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Abstract

In this paper we explore the complexity of various problems pertaining to Input Resolution,
a very restricted form of Resolution which requires that at least one input to every instance of
the resolution rule be an input clause. This proof system is of practical interest because Input
Resolution is equivalent to Unit Resolution, a popular subroutine used in many areas of computer
science, especially SAT-solvers.

We first prove a number of tractability results for Input Resolution, which leads us to algorithms
showing its automatizability, as well as the NP-Completeness of the Input Resolution size problem.
However, our main result is an exact equivalence between the pure black pebbling number of any
DAG G and the Input Resolution total space of the pebbling contradiction formula Peb

1(G)∗. This
equivalence allows us to prove the PSPACE-Completeness of various forms of the Input Resolution
derivation total space problem, and as a corollary yield the PSPACE-Completeness of the Input
derivation width problem as well as a massive size / total space tradeoff for Input Resolution. These
PSPACE-Completeness and tradeoff results are somewhat surprising when juxtaposed with our
earlier theorems; on one hand, Input Resolution seems to be a completely tractable and even trivial
Resolution refinement, but on the other hand some of its other characteristics are highly complicated.

1 Introduction & Motivation

The Resolution (RES) proof system has been studied extensively, and is understood quite well. Because
it forms the basis of a vast number of automated theorem proving algorithms, there is a strong practical
motivation for understanding its limitations. When devising SAT-solving algorithms, there is always
a tension between proof size and proof search; more powerful proof systems have shorter proofs, but
they are much harder to find, making it difficult to design proof search algorithms. For this reason,
virtually all automated theorem provers implement weak proof systems such as RES rather than more
powerful systems such as Frege. However, automated proof search is even too complicated in RES,
which is why researchers have further developed ‘Resolution refinements’, restricted forms of Resolution
aimed at simplifying proof search at the possible expense of increasing minimum proof size. Common
refinements include Tree Resolution / DPLL and clause learning, which are both very successful SAT-
solving algorithms. The ultimate goal of automated theorem proving is to develop algorithms capable
of finding proofs which are only polynomially larger than the optimal. This property is referred to as
‘automatizability’.

One particularly extreme refinement is Input Resolution (I-RES), in which we require that at least one
of the inputs to each application of the resolution rule be an initial, or input clause. This clearly restricts
the search space that any I-RES algorithm would have to deal with, but the cost is very high, since I-RES

is not even complete. However, despite its simplicity and obvious limitations, we shall show that the
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I-RES proof system is much more interesting than it may first appear. It is important both theoretically
as well as practically because of a Theorem by Chang [Cha70] which states that a formula has an I-RES

refutation if and only if it has a Unit Resolution (U-RES) refutation. Since U-RES is such an important
and widely-used subroutine in SAT-solving as well as other areas, this gives a strong motivation for
better understanding I-RES.

In this paper we prove a number of complexity results for I-RES including P-Completness, NP-
Completeness, PSPACE-Completeness, and exponential tradoff results. In addition, we show that I-RES

is automatizable, and optimally automatizable on minimally unsatisfiable formulas. The first part of this
paper contains straightforward results dedicated to investigating the more tractable aspects of I-RES,
whereas the second half investigates its more complex characteristics.

Specialized definitions and concepts which we shall require can be found in Section 2. Beyond these
definitions, we assume that the reader is familiar with basic proof complexity as well as general complexity
theory, and use [CK01, Pap94] as our standard references.

Our results start in Section 3, where we show how formulas with I-RES refutations (IRES-UNSAT )
are related to Horn formulas, and minimally unsatisfiable formulas which have I-RES refutations (MU -
IRES-UNSAT ) are related to the minimally unsatisfiable formulas in MU(1).

Next, in Section 4, we prove a number of tractability results for I-RES. For example, we combine
some previous results to show that IRES-UNSAT is P-Complete. We also show that the problem of
determining if a formula is minimally unsatisfiable and has an I-RES refutation, as well as the problem
of determining if formula F is minimally unsatisfiable and has an I-RES refutation of size at most k are
both in P .

These results lead us to Section 5, in which we develop algorithms for automatizing I-RES and
automatizing I-RES optimally on minimally unsatisfiable formulas.

This brings us to the second half of our paper and the more complicated aspects of I-RES. In Section
6, we note that the problem of approximating optimal I-RES and U-RES refutation size to within a
linear factor for IRES-UNSAT is NP-Hard and that given a formula F and integer k, the problem
of determining whether F has an I-RES refutation of size at most k is NP-Complete. This stands in
contrast with the tractability of the same problem for MU -IRES-UNSAT from the previous section.

The rest of this paper contains our main results, and is dedicated to the study of I-RES space. These
results are more complicated our earlier ones. We therefore begin this part of the paper in Section 7 by
reviewing some of the most important previous work related to space for resolution-based proof systems.

Next, in Section 8 we prove an equivalence between I-RES total space and pebbling, followed imme-
diately by its implications for complexity theory. More specifically, we show that for any binary DAG
G, its black pebbling number (defined with sliding) is off by exactly a constant from the total space
required by any I-RES proof of a slight modification to the formula Peb1(G). This equivalence allows
us to prove our main results, namely the PSPACE-Completeness of various forms of the I-RES total
space problem, which is proved by reducing from the black pebbling game on DAGs, proven PSPACE-
Complete by Gilbert, Lengauer, and Tarjan [GLT80]. These results show that although with respect to
some complexity measures, I-RES is very simple, with respect to others it is extremely complex.

Finally, in Section 9 we prove two interesting corollaries to our main results. The first is the PSPACE-
Completeness of I-RES derivation width. However, the most interesting corollary that we prove is an
extreme (and optimal) size / total space tradeoff for I-RES; we show that there exists an infinite family
of formulas whose I-RES proofs with the minimum required total space have size 2Ω(n), where n is the
number of distinct variables. However, if only one single additional unit of total space is permitted, then
the size drops to only O(n), where n is the number of variables, once again contrasting strongly with the
apparent simplicity of I-RES as suggested by the earlier tractability and automatizability results.
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2 Definitions

2.1 Resolution Proof, Size, & Width

The notions of size and width can be formalized using a fairly simple definition of what constitutes a
RES proof, whereas the notion of space requires a slightly more complicated definition:

Definition 2.1 (RES Proof). A clause C is a set of literals. If C ∨ x and D∨¬x are clauses, then the
resolution rule allows us to derive the clause C∨D by resolving on the variable x. If F is a set of clauses,
then the sequence of clauses π = C1, C2, ..., Ck is a RES proof of Ck from F if each Ci in π appears in F
(i.e. is an input, or initial clause) or follows from two previous clauses in π by the resolution rule.

If the graph underlying the structure of π is a tree (i.e. each clause in π is a premise for at most
one application of the resolution rule), then the proof is said to be a Tree-Like Resolution (T-RES) proof.
Otherwise it is said to be DAG-Like. A RES refutation of F is a RES proof from F in which Ck = ∅ (the
empty clause).

This allows us to define size and width:

Definition 2.2 (Resolution Size & Width). If a RES proof π of formula F contains k clauses, then
it is said to have size k. The width of a clause C refers to how many literals it contains, and is denoted
w(C). The width of a formula F is the width of the widest clause in F , and is denoted w(F ). The
width of a RES refutation π, denoted w(π) is equal to the width of its widest clause, and is denoted w(π).
Finally, the minimum width of any RES refutation of F is denoted w(F `RES ∅).

2.2 Resolution Space

The definition of the space measure that we shall be discussing requires an alternative definition of
RES proof which depends on the notion of configuration:

Definition 2.3 (Configuration-Style RES Proof). A configuration C is a set of clauses. If F is a set
of clauses, then the sequence of configurations π = C0,C1, ...,Ck is a RES proof of C from F if C0 = ∅,
C ∈ Ck, and for each i < k, Ci+1 is obtained from Ci by one of the following rules:

1. deleting one or more of its clauses,

2. adding the resolvent of two clauses of Ci,

3. adding one or more of the clauses of F (initial clauses).

