and xi,j = G. Assuming that
A can mutate to any of the other three bases with equal likelihood, the variables have the following
distributions:

Variable Pr(True) Pr(False)
xi,j = A 1 − δ δ
xi,j = T δ/3 1 − δ/3
xi,j = C δ/3 1 − δ/3
xi,j = G δ/3 1 − δ/3

We now define the variables Bi
A, Bi

T , Bi
C , and Bi

G, which will each represent the sum of the occurrences
of each symbol in column i of the matrix. Formally, we define Bi

Y for Y ∈ {A, C, G, T} as:

Bi
Y =

m
∑

j=1

(xi,j = X)

Clearly, the expected value of Bi
A, Exp(Si

A), is (1 − δ)m, while the expected value of each of the other
variables is (δ/3)m.

We are now interested in Pr(Bi
A < Bi

T ∨ Bi
A < Bi

C ∨ Bi
A < Bi

G). We can bound this probability by
Pr(Bi

A ≤ 0.5m), essentially bounding the probability that the plurality of the symbols in column i are
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As by the probability that the majority of the symbols in column i are As. Clearly Pr(Bi
A ≤ 0.5) =

Pr(Bi
T + Bi

C + Bi
G ≥ 0.5m). We can calculate this probability quite easily.

Pr(Bi
T + Bi

C + Bi
G ≥ 0.5m) ≤ δ0.5m

We can then calculate the coverage required for Pr(Bi
T + Bi

C + Bi
G ≥ 0.5m) ≤ ε.

ε ≥ δ0.5m

log ε ≥ 0.5m log δ

m ≥
⌈

2 log ε

log δ

⌉

Corollary 5. Let δ = 0.3.

1. If run on 4 independent scaffolds, the Long Consensus algorithm produces a genome which is
> 99.9% accurate.

2. If run on 8 independent scaffolds, the Long Consensus algorithm produces a genome which is
> 99.99% accurate.

3. If run on 12 independent scaffolds, the Long Consensus algorithm produces a genome which is
> 99.999% accurate.

It is therefore easy to see that if scaffold building is fast and cheap, then the Long Consensus algorithm
is feasible and gives us very good results. Given m scaffolds of length n, its running time is trivially
O(mn).

4.2 Short Consensus Algorithm

If scaffold building is not fast or cheap, then it may take considerable resources to build even one.
We know that if nanopore reads are approximately as expensive as the current technology being used,
then scaffold building will be considerably faster and cheaper than the current techniques used by Celera
and the HGP for genome assembly. Nevertheless, the cost may be too high to be able to build the
many copies required by the Long Consensus algorithm. In this case, we can use the ‘Short Consensus’
algorithm.

This algorithm works as follows: given one scaffold, we correct its errors by mapping random reads to
it and using consensus as before at each index. The Short Consensus algorithm is so called because the
reads it is mapping are short compared to the scaffold. We can choose to use traditional reads, which
are highly accurate but only about 500 b.p. long, or we can use the longer 150 000 b.p. nanopore reads.
As with the Long Consensus algorithm, we keep four parallel counter arrays, one for each base, and
initialize them to zero. Every time a read is mapped to the scaffold, increment the appropriate indices
of the appropriate arrays. Once the scaffold has been sufficiently covered, take the consensus at each
index. If there are any indices which have received no coverage, simply output the scaffold’s bases at
those indices.
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Mapping reads to the scaffold can be done very efficiently. When looking at a read and determining
where to map it, there is no need to search the entire genome. Instead, we can use hashing like in the
BLAST algorithm. The idea is to build a hash table as a preprocessing step, where the hash table keys
are all of the possible base sequences of length c in lexicographic order starting with AAA, ..., AAA and
ending with TTT, ..., TTT In other words, our hash table contains 4c indices. For each hash table key,
enter all of the scaffold indices for where that key occurs in the scaffold. We sequentially check the hash
key starting at each index of the read and its complement against the scaffold until a hit occurs. For each
hit we check if the read actually maps to the corresponding scaffold location. In so doing we tolerate an
appropriate number of discrepancies between the read and the scaffold location. An upper bound on the
number of discrepancies tolerated is given by Lemma 6. If we do not use the BLAST-like hashing, but
instead try to match each read to every position in the scaffold, then we call that algorithm the ‘brute
force short consensus algorithm’. Though this is horribly inefficient in practice, we use it later on in our
analysis for clarity.

We could also use the same algorithm with nanopore generated reads. This would yield an expected
combined error rate given by the expression in Lemma 9. If we substitute this expression in for δ in
Lemma 6, then we get an upper bound on the number of discrepancies between a read and the scaffold.

4.2.1 Short Consensus Algorithm Analysis

The Short Consensus algorithm can also be analyzed to give us very good guarantees of accuracy:

Lemma 6. Let G be a genome of length n, and let S be a δ-scaffold for G. Consider Sk
i , a length k

substring of S beginning at some randomly chosen index i of S. Then the probability that Sk
i contains

more than δk +
√

4δk ln n errors, is less than 1/n.

Proof: Let xi, xi+1, · · · , xi+k−1 be Bernoulli random variables, where xi+j is true iff position j of Sk
i is

different than G[i + j]. By the definition of S, each xi+j has probability δ of being true. We now define
the variable B as follows:

B =

k−1
∑

j=0

(xi+j = true)

Since each xi+j is a Bernoulli Random Variable with probability δ of being true Exp(B) = δk and we
can use Chernoff bounds to determine how many errors can be introduced into Sk

i before the probability
of such a segment occurring in S is less than 1/n and therefore effectively 0. The Chernoff Bound for
the upper tail of our distribution is:

Pr(B ≥ (1 + t)δk) ≤ e−t2δk/3

We can then set this probability to 1

n
α

3

, for some α > 3 and solve for t.

1

n
α

3

≤ e−t2δk/3

−α

3
ln n ≤ −t2δk

3

t2 ≥ α ln n

δk

t ≥
√

α ln n

δk
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We now know the following, where nα/3 = n1+ξ:

Pr(B ≥
(

1 +

√

α ln n

δk

)

δk) ≤ 1

n1+ξ

Simplifying we obtain the following, as required.

Pr(B ≥ δk +
√

4δk ln n) <
1

n

Theorem 7. Let G be a genome of length n and let S be a δ-scaffold for G. Let R be a random k-read
taken from G starting at randomly chosen position i. If k − 2(δk +

√
4δk ln n) > 2 log4 n, then the short

consensus algorithm will map R only to position i of S.

Proof: To prove this theorem, we need to show that the probability that the short consensus algorithm
will map R to any position of S other than i is less than 1/n. Since there are only n positions in S, this
will mean that we can expect the read to be mapped uniquely. Suppose R was originally taken from
interval G[i, i + k − 1] of G, and should therefore be mapped to S[i, i + k − 1].

Let S[j, j + k− 1] be an arbitrary length k interval of S such that j 6= i. We will show that there is a
low probability that the short consensus algorithm maps R to interval S[j, j + k − 1]. For convenience,
let χ = δk +

√
4δk ln n.

By Lemma 6 we know that any interval of S with length k will only differ from its corresponding
interval in G in at most χ positions. The short consensus algorithm must therefore tolerate at most χ
errors between R and the interval of S that it is trying to map R to before it rejects the interval. This
means that R and S[j, j + k − 1] can viewed as having χ adversarially chosen positions in common. We
also know that S[j, j + k − 1] itself can contain another χ errors.