In addition, π is said to be an I-RES proof if at least one input to every instance of the resolution rule is
an input clause, and it is said to be an I-RES-W− (I-RES with negative weakening) proof if we add the
following rule:

4. replacing one of the clauses C ∈ Ci with the clause C ∪ {¬x}, which was obtained by weakening C
with an arbitrary negative literal ¬x.

In any type of Resolution proof, the first two clauses resolved on are called the ‘top clauses’ of π. The
final result of the refutation, Ck is called the ‘goal clause’. If ∅ ∈ Ck, then π is a refutation. Finally, if at
least one input to every instance of the resolution rule is a unit clause (i.e. it contains just one literal),
then we say that π is a Unit Resolution proof.
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This leads us to our definition of space. Intuitively, space is the amount of memory required in order
to compute π. Note that our terminology differs from that introduced by Ben-Sasson in [BS02]. What
Ben-Sasson refers to as ‘variable space’, we refer to as ‘total space’:

Definition 2.4 (Total Space). Let F be a set of clauses and π be a configuration-style RES proof of
clause C from F . The total space of a configuration C in π, denoted TS(C) is defined as

∑

C∈C
w(C).

The total space of π, denoted TS(π) is the maximum TS(C) over all C in π. Finally, the total space of
resolving C from F , denoted TS(F `RES C), is the minimum TS(π) over all RES proofs π of C from F .

2.3 Pebbling Circuits & Games

The investigation of RES space is closely associated with the well-known pebbling game and pebbling
number of a DAG, originally explored in [Coo73, CS76] as a means of investigating bounds on storage
requirements. There are several different versions of pebbling games, but the most popular ones are
captured by the following generalized description:

Definition 2.5 (Black-White Pebbling Game on DAGs). The black-white pebbling game is a
single-player game where the goal is to ‘pebble’ a DAG G in which each node is an AND gate or a source.
The leaves of G have in-degree 0 and are referred to as ‘source’ nodes. A single vertex in G is referred to
as a ‘target’ or ‘output’ node, and has out-degree 0. All non-target nodes can have arbitrary out-degree,
except of course when G is a tree, in which case the maximum out-degree is 1. In all cases, non-source
nodes can have arbitrary in-degree. A DAG in which all non-source nodes have in-degree 2 is called a
‘binary DAG’. The game involves two different types of pebbles (black and white), and has the following
rules:

1. The game starts with no pebbles on the DAG.

2. A gate may have at most one pebble on it at any time.

3. At any point, the player may place any pebble onto a source node or remove any pebble from a
source.

4. At any point, the player may remove any black pebble from any gate or place a white pebble on any
empty gate.

5. For any unpebbled node v, if all of a v’s immediate predecessors have pebbles on them, then the
player may place a black pebble on v. Alternatively, if the sliding rule is present, the player may
slide a black pebble from u to v, where u is a predecessor of v.

6. For any node v with a white pebble on it, if all of a v’s immediate predecessors have pebbles on them,
then the player may remove the white pebble from v. Alternatively, if all but one of v’s predecessors
are pebbled, then the player my slide the white pebble from v to the remaining unpebbled predecessor
of v.

7. The game ends once the circuit has a black pebble on the target node and there are no white pebbles
present on the DAG.

The rules above define the standard ‘black-white pebbling game’ on DAGs. We can further restrict
the game by disallowing the use of white pebbles, resulting in the standard ‘black pebbling game’. The
black pebbling game and the black-white pebbling game played on DAGs are the most common forms
of the game found in the literature, although pebbling on monotone circuits has also been investigated.
This leads us to the definitions of the ‘black-white pebbling number’ and the ‘black pebbling number’:
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Definition 2.6 (Pebbling Numbers of DAGs). Given a DAG G, the ‘black-white pebbling number’
of G, denoted BW -Peb(G) is the minimum number of total pebbles that the player needs in order to
complete the black-white pebbling game on G without violating any of its rules.

The ‘black pebbling number’ of G, denoted B-Peb(G) is the minimum number of black pebbles that
the player must be given in order to complete the black pebbling game on G without violating any of its
rules.

Note that each version of the pebbling game can either be defined with or without sliding; this is an
important point because allowing sliding has a slight effect on the pebbling number (see Lemma 7.1).
Another issue is whether sliding is compulsory or optional, i.e. if one is allowed to place a pebble even
when sliding is possible. For the purposes of this paper, we will allow sliding unless otherwise stated.

2.4 Pebbling Contradictions

A number of important families of unsatisfiable formulas called the ‘pebbling contradictions’ are based
on the various different forms of the pebbling game. A brief history of how these formulas have been
used in the literature is given in [BS02].

Definition 2.7 (One-Colour Pebbling Contradictions for DAGs). The one-colour pebbling contra-
diction of a DAG G, denoted Peb1(G), is an unsatisfiable formula constructed by taking G, and creating
the following clauses in which each variable x is interpreted as meaning that vertex x has a pebble on it:

1. For each source node s, create the singleton clause {s}.

2. For each node y0 of degree d with immediate predecessors y1, y2, ..., yd, create the propagation clause
{¬y1,¬y2, ...,¬yd, y0}.

3. Finally, for the target node t, create the singleton clause {¬t}.

It should be easy to see that for any DAG G, Peb1(G) is unsatisfiable; this is because the source node
variables must all be true, and all of the propagation clauses send this truth towards the target. The
target variable must therefore be true, but the negative singleton clause(s) for the target forces it to be
false, ultimately creating a contradiction.

3 Input Resolution, Horn Formulas, and MU Formulas

In this section we define IRES-UNSAT , the set of formulas which have I-RES refutations, as well as
MU -IRES-UNSAT , its minimally unsatisfiable subset, and relate these languages to unsatisfiable Horn
formulas and minimally unsatisfiable (MU) formulas. More specifically, we show that HORN -UNSAT
is a proper subset of IRES-UNSAT , and MU -IRES-UNSAT is a proper subset of MU(1). Before
proceeding, we formally define these languages:

Our first languages are the formulas for which I-RES and U-RES are complete:

Definition 3.1 (IRES-UNSAT & URES-UNSAT). IRES-UNSAT is the set of all unsatisfiable
formulas which have I-RES refutations, and URES-UNSAT is the set of all unsatisfiable formulas which
have U-RES refutations.

Our next set of languages are related to Horn formulas and are defined as follows:

Definition 3.2 (Horn Formulas, HORN-SAT, & HORN-UNSAT). A formula F is said to be
Horn if each of its clauses contains at most one positive literal. We will refer to the set of all satisfiable
Horn formulas as HORN -SAT , and the set of all unsatisfiable Horn formulas as HORN -UNSAT .

It is worth noting that Peb1(G) ∈ HORN -UNSAT .
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Our final set of languages are based on minimally unsatisfiable formulas:

Definition 3.3 (MU(k), MU-IRES-UNSAT, & MU-HORN-UNSAT). A formula F is said to
be minimally unsatisfiable if it is unsatisfiable, but the same cannot be said of any proper subset of its
clauses. These minimally unsatisfiable formulas comprise the set MU . We define MU(k) as the set
of all minimally unsatisfiable formulas on n variables which contain exactly n + k clauses. In addition,
MU -IRES-UNSAT contains all of the minimally unsatisfiable formulas in IRES-UNSAT , and MU -
HORN -UNSAT contains all of the minimally unsatisfiable formulas in HORN -UNSAT .

Again, it is worth noting that Peb1(G) ∈ MU -HORN -UNSAT for any DAG G in which every node
is essential (i.e. every pebbling of G uses every node in G at some point during the pebbling).