If these errors are chosen to be disjoint from the previous χ ‘free spots’ and if each error sets its
position in S[j, j + k − 1] to equal the corresponding position in R, then R and S[j, j + k − 1] can be
viewed as having 2χ common symbols. At this point any discrepancy between R and S[j, j + k − 1] will
mean that S[j, j + k − 1] must be rejected and we have k − 2χ position left to compare. The probability
of the short consensus algorithm mapping R to S[j, j + k − 1] is therefore the probability that these last
k − 2χ are identical. This is the same as trying to find the probability that two strings of length k − 2χ
randomly chosen from G are identical. In other words, the probability is equal to finding a single string
of length k−2χ twice in G. If k−2χ > 2 log4 n, then the probability of doing so is less than 1/n2, which
is much smaller than 1/n. Since S is arbitrary, this holds for all length k intervals of S that differ from
R’s correct spot.

Therefore, if k − 2(δk +
√

4δk ln n) > 2 log4 n we can expect that any k-read taken from R will map
to no other interval in S.

Theorem 8. Given a δ-scaffold S for a genome G of length n and m reads of length k from G, such
that k − 2(δk +

√
4δk ln n) > 2 log4 n, the brute-force short consensus algorithm will produce a consensus

genome for G that has accuracy 1 − δemk/n.

Proof: By Lemma 6 we know that any length k interval of G is going to have at most δk +
√

4δk ln n
errors, and by Theorem 7 we know that the short consensus algorithm will not try to map a read to the
incorrect position. Since the brute-force short consensus algorithm attempts to place each read into every
position of G, the correct one will eventually be found. And since the algorithm tolerates δk +

√
4δk ln n

errors, each read will be mapped to its rightful place in the scaffold. Therefore, the only positions in the
consensus genome which may end up in error are the position which have no reads mapped to them. By
the result of [PSMW95], we know that the number of covered positions is at least 1 − emk/n. For any
position which remains uncovered, we can still use the scaffold’s value which has a (1− δ) probability of
being correct. Therefore the overall accuracy of the consensus will be 1− δemk/n.
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Note that the BLAST-like short consensus algorithm will perform nearly identically, since for short
hash keys it is very unlikely that a read will fail to be mapped to some position of its correct interval.
As can be seen from our empirical results this is born out in practice.

Lemma 9. Let G be a genome of length n and let S be a δ-scaffold for G. Let R be a random nanopore
k-read taken from G which then has each of its bases mutated with probability γ. The expected number
of differences between R and the interval of S corresponding to R’s location in G is 1− γ − δ + (4/3)γδ.

Proof: Let Ri be a random position of R. This position of R should map to a certain position of
Sj corresponding to R’s source in G. Without loss of generality, assume that the original spot in G
contained A. The with probability (1 − δ), Sj = A and with probability (1 − γ), Ri = A. So the
probability that both Sj and Ri remain A is (1 − γ)(1 − δ) and the probability that both mutate to
the same symbol is 3(δ/3)(γ/3) = (δγ/3). The total expected probability that the symbols agree is
therefore (1− γ)(1− δ) + (δγ/3) which simplifies to 1− δ − γ + (4/3)δγ. So the probability that there is
a discrepancy between the positions is (4/3)δγ − δ − γ.

The brute-force short consensus algorithm takes time O(kmn) where k is the read-length, n is the
genome length, and m is the number of reads used. This is clearly an upperbound on the running time
of the BLAST-like short consensus algorithm which, given a reasonable hash-key length, we can expect
to complete in time O(km), since each key should be very close to unique in the genome.

One final observation about the Short Consensus algorithm is worth mentioning: By its nature, it can
be used to map a read to all of the positions where it matches. This is a robust quality that would help
very much with real biological genomes, which, unlike random strings, contain a great deal of repeated
sequences.

5 Implementation

As part of this project, we implemented the Short Consensus algorithm. The implementation exe-
cutable is called ‘CSC 2427 Project.exe’, and was programmed in C++ with MFC for the graphical user
interface. The system requirements of the program depend entirely on which genome it is to be run,
since it stores a scafffold as well as the parallel arrays and hash table mentioned above in memory.

For our implementation, we assume that a separate scaffold building algorithm has given us a scaffold
containing errors. The purpose of the implementation is to demonstrate how quickly and accurately the
errors can be removed from the scaffold.

Please refer to the screenshots below while reading the following description of how to use the program,
which has four steps:
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5.1 Step 1:

The screenshot below in Figure 2 shows the program immediately after loading. In this screen, the
user selects the parameters with which to execute the Short Consensus algorithm.

Figure 2: The Short Consensus algorithm with no genome loaded

The user has control over five algorithm parameters. The ‘Error Rate’ parameter determines what
fraction of the scaffold’s indices have been permuted. The ‘Hash Table Key Size’ parameter determines
how many keys the hash table will have; it has 4c keys, where c is the key size. The ‘Target Coverage’
parameter determines how many reads will be read; reads will continuously be read and mapped to the
scaffold until this level of coverage is reached. Finally, the ‘Read Size’ parameter determines the size of
the random reads that are to be mapped by the algorithm. Note that the reads being mapped do not
contain errors.

When the ‘Load Genome’ button is pressed, a dialog box selecting which genome file in .fa format
to read. It is capable of reading files containing both capital and lower case bases. Once a genome has
been selected, the program reads it, builds a scaffold, builds a hash table, and goes to the next step.
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5.2 Step 2:

The screenshot below in Figure 3 shows the program immediately after a .fa genome file has been
opened. This screen provides some basic information about the genome such as its file name and genome
size in base pairs. Note that the algorithm parameters have been locked and can no longer be changed
at this point.

Figure 3: The Short Consensus algorithm with a genome loaded
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5.3 Step 3:

The screenshot below in Figure 4 shows the execution of the Short Consensus algorithm. This screen
displays a variety of statistics about the algorithm.

Figure 4: The Short Consensus algorithm while executing

‘Elapsed Time’ shows how long the algorithm has been running. ‘Reads Read’ shows how many
random reads have been read. ‘Reads Mapped’ shows how many of those reads have been successfully
mapped to the scaffold, as well as what percentage of the total reads that represents. ‘Coverage’ indicates
how many times the total number of mapped reads would cover the entire genome in absolute terms.
‘Cache Hits’ shows how many cache hits the random reads have had. Finally, ‘Matches’ shows how many
of the cache hits were exact matches.

The chart under the ‘Coverage Distribution’ heading gives an indication of what kind of coverage
most of the indices in the scaffold have. For example, the chart in Figure 4 shows that very few indices
in the scaffold have 10× coverage, whereas very many of them have 1× coverage.

The long picture at the bottom of the window shows the actual distribution of the mapped reads in
graphical form. The darker the horizontal bands, the greater the coverage at that position.
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5.4 Step 4:

The screenshot below in Figure 5 shows the results of the Short Consensus algorithm once the target
coverage has been reached. The accuracy of the algorithm is shown in the status bar at the top. This
accuracy is calculated by comparing the result of the consensus algorithm to the original genome from
the input file, and counting the number of differences. The ‘Reset’ button clears the memory and returns
the program to Step 1.

Figure 5: The Short Consensus algorithm after completion
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6 Empirical Results

We were able to run our implementation on a number of different real genomes and genome fragments
in the form of chromosomes. The Chicken DNA sequences were obtained from [Was]. The results of
these tests are shown in the table below.

All tests were run on a 3.2 GHz Pentium 4 Processor with 2GB of RAM. Each test used random reads
of length 500, a scaffold error-rate of 0.3, hash keys of length 10. We have results for both 5× coverage
and 10× coverage.