3.1 Relating Input Resolution & Unit Resolution

In this section we review a previous result relating IRES-UNSAT and URES-UNSAT , give upper
bounds on the size of I-RES refutations, and prove a separation between the I-RES and U-RES proof
systems.

A very important and useful previous result is the relationship between I-RES and U-RES proved by
Chang:

Theorem 3.4 ([Cha70]). A formula F has an I-RES refutation if and only if it has a U-RES refutation
and therefore IRES-UNSAT = URES-UNSAT .

This equivalence makes it easy to see that I-RES is an incomplete proof system, since there are unsat-
isfiable formulas which have no unit clauses, and therefore have no U-RES or I-RES refutations.

The following theorem proves upper bounds on the size of I-RES refutations:

Theorem 3.5. For any formula F ∈ IRES-UNSAT there exists an I-RES refutation of F with size at
most 2n + 1, where n is the number of distinct variables in F .

Proof: The proof is by induction on n:

Basis: For n = 0, F = {∅}, which has an I-RES refutation containing 2n + 1 = 1 clauses.

Induction Hypothesis: Suppose that our statement is true for n − 1.

Induction Step: We now show that our statement holds for n. Let F be any arbitrary formula in
IRES-UNSAT with n distinct variables. Since F has a U-RES refutation, it either contains a unit
clause (xi) or (¬xi). Suppose that it contains the unit clause (xi). Restrict F by setting xi to True to
produce the formula F �xi=True, which has n−1 variables and also has an I-RES refutation. Our induction
hypothesis therefore applies, so F �xi=True has an I-RES refutation π′ of size ≤ 2(n − 1) + 1 = 2n − 1.
Lifting the restriction on F and all corresponding clauses in π′ yields an I-RES derivation π of the empty
clause or the clause (¬xi), where π has size exactly 2n− 1. If π is a derivation of the empty clause, then
we are done. In the case where π proves (¬xi), recall that F contains the input clause (xi), so simply
resolve with this in order to produce the empty clause. In either case we have therefore produced an
I-RES refutation containing ≤ 2n − 1 + 2 = 2n + 1 clauses, as required. The case in which F contains
the unit clause (¬xi) is completely symmetrical: Simply restrict by xi = False instead, and then resolve
with (¬xi) at the end.
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However, although I-RES and U-RES are in some sense equivalent by Theorem 3.4 and I-RES has linear
size upper bounds by Theorem 3.5, the same does not hold for U-RES proof size, and there exists a
separation between the two proof systems. In fact, U-RES has Ω(n2) size lower bounds on the following
family of formulas:

Definition 3.6 (FU Formulas). There is one formula Fi in FU for each value of n ≥ 1, where n is
the number of distinct variables. Fi is defined inductively as follows: F1 = {{x1}, {¬x1}}, and each
subsequent Fi is created by taking Fi−1, adding the literal ¬xi to each clause, and finally adding the
singleton clause {xi}.

A simple analysis of these formulas yields a separation between the I-RES and U-RES proof systems:

Theorem 3.7. Each Fn ∈ FU requires U-RES refutations of size at least n2 + 3n + 2
2 , where n is the

number of distinct variables in F .

Proof: By construction, it is not hard to see that Fn contains exactly n + 1 clauses and that each
variable xi has exactly one positive occurrence, i negative occurrences, and deriving the empty clause
requires all variables in the formula to be eliminated. Eliminating each xi requires exactly i resolutions,
although these resolution steps are only possible after the positive unit clause {xi} has been derived,
since we are dealing with U-RES. Fn therefore requires n + (n − 1) + (n − 2) + ... + 1 applications of

the resolution rule, which sums to exactly n(n+1)
2 clauses derived. In addition, each of the n + 1 initial

clauses must be present in the proof. Any refutation of Fn therefore contains at least n2 + 3n + 2
2 clauses,

as required.

3.2 The Relationship Between Input Resolution and Horn Formulas

Horn formulas are an important class of formulas which come up rather frequently in computer science.
For example, the algorithm employed by the Prolog programming language is called SLD Resolution,
which is a special case of Horn Resolution. In this section we shall show that HORN -UNSAT is a
proper subset of IRES-UNSAT :

Lemma 3.8. HORN -UNSAT ( IRES-UNSAT

Proof: We first show that HORN -UNSAT ⊂ IRES-UNSAT by proving that any unsatisfiable Horn
formula F has an I-RES refutation. The proof is by induction on n:

Basis: For n = 1, F contains the clauses {x1} and {¬x1}, and therefore clearly has an I-RES refutation.

Induction Hypothesis: Assume that every Horn formula on n variables has an I-RES refutation.

Induction Step: Let F be any Horn formula on n+1 variables, and F ′ be any minimally unsatisfiable
subset of its clauses. If F ′ contains fewer than n+1 variables, then we appeal to our Induction Hypothesis
and are done, so we may assume that F ′ contains n + 1 variables. Any unsatisfiable formula contains
at least one clause which has no positive literals in it, or else it could be satisfied by simply setting all
variables to True. Similarly, it has at least one clause which has no negative literals in it, or else it could
be satisfied by setting all variables to False. However, since F ′ is a Horn formula and it contains an
all-positive clause, it must be a unit clause, so every unsatisfiable Horn formula contains a positive unit
clause.

Let x1 be the variable in a positive unit clause of F ′. We restrict F ′ to create F ′�x1=True, which has
only n variables, so our Induction Hypothesis applies, showing that it has an I-RES refutation π ′. Since
F ′ is minimally unsatisfiable, lifting the restriction on π′ gives us π, which is an I-RES derivation of the
clause {¬x1}. We resolve this with our positive unit clause {x1} to complete the refutation of F ′. This
is also a refutation of F , since we said that F ′ ⊂ F . Therefore by induction every Horn formula has an
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I-RES refutation, so HORN -UNSAT ( IRES-UNSAT .

It is easy to see that the set inclusion is proper because there are many non-Horn formulas which
have I-RES refutations. For instance, the unsatisfiable formula F = (x∨ y)∧ (¬x)∧ (¬y) is not Horn but
has an I-RES refutation.

This same argument immediately applies to the minimally unsatisfiable versions of these sets as well:

Corollary 3.9. MU -HORN -UNSAT ( MU -IRES-UNSAT

3.3 The Relationship Between Input Resolution and MU Formulas

Having established the relationship between IRES-UNSAT and Horn formulas in the previous section,
we now investigate the relationship between IRES-UNSAT and MU(k). In this section we will prove
exact bounds on the size of I-RES proofs, and relate Horn Resolution, I-RES, and MU(1). Finally, we
will prove some facts about MU(1), MU -IRES-UNSAT , and unit propagation which will be useful in
later sections.

3.3.1 Exact Bounds on the Size of Input Resolution Refutations

The smallest k for which MU(k) is interesting is k = 1. This is because a lower bound on the number
of clauses in minimally unsatisfiable formulas is known, showing that the set MU(0) is empty:

Lemma 3.10 ([AL86]). Any minimally unsatisfiable CNF formula on n variables contains at least
n + 1 clauses.

This lower bound also has a useful corollary:

Corollary 3.11. Any CNF formula with fewer than n clauses is not minimally unsatisfiable, and any
unsatisfiable formula F containing exactly n + 1 clauses is minimally unsatisfiable (i.e. F ∈ MU(1)).

In addition, Lemma 3.10 helps us to prove bounds on the size of refutations for minimally unsatisfiable
formulas which hold for all forms of Resolution:

Corollary 3.12. For any minimally unsatisfiable formula F , any refutation of F in any form of Reso-
lution contains at least 2n + 1 clauses.