Results for 5× coverage.
Genome Name Size Time (Seconds) Accuracy (%) Reads Mapped (%)

1 Chicken Chromosome 16 190218 1.00 99.496 98.7
2 Chicken Chromosome 32 990148 9.54 99.783 98.7
3 Chicken Chromosome 27 2501418 39.53 99.656 99.0
4 Salmonella Typhimurium 4294297 101.29 99.707 98.8
5 E.Coli 4646333 113.82 99.688 99
6 Chicken Chromosome 24 5779841 202.09 99.720 99
7 Chicken Chromosome 21 6044381 215.23 99.705 98.9
8 Chicken Chromosome 17 9892546 573.67 99.687 98.9
9 Chicken Chromosome 20 13294267 1067.75 99.735 98.9

Results for 10× coverage.
Genome Name Size Time (Seconds) Accuracy (%) Reads Mapped (%)

1 Chicken Chromosome 16 190218 1.98 99.935 99
2 Chicken Chromosome 32 990148 18.25 99.975 99
3 Chicken Chromosome 27 2501418 80.14 99.906 99.1
4 Salmonella Typhimurium 4294297 201.51 99.938 99
5 E.Coli 4646333 219.98 99.934 99
6 Chicken Chromosome 24 5779841 401.04 99.973 99
7 Chicken Chromosome 21 6044381 449 99.948 99
8 Chicken Chromosome 17 9892546 1127.4 99.926 99
9 Chicken Chromosome 20 13294267 2081.01 99.967 98.9

These results were promising for a number of reasons. Firstly, they are very good in terms of accu-
racy, with all of the results being at least 99.9% accurate. Secondly, the algorithm consistently wasted
fewer than 1% of the reads. Since reads are relatively expensive when compared to computer power,
this is important for keeping the cost of sequencing down. Thirdly, the algorithm performed well on
both prokaryotic and Eukaryotic genomes. Finally, the results required very little time on a normal
consumer-level computer with a single processor, which means that this algorithm would be very cheap
to implement, and performs very quickly, two of the goals of this project. Implementing this algorithm
in hardware is certainy feasible.

In short, given the read size and error rate, the accuracy results are consistent with Theorem 8 which
suggests that at least with respect to our analysis, our test genomes behave very similarly to random
strings.

One item worth mentioning is that the reads which went unmapped did so because they could not be
hashed to the correct site. When running the algorithm, shortening the hash key results in more reads
being mapped at the expense of time. Therefore, if reads are relatively expensive, it is worth-while to
build a smaller hash table, or even to use brute-force mapping. On the other hand, if an acceptable
number of reads are being mapped it may pay to increase the hash key length and therefore improve
running times. A value near log4 n, where n is the length of the whole genome, seems optimal since that
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key length would create the smallest hash table in which each entry is expected to map uniquely to the
genome.

7 Concluding Remarks

In conclusion, given nanopore technology, both the Short and Long Consensus algorithms seem very
promising. The Short Consensus algorithm’s practical performance matches its predicted theoretical
performance quite closely. Being both simple and effective, these algorithms could potentially live up to
their goal of bringing costs down once nanopore technology is mature.

Though shotgun genome assembly should work well for scaffold building, it will be necessary to make
minor modifications for it to work in this setting. Shotgun assembly should work relatively well for
nanopore reads because they are many times longer than the reads currently being used. This may make
it economical to build a small number of scaffolds and use them in the Long Consensus algorithm. If
accurate shotgun assembly is more difficult than sequencing a large number of short reads, then one can
use the Short Consensus algorithm.

There is of course more work that can be done on this project in the future. For example, incorporating
a more realistic error model which includes insertions and deletions would bring it one step closer to being
usable. It would also be interesting to run the Short Consensus algorithm on genomes which are much
larger.

Since the Consensus algorithms can be implemented so cheaply, and since they work so quickly and
accurately, they essentially reduce the problem of assembling a highly accurate genome to assembling
a scaffold with about 70% accuracy. In other words, if one can build scaffolds, then one is very nearly
done. Even without the nanopore technology, there may be other ways of constructing genomes with
about 70% accuracy which could then take advantage of either Consensus algorithm.
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