Proof: The lower bound is easy to see: Since F is minimally unsatisfiable, each of its clauses must be
used in any refutation of F . Therefore by Lemma 3.10, any refutation of F contains at least n+1 clauses.
However, since every variable in F is introduced into the proof at some point and must be eliminated,
we need to derive at least n more clauses (one for each variable elimination), bringing our total to at
least 2n + 1.

Together with the upper bound from Theorem 3.5, this gives us tight bounds on the size of I-RES

refutations for MU -IRES-UNSAT :

Corollary 3.13. For any formula F ∈ MU -IRES-UNSAT the size of every I-RES refutation of F is
at least 2n + 1, where n is the number of distinct variables in F . In addition, there exists an I-RES

refutation of F with size at most 2n + 1.

Proof: The lower bound follows from Corollary 3.12, and the upper bound from Theorem 3.5.
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3.3.2 Relating Horn Resolution, Input Resolution, and MU(1)

In [DDB98], Davydov, Davydova, and Kleine Büning prove a result corresponding to Lemma 3.10,
except that theirs is specific to U-RES, and also includes an exact measure of the number of clauses for
formulas in MU -IRES-UNSAT :

Theorem 3.14 ([DDB98]). Any minimally unsatisfiable formula on n variables which has a U-RES

refutation contains exactly n + 1 clauses.

Together, Theorems 3.4 and 3.14 allow us to relate MU -IRES-UNSAT to MU(1):

Corollary 3.15. MU -IRES-UNSAT ( MU(1)

Proof: By Theorems 3.4 and 3.14, MU -IRES-UNSAT ⊂ MU(1). It is easy to see that the set inclusion
is proper because there exist formulas such as F = (x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ z) ∧ (¬x ∨ ¬z) in MU(1)
which do not have I-RES refutations.

Combining Lemma 3.8, Corollary 3.9, and Corollary 3.15 allows us to produce a simple set diagram
which shows the exact relationship between IRES-UNSAT , MU(1), MU -IRES-UNSAT , HORN -
UNSAT , and MU -HORN -UNSAT . This diagram is shown below in Figure 1.

IRES-UNSAT

MU-IRES-UNSAT

UNSAT
MU-HORN-

HORN-UNSAT

MU(1)

Figure 1: The Relationship Between I-RES, Horn Formulas, and MU(1) Formulas

3.3.3 MU(1), MU-IRES-UNSAT, and Unit Propagation

We now prove that both MU(1) and MU -IRES-UNSAT are closed under unit propagation, a fact
which will be useful in subsequent sections.

Lemma 3.16. For any CNF formula F , if F contains two clauses C1 and C2 such that C1 ⊂ C2, then
F is not minimally unsatisfiable.

Proof: Let C1 and C2 be clauses of F such that C1 ⊂ C2. If F is satisfiable, then it is not minimally
unsatisfiable, and we are done, so assume that it is unsatisfiable. Let F ′ = F − {C2}. Because C1 ⊂
C2, if F ′ is satisfiable, then the same truth assignment which satisfies it also satisfies F , so F ′ is not
satisfiable. But F ′ contains a proper subset of the clauses of F , therefore showing that F is not minimally
unsatisfiable.
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We can use this lemma to prove that MU(1) is closed under unit propagation:

Lemma 3.17. For any formula F ∈ MU(1), if F contains a unit clause {l} for some literal l, then
F �l=True ∈ MU(1).

Proof: If F ∈ MU(1) contains a unit clause {l} for some literal l, then l does not occur anywhere else
in F by Lemma 3.16. Therefore F �l=True contains n − 1 variables and exactly n clauses, which means
that it is minimally unsatisfiable by Corollary 3.11, so F �l=True ∈ MU(1), as required.

Combining the previous lemma with Corollary 3.15 yields the following corollary which shows that
MU -IRES-UNSAT is closed under unit propagation:

Corollary 3.18. For any formula F ∈ MU -IRES-UNSAT , if F contains a unit clause {l} for some
literal l, then F �l=True ∈ MU -IRES-UNSAT .

3.4 A Matrix Characterization of MU-IRES-UNSAT

Although matrix algebra and propositional formulas may at first glance have very little to do with
each other, matrices can be used to encode formulas. This can be done by giving each cell in the matrix
one of three values: +,−, and 0 such that each row in the matrix represents a distinct variable, and
each column represents a distinct clause. If column j of row i is +, then the literal xi occurs in clause j.
Similarly, if column j in row i is −, then the literal ¬xi occurs in clause j. Finally, if position (i, j) in
the matrix is 0, then the variable i does not occur in clause j.

For example, the formula F = (x1)∧ (¬x1 ∨ x2)∧ (¬x2 ∨ x3) has the following matrix representation:





+ − 0
0 + −
0 0 +





In [DDB98] the authors show that the ‘basic matrices’, which are of interest in the area of linear algebra
exactly capture the formulas in MU(1). From Corollary 3.15, we know that MU -IRES-UNSAT is a
proper subset of MU(1), so it stands to reason that MU -IRES-UNSAT comprises a proper subset of
the basic matrices. In this section we shall show that this is in fact the case. We begin by defining this
subest of matrices, which we call the ‘sub-basic matrices’:

Definition 3.19 (Sub-Basic Matrices). The sub-basic matrices are defined inductively:

1.
(

+ −
)

is a sub-basic matrix.

2. If B is a sub-basic matrix and b is a vector with bj ∈ {−, 0} with at least one −-sign, then the
following matrix is also sub-basic:

(

+ b
0 B

)

3. If B is a sub-basic matrix and b is a vector with bj ∈ {+, 0} with at least one +-sign, then the
following matrix is also sub-basic:

(

− b
0 B

)
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Having defined the sub-basic matrices, we now show that a formula is in MU -IRES-UNSAT if and
only if it can be encoded by a sub-basic matrix. We begin by proving the forward direction:

Lemma 3.20. Any formula F ∈ MU -IRES-UNSAT can be represented as a sub-basic matrix.

Proof: The proof is by induction on n, the number of distinct variables in F :

Basis: For n = 1, F = (x1) ∧ (¬x1), and
(

+ −
)

is sub-basic, so our statement holds for the base
case.

Induction Hypothesis: Suppose that any formula F ∈ MU -IRES-UNSAT containing n variables
can be represented as a sub-basic matrix.

Induction Step: Let F be any arbitrary formula in MU -IRES-UNSAT containing n + 1 variables.
Since F ∈ MU -IRES-UNSAT , it contains a unit clause. Without loss of generality, let us call this
unit clause {l1}, where l1 = x1 or ¬x1. Let F ′ be F �l1=True, which has n variables and by Corollary
3.18 is in MU -IRES-UNSAT . Therefore our induction hypothesis applies, and F ′ has the sub-basic
matrix B. By Lemma 3.16 l1 does not appear in any other clause of F , so if l1 = x1, then F has the

sub-basic matrix

(

+ b
0 B

)

, where b is a vector with bj ∈ {−, 0} with at least one −-sign (because F

is minimally unsatisfiable). The case where l1 = ¬x1 is completely analogous, so in either case F has
a sub-basic matrix, and by induction any formula F ∈ MU -IRES-UNSAT can be represented as a
sub-basic matrix.

We now prove the reverse direction:

Lemma 3.21. Every sub-basic matrix encodes a formula F ∈ MU -IRES-UNSAT .

Proof: The proof is by induction on n, the number of rows of a sub-basic matrix:

Basis: For n = 1, the only sub-basic matrix is
(

+ −
)

, corresponding to F = (x1)∧ (¬x1), which is
in MU -IRES-UNSAT .

Induction Hypothesis: Suppose that every sub-basic matrix containing n rows encodes a formula
F ∈ MU -IRES-UNSAT .

Induction Step: Let M by any arbitrary sub-basic matrix containing n + 1 rows. By definition, M

is

(

+ b
0 B

)

, where b is a vector with bj ∈ {−, 0} with at least one −-sign, or M is

(

− b
0 B

)

, where

b is a vector with bj ∈ {+, 0} with at least one +-sign. In either case, B is sub-basic and contains n
variables, so our induction hypothesis applies, and it encodes a formula FB ∈ MU -IRES-UNSAT . In
our first case, we add the singleton clause {x1} to FB and add the literal ¬x1 to at least one clause of
FB to produce F , which is clearly still unsatisfiable and has a U-RES refutation, so therefore also has an
I-RES refutation by Theorem 3.4. However, F contains n+1 variables and n+2 clauses, so by Corollary
3.11 it is minimally unsatisfiable.

Our second case where we add the singleton clause {¬x1} to FB and add the literal x1 to at least
one clause of FB to produce F is completely analogous. Therefore, in either case M encodes a formula
F ∈ MU -IRES-UNSAT , so by induction every sub-basic matrix encodes a formula F ∈ MU -IRES-
UNSAT .
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Putting these two lemmas together shows that the sub-basic matrices are a perfect characterization of
MU -IRES-UNSAT :

Theorem 3.22. A formula F is in MU -IRES-UNSAT if and only if it can be encoded as a sub-basic
matrix.

This result of course has implications for IRES-UNSAT as well, because it shows that any minimally
unsatisfiable subset of clauses from formula which has an I-RES refutation can be encoded as a sub-basic
matrix. In other words, any formula F ∈ IRES-UNSAT can be encoded as a sub basic matrix which
has been augmented with any arbitrary clauses, giving us a matrix characterization of IRES-UNSAT
as well.

4 Tractable Aspects of Input Resolution

In the previous section we related various languages such as HORN -UNSAT , MU(1), and MU -
IRES-UNSAT to IRES-UNSAT . We shall use these results to explore the complexities of some of the
tractable aspects of the I-RES proof system. First we shall review some previous results showing that
HORN -UNSAT and IRES-UNSAT are P-Complete, and that MU(1) ∈ P . Following this we show
that MU -IRES-UNSAT ∈ P and that the size problem for MU -IRES-UNSAT is in P .

4.1 The Complexities of HORN-UNSAT, IRES-UNSAT, and MU(1)

We now review some previous results about the tractability of HORN -UNSAT , IRES-UNSAT , and
MU(1). For example, the complexity of HORN -UNSAT is well-understood:

Theorem 4.1 ([Pla84], [Pap94], p.176). The problem of determining whether or not a given Horn
formula is satisfiable (i.e. of deciding the language HORN -SAT ) is P-Complete.

This shows that determining whether or not Horn formulas are unsatisfiable is coP-Complete, so since
P is closed under complement, this immediately gives us the complexity of HORN -UNSAT :

Corollary 4.2. HORN -UNSAT is P-Complete.

Similar P-Completeness results have been proved for URES-UNSAT :

Theorem 4.3 ([JL77]). The problem of determining whether or not a given formula has a U-RES

refutation (i.e. of deciding the language URES-UNSAT ) is P-Complete.

Since we know from Theorem 3.4 that IRES-UNSAT = URES-UNSAT , this immediately implies
the P-Completeness of IRES-UNSAT :

Corollary 4.4. IRES-UNSAT is P-Complete, and furthermore there exists an O(n · m) algorithm
which takes as input a formula F and determines whether or not it has an U-RES (and therefore I-RES)
refutation, where n is the number of distinct variables in F , and m is the number of clauses.

Proof: Showing that IRES-UNSAT is P-Complete is trivial, since IRES-UNSAT = URES-UNSAT ,
which is P-Complete by Theorem 4.3. It can be solved by the following unit propagation algorithm:
Repeatedly pick a unit clause and resolve it with every other clause possible. Since U-RES is closed
under restriction, this algorithm is clearly correct, will take at most O(n · m) time in total, and will
either yield the empty clause, in which case it has a U-RES refutation (and therefore I-RES refutation by
Theorem 3.4), or a formula where no more unit resolutions are possible, in which case it does not.
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In addition, the complexity of MU(k) has been settled for k = 1:

Theorem 4.5 ([DDB98]). MU(1) ∈ P and there exists an O(n2) algorithm which decides if any
arbitrary formula F is in MU(1), where n is the number of distinct variables in F .

The complexity of MU(k) for all k ≥ 2 remains open.

4.2 The Tractability of MU-IRES-UNSAT

Having proved that IRES-UNSAT is P-Complete, we now show that MU -IRES-UNSAT ∈ P by
counting clauses:

Corollary 4.6. MU -IRES-UNSAT ∈ P and has an O(n · m) algorithm, where n is the number of
distinct variables and m is the number of clauses.

Proof: Given a formula F , we determine if F ∈ MU -IRES-UNSAT . By Corollary 3.11 we know that
any formula containing fewer than n variables is not minimally unsatisfiable, so if this is the case, then
reject. Similarly, by Corollary 3.15, any formula containing more than n + 1 variables cannot be in MU -
IRES-UNSAT , so if this is the case, then reject. Therefore we are left with the case where F contains
exactly n+1 clauses, so it is either has an I-RES refutation (in which case it is in MU -IRES-UNSAT ) or
it does not (in which case it is not). This can be determined using the O(n ·m) algorithm from Corollary
4.4.

4.3 The Tractability of the MU-IRES-UNSAT Size Problem

The size problem for MU -IRES-UNSAT takes as input a formula / integer pair (F, k) and asks if F
is minimally unsatisfiable and has an I-RES refutation of size at most k. We now show that this problem
is in P :

Corollary 4.7. Given a formula F and integer k, the problem of determining whether or not F ∈ MU -
IRES-UNSAT and has an I-RES refutation of size at most k is in P and has an O(n · m) algorithm,
where n is the number of distinct variables in F , and m is the number of clauses.

Proof: Simply use the algorithm from Corollary 4.6 to determine if F ∈ MU -IRES-UNSAT . If not,
then reject, and otherwise compare k with 2n + 1. If k ≥ 2n + 1, then by Corollary 3.13 we can simply
accept, and otherwise we reject.

4.4 The Tractability of the MU-IRES-UNSAT Problem with Top Clause

In previous sections we have seen that various versions of the MU -IRES-UNSAT problem are in P .
We now prove that another generalized form of the problem is also tractable. Instead of asking whether
a minimally unsatisfiable formula F has an I-RES refutation, we can ask if it has an I-RES refutation in
which one of the top clauses is C. We shall refer to this as the MU -IRES-UNSAT problem with top
clause. In order to prove that it is in P , we will first prove a ‘top clause’ lemma:

Lemma 4.8 (Top Clause Lemma). If a formula F ∈ MU(1) has an I-RES refutation, then it has an
I-RES refutation with any arbitrary clause C ∈ F as one of the top clauses.

Proof: By induction on n, the number of distinct variables in F :

Basis: In order to simplify later arguments, we will cover the cases of n = 0 and n = 1 as our base
cases. For n = 0, F = ∅, which trivially unsatisfiable, and its only proof contains only the empty clause.
For n = 1, the only minimally unsatisfiable formula is F = (x) ∧ (¬x), in which the only refutation has
both of its clauses as top clauses, so our statement holds for both n = 0 and n = 1.
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Induction Hypothesis: Suppose that our statement is true for n − 1.

Induction Step: We now show that our statement holds for n. Let F be any arbitrary formula in
MU(1) on n variables which has an I-RES refutation. By Theorem 3.4, F must contain a unit clause,
call it {l} for some literal l. We want to show that F has an I-RES refutation with top clause C, where
C is any arbitrary clause in F . In order to apply our induction hypothesis, we restrict F to produce
F ′ = F �l=True. By Lemma 3.17, F �l=True ∈ MU(1). In addition, I-RES is closed under restriction,
so our induction hypothesis applies to F ′, which therefore has an I-RES refutation with any arbitrary
C�x=True ∈ F ′ as top clause; let us call this proof π′.

There are two cases to consider:

Case 1: Suppose that C 6= {l}. Since F ∈ MU(1) and {l} ∈ F is a unit clause, Lemma 3.16 applies, so
the literal l does not occur anywhere else in F , including C. Similarly, C 6= {¬l}, since this is not the
base case. Therefore the restricted clause C�l=True does not disappear from F ′. Furthermore, since F ′

is minimally unsatisfiable, every clause is used in π′, so lifting the restriction of l = True yields π which
is an I-RES derivation from F of {¬l} with top clause C. We resolve the final clause {¬l} of π with our
unit input clause {l} to complete the refutation.

Case 2: Suppose that C = {l}. We know that F is minimally unsatisfiable, so it must contain a clause
of the form D = E ∪ {¬l}, and n ≥ 2, so E ∈ F ′. By our induction hypothesis, there exists an I-RES

refutation π′ from F ′ with top clause E. Lift the restriction of l = True from all clauses of π′, but don’t
add {¬l} back to the top clause E. Now resolve {l} with D = E ∪ {¬x} at the top of π ′ to produce E,
and if necessary, also resolve {l} with the singleton clause {¬l} (if it exists) at the bottom of the proof
to complete the refutation. This yields an I-RES refutation from F with top clause C = {l}.

Therefore, in either case we have produced an I-RES refutation from F with top clause C, as required,
and our result follows by induction.

This lemma allows us to prove that the MU -IRES-UNSAT problem with top clause is in P :

Theorem 4.9. Given a minimally unsatisfiable formula F and a clause C ∈ F , determining if F has
an I-RES refutation with top clause C is in P.

Proof: To show that this problem is in P , we first determine if F ∈ MU -IRES-UNSAT , which can be
done in polynomial time by Corollary 4.6. If not, then reject. Otherwise, by Lemma 4.8 F has an I-RES

refutation with C as top clause, so accept.

5 Automatizability of Input Resolution

In this section we show that I-RES is automatizable and that MU -IRES-UNSAT is optimally au-
tomatizable. These results form an interesting contrast with the results in the next section which show
that the problem of computing the optimum size of I-RES refutations is NP-Complete.

Informally, a proof system S is automatizable if there exists an algorithm which can always find proofs
which are only polynomially larger than the optimal. Such algorithms are obviously of great practical
interest because they allow us to efficiently automate theorem proving. More formally, automatizability
is defined as follows:

Definition 5.1 (Automatizability). A propositional proof system S is automatizable if there exists a
deterministic algorithm A such that for every formula F ∈ UNSAT (or TAUT ), A returns an S-proof
of F in time polynomial in |F | and |π|, where |F | is the number of clauses in F , and |π| is the size of
the smallest S-proof of F .
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Because they form the basis of so many practical SAT-solving algorithms, RES and its refinement
T-RES are some of the best candidate proof systems which researchers would like to automatize. However,
under widely-believed cryptographic assumptions, they are not automatizable [AR02].

It is therefore likely that the only possible automatizable Resolution refinements are incomplete. In
other words, results such as the ones in this section are in a sense the best we can hope for.

The most obvious candidate for automatizability is Horn Resolution. Our results from previous sections
make it easy to see that Horn formulas are an automatizable example of restricted SAT inputs:

Corollary 5.2. I-RES on HORN -UNSAT is automatizable and there exists an O(n · m) algorithm
which takes as input any Horn formula F (where n is the number of distinct variables in F and m is
the number of clauses), and either produces an I-RES refutation containing at most 2n + 1 clauses, or
returns that no refutation exists.

Proof: We simply use the O(n · m) algorithm from Corollary 4.4 to determine if F is unsatisfiable. If
not, then return that no refutation exists. Otherwise use the O(n · m) algorithm implicit in Lemma 3.8
to produce the desired I-RES refutation containing at most 2n + 1 clauses.

Another restriction which has received much attention is 2-SAT, in which we require the input formula
to have exactly two literals per clause. Unlike Horn-SAT, which is P-Complete, 2-SAT is NL-Complete
[Pap94, p.398]. In addition, 2-SAT is also known to be automatizable [Coo71], and in fact optimal
polytime automatizability algorithms exist for finding the shortest T-RES refutation [Sub04] and the
shortest RES refutation of any unsatisfiable 2-CNF formula [BOM07].

We now prove that for I-RES there exists a polytime algorithm for finding a refutation which is at
worst linearly longer than the optimal, thereby showing its automatizability. In fact, I-RES is strongly
automatizable in the sense that we can always find a refutation which is polynomial in the length of the
input formula. Automatizability with respect to formula size is usually not even a reasonable thing to
ask for because many proof systems have exponential size lower bounds, making this impossible. This
further shows just how tractable the I-RES proof system is.

Theorem 5.3. The I-RES proof system is automatizable. More specifically, given a formula F containing
n distinct variables and m clauses, there exists an O(n · m) algorithm which finds an I-RES refutation
containing at most 2n + 1 clauses or reports that F has no I-RES refutation.

Proof: First use the O(n · m) algorithm from Corollary 4.4 to determine if F has an I-RES refutation.
If not, then we report that none exists. Next we apply the O(n · m) DPLL algorithm implicit in the
induction step of Theorem 3.5 to produce an I-RES refutation of F containing at most 2n+1 clauses.

It is worth noting that for minimally unsatisfiable formulas this algorithm produces the shortest pos-
sible proof, but if F is not minimally unsatisfiable, then this algorithm may not produce the optimal.

6 The NP-Completeness of Calculating I-RES Proof Size

In previous sections we saw that I-RES is automatizable, IRES-UNSAT is P-Complete, that I-RES

is optimally automatizable on MU -IRES-UNSAT , and the size problem for MU -IRES-UNSAT is in
P . However, in this section we show an interesting contrast with these tractability results by noting that
the size problem for IRES-UNSAT is NP-Complete. This result follows immediately from the main
result of Alekhnovich, Buss, Moran and Pitassi [ABMP01]:

Theorem 6.1 ([ABMP01]). The problem of approximating the size (regardless of whether size is
measured in total symbols or number of clauses) of the smallest Resolution refutations of formulas from

HORN -UNSAT to within a factor of 2log1−o(1)n is NP-Hard.
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Corollary 6.2. The problem of approximating the size (regardless of whether size is measured in total
symbols or number of clauses) of the smallest I-RES or U-RES proofs of formulas from IRES-UNSAT

to within a factor of 2log1−o(1)n is NP-Hard.

Proof: There is no need to change the proof in [ABMP01]; it is easy to see that the reduction from
Circuit MMSA produces Horn formulas which have both I-RES and U-RES refutations, so the result holds
for these proof systems as well.

This corollary in turn yields another one, namely that given a formula F and integer k, the problem
of determining if F has an I-RES refutation of size at most k is NP-Complete. The language associated
with this problem is defined as follows:

Definition 6.3 (IRES-SIZE). IRES-SIZE = {(F, k) | F is a formula for which there exists a I-RES

refutation with size at most k}

Corollary 6.4. IRES-SIZE is NP-Complete under Turing reducibility.

Proof: We first show that IRES-SIZE is in NP : IRES-UNSAT is in P by Corollary 4.4 and is
therefore also in NP , so we first check to see if F has an I-RES refutation. If it does not, then we reject.
Otherwise it has an I-RES refutation of size at most 2n + 1 by Theorem 5.3. We therefore compare k
with 2n + 1 and if k is greater, then we accept immediately. Otherwise we nondeterministically guess
the shortest I-RES refutation of F , which we know must have a size of at most 2n + 1 and accept if and
only if its size is at most k, thereby completing our NP algorithm.

Next we show that IRES-SIZE is NP-Hard via a Turing reduction from the problem of approxi-
mating minimum I-RES refutation size which was proved NP-hard in Corollary 6.2. Assuming that we
have an algorithm for IRES-SIZE, we can use it as a subroutine to build an algorithm for determining
the size of the smallest refutation of F as follows: By Theorem 5.3, F has an I-RES refutation containing
at most 2n + 1 clauses. We therefore perform a binary search between the range 1 and 2n + 1 using our
IRES-SIZE algorithm to determine the size of the smallest refutation. Since this is only a logarithmic
number of subroutine calls, it follows that IRES-SIZE is NP-Complete, as required.

7 Previous Results Related to Resolution Space

7.1 Pebbling

An important survey on pebbling by Pippenger [Pip80] is a very good overview of the area. The
literature also contains some useful results for manipulating pebbling strategies. The first is a connection
between normal pebbling and pebbling with sliding. In [GLT80], Gilbert, Lengauer, and Tarjan prove
that any DAG G can be black pebbled using k pebbles with sliding if and only if it can be black-pebbled
using k + 1 pebbles without sliding. We generalize this result to the black-white pebbling of monotone
circuits:

Lemma 7.1. Any monotone circuit C can be black-white pebbled using k pebbles with sliding if and only
if it can be black-white pebbled using k + 1 pebbles without sliding.

Proof: ⇒ Suppose that C can be black-white pebbled using k pebbles with sliding. Replace each in-
stance of the sliding rule from gate x to gate y with two moves; first place a pebble of the same colour as
the pebble on x onto y, and then remove the pebble from x. This substitution increases the number of
pebbles used by 1 momentarily during the intermediate step and works regardless of whether the pebble
is white or black, regardless of what type of gate x is, and leaves us with a pebbling strategy that involves
no sliding and requires at most k + 1 pebbles, as required.

⇐ Suppose that C can be black-white pebbled using k + 1 pebbles without sliding, and let H be the
pebbling strategy associated with this pebbling.
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Let (Bi, wi) be any time in H containing k + 1 pebbles. Therefore, the move transitioning from step
(Bi−1, wi−1) to (Bi, wi) was the placement of either a black or white pebble on a vertex x. Either this
is the final move in the pebbling or it is not. If this is the final move, then it must be the placement
of a black pebble. Then all of x’s predecessors must be pebbled at step (Bi−1, wi−1), and there are no
white pebbles on C, so simply slide one of the black pebbles from one of x’s predecessors to x instead of
placing a new black pebble on x, thereby saving a pebble.

If this is not the final move in the pebbling, then the pebble being placed on x is either black or white,
and the move transitioning from step (Bi, wi) to step (Bi+1, wi+1) must be the removal of a pebble from
a vertex y. If the pebble being placed on x is white, then it does not require any predecessors, so simply
remove the pebble from y before placing the white pebble on x, thereby saving a pebble.

If the pebble being placed on x is black, then y either is or is not an immediate predecessor of x. If
y is not an immediate predecessor, then it is not needed for the placement of x, so simply remove the
pebble from y first, and then place the black pebble on x, thereby saving a pebble.

If y is an immediate predecessor of x, then the pebble being removed from y is either black or white.
If it is black, then instead of placing a black pebble on x and then removing the black pebble from y,
we slide the black pebble from y to x, thereby saving a pebble and still ending up in the same pebbling
configuration (Bi+1, wi+1).

If the pebble being removed from y is white, then instead of placing a black pebble on x and removing
a white pebble from y, we first remove the white pebble from y, then place a black pebble on y, and
then slide it from y to x, once again saving a pebble and ending up in the same pebbling configuration
(Bi+1, wi+1).

We perform this local transformation to save a pebble at every stage of H where k + 1 pebbles are
used. This shows that C can be pebbled using k pebbles with sliding, as required.

Another useful result for manipulating pebblings is found in [Hei81]. It it, Meyer Auf Der Heide proves
that for any DAG G, any black-white pebbling strategy (without sliding) using k pebbles can be turned
into its ‘dual’ white-black pebbling strategy using k pebbles by reversing the strategy, converting all
black pebbles to white and all white pebbles to black.

We generalize this result to black-white pebbling monotone circuits with the sliding rule present:

Lemma 7.2. Given a black-white pebbling strategy (with sliding) of a monotone circuit C using at most
k pebbles, if one reverses the strategy, converts all black pebbles to white, and all white pebbles to black,
then the resulting strategy is also a valid black-white pebbling strategy of C which uses at most k pebbles.

Proof: From the description of the black-white pebbling game in Definition 2.5, it is easy to see that
every possible move in the game has a corresponding countermove which is exactly equivalent to making
the move in reverse with all pebbles having exactly the opposite colour. For example, consider a node v
in C with d ≥ 0 predecessors u1, ..., ud. The following are pebbling moves together with their duals:

1. Let v be an unpebbled AND gate with all predecessors pebbled, and suppose we place a black
pebble on v. In this case the dual move is to start with a white pebble on v, have all other
corresponding nodes contain opposite pebbles, and then remove the white pebble from v.

2. Let v be an unpebbled OR gate with at least one predecessor pebbled, and suppose we place a
black pebble on v. In this case the dual move is to start with a white pebble on v, have all other
corresponding nodes contain opposite pebbles, and then remove the white pebble from v.

3. Let v be an unpebbled AND gate with all predecessors pebbled and suppose that we slide a black
pebble from some predecessor ui to v. In this case the dual move is to start with a white pebble
on v but none on ui, have all other corresponding nodes contain opposite pebbles, and then slide
the white pebble from v to ui.

4. Let v be an unpebbled OR gate with at least one predecessor pebbled and suppose that we slide
a black pebble from some predecessor ui to v. In this case the dual move is to start with a white
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pebble on v but none on ui, have all other corresponding nodes contain opposite pebbles, and then
slide the white pebble from v to ui.

5. Suppose that a black pebble is removed from v, where v is either type of gate. In this case the
dual move is to have all other corresponding nodes pebbled with opposite pebbles, and then place
a white pebble on v.

Of course, all of these dual relationships hold in the opposite direction as well, and each of these cases
the number of total pebbles used is identical. It is therefore possible to take any black-white pebbling
strategy (with sliding) and convert it step-by-step into a dual strategy which uses exactly the same
number of pebbles, as required.

7.2 Space & Games

The pebbling game is related closely to RES clause space. Let F be any arbitrary unsatisfiable formula,
let π be a configuration-style RES refutation of F , and let G be the DAG underlying the structure of
π. It is not hard to see that the clause space used in computing π is exactly equal to B-Peb(G). More
specifically, CS(F `RES ∅) is equal to the pebbling number of the DAG with the smallest pebbling number
of all DAGs underlying valid RES refutations of F . This shows that both general clause space as well as
tree clause space are related closely to the pebbling game.

A particularly relevant result relating black-white pebbling number to space was proved by Ben-Sasson:

Theorem 7.3 ([BS02]). For any monotone circuit C, BW -Peb(C) ≤ TS(Peb1(C) `RES ∅), where
BW -Peb(C) is defined without sliding.

Implicit in the proof of this Theorem is the following Corollary:

Corollary 7.4 ([BS02]). For any monotone circuit C, BW -Peb(C) ≤ V S(Peb1(C) `RES ∅), where
BW -Peb(C) is defined without sliding.

Tree clause space is also related closely to the Prover/Delayer game, a two-player combinatorial
game played on an unsatisfiable formula. The results in [ET03] are the definitive work relating the
Prover/Delayer number PD(F ) of an unsatisfiable CNF formula to its tree clause space TCS(F `T-RES ∅)
by showing the following:

Theorem 7.5 ([ET03]). For any unsatisfiable CNF formula F , TCS(F `T-RES ∅) = PD(F ) + 1.

In other words, the Prover/Delayer game perfectly captures the notion of clause space for T-RES.

In addition to doing some of the pioneering research in the area of Resolution space, Esteban & Torán
also showed that an upper bound on tree clause space gives an upper bound on the size of T-RES proofs:

Theorem 7.6 ([ET01]). Let F be an unsatisfiable formula on n distinct variables. If F has a T-RES

refutation with tree clause space s = TCS(F `T-RES ∅), then it has a T-RES refutation of size
(

n+s

s

)

.

The Prover/Delayer game can also be used to give a lower bound on T-RES size; in [BSIW04], the
authors prove that lower bounds on PD(F ) can be used to prove lower bounds on the size of T-RES

proofs:

Theorem 7.7 ([BSIW04]). If the Delayer has a strategy guaranteed to win > k points on F , then
every T-RES refutation of F has size > 2k.

In other words, upper and lower bounds on the Prover/Delayer Number of a formula not only imme-
diately imply corresponding upper and lower bounds on tree clause space (since Prover/Delayer Number
and tree clause space are basically synonymous), but they also imply upper and lower bounds for T-RES

proof size.
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7.3 Space & Width

An important paper relating space and width is [AD03]. In it the authors prove that for unsatisfiable
k-CNF formulas, space is an upper bound on width.

Theorem 7.8 ([AD03]). Let F be any unsatisfiable CNF formula. Then

CS(F `RES ∅) ≥ w(F `RES ∅) − w(F ).

This is a very powerful result, because it can be used to derive space lower bounds for all formulas
for which width lower bounds are known.

7.4 Width & Size

The relationship between width & size is very important because it shows that lower bounds for width
imply lower bounds for size. This simplifies proofs for size lower bounds by allowing us to focus on lower
bounds for width. The main result linking width and size is [BSW01], and is also explained well in
[Urq06]:

Theorem 7.9 ([BSW01]). Let F be a contradictory set of clauses with an underlying set of variables
V , and let S(F `RES ∅) be the minimum size of any RES refutation of F . Then

S(F `RES ∅) = exp

(

Ω

(

(w(F `RES ∅) − w(F ))2

|V |

))

7.5 Tradeoff Results

Another important paper is [BS02], in which the author proves a number of interesting tradeoff results.
For example, he provides families of formulas for which there are:

• linear size T-RES proofs and constant width T-RES proofs, but no T-RES proof that has both small
width and small size.

• RES proofs with constant clause space, and RES proofs with constant width, but no RES proof that
has both small width and small clause space.

• linear size RES proofs that also have constant width, but no RES proof that has both small clause
space and small size.

These results rely on the pebbling contradiction formulas from Definition 2.7 above.

A more recent paper in the same vein is [Nor06]. In it, the author proves a tradeoff result for Resolution
width and clause space. More specifically, he proves the existence of a family of unsatisfiable formulas
with constant width but clause space which is bounded by Θ(lg(n)), where n is the formula length.

7.6 Complexity of Pebbling

A number of complexity results involving pebbling are known. In [Lin78], the author proves the
following interesting result about the black pebbling game on monotone circuits:

Theorem 7.10 ([Lin78]). Given a monotone circuit C and an integer k, the problem of determining
if C can be black-pebbled with k pebbles (with sliding) is PSPACE-Complete.

This result was later extended to DAGs in [GLT80]:

Theorem 7.11 ([GLT80]). Given a DAG G and an integer k, the problem of determining if G can be
black-pebbled with k pebbles (with sliding) is PSPACE-Complete.
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More recently, the black-white pebbling game on monotone circuits was also shown to be PSPACE-
Complete [HP07]:

Theorem 7.12 ([HP07]). Given a monotone circuit C and an integer k, the problem of determining
if C can be black-white-pebbled with k pebbles (with sliding) is PSPACE-Complete.

This was also extended to DAGs in [HP07], thereby settling the long-standing open problem of settling
its complexity:

Theorem 7.13 ([HP07]). Given a DAG G and an integer k, the problem of determining if G can be
black-white-pebbled with k pebbles (with sliding) is PSPACE-Complete.

By Lemma 7.1, we get the following Corollary:

Corollary 7.14. The PSPACE-Completeness of all four versions of the pebbling game above holds
regardless of whether or not sliding is allowed.

All of these results are particularly interesting because they are PSPACE-Completeness results for a
game which has only one player, whereas most PSPACE-Complete games have two.

One final result worth mentioning is [HU07] in which we reduced from black pebbling monotone circuits
to prove that the problems of calculating T-RES space requirements and determining the winner of the
Prover/Delayer game are both PSPACE-Complete.

8 The Complexity of Input Resolution Derivation Total Space

This section contains a number of results pertaining to black pebbling and the total space of I-RES.
In Section 8.1 we prove that for any DAG G, B-Peb(G) is equivalent to the total space of any I-RES-W−

derivation of a certain variation of Peb1(G) formulas. Following this we show how to dispense with
weakening and prove the equivalent result for I-RES. In Section 8.2 we put these equivalence results to
use in order to prove the PSPACE-Completeness of various forms of the I-RES Total Space Problem.
Finally, in Section 9.2 we prove another corollary to our equivalence results, namely an optimal I-RES

size / total space tradeoff.

8.1 Equivalence of Black Pebbling & Input Resolution Total Space

We shall prove that for any DAG G, B-Peb(G) (with sliding) is almost exactly equivalent to the
minimum total space of any I-RES-W− derivation from Peb1(G)∗ with top clause {¬t,¬α,¬β} and goal
clause {¬α,¬β}.

In order to proceed, we must first define the I-RES-W− proof system, which is simply I-RES with an
added weakening rule, as well as the Peb1(G)∗ formulas, which are a slight modification of the Peb1(G)
formulas:

Definition 8.1 (I-RES-W−). I-RES-W− is identical to the I-RES proof system from Definition 2.3 except
that it has the following additional rule:

4. replacing one of the clauses C ∈ Ci with the clause C ∪ {¬x}, which was obtained by weakening C
with an arbitrary negative literal ¬x.
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The Peb1(G)∗ formulas, closely related to the Peb1(G) formulas from Definition 2.7, are defined as
follows:

Definition 8.2 (Peb1(G)∗). In the case of binary DAGs without OR gates, in order to ensure that our
resulting formula is a 3-CNF formula, we define Peb1(G)∗ to be just like Peb1(G) except that we include
dummy literals ¬α and ¬β in each singleton clause so that each source clause {s} becomes {s,¬α,¬β}
and the target clause becomes {¬t,¬α,¬β}. Note that there are no positive instances of α or β, so a
proof of Peb1(G) ` ∅ will correspond exactly with a proof of Peb1(G)∗ ` {¬α,¬β}.

We make use of the Peb1(G)∗ because unlike the Peb1(G) formulas, they are in 3-CNF .

We shall first show that the equivalence between pebbling number and I-RES space holds for I-RES-W−,
and then we will show that it also holds for standard I-RES by demonstrating how to dispense with
weakening. In order to prove these results, we first need to define two very similar concepts. The first is
a way of documenting the moves made during a pebbling game. We refer to such a record as a ‘pebbling
history’:

Definition 8.3 (Pebbling Histories & Strategies). A pebbling history on a monotone circuit G
with j moves is a sequence of pairs H = (B0, W0), (B1, W1), ..., (Bj , Wj) in which each (Bi, Wi) pair
completely describes which nodes of G have pebbles on them at step i of the pebbling game; Bi is the set
of nodes having black pebbles on them, and Wi is the set of nodes having white pebbles on them at time
i. A step in the pebbling game is defined as being one move by the player consisting of the removal of a
pebble, the placement of a pebble, or the sliding of a pebble (if sliding is allowed).

When dealing with pure black or pure white pebbling histories, we allow H = S0, S1, ..., Sj to be a
sequence of sets in which each Si is the set of nodes at time i having pebbles on them. This simplifies
our notation, since pairs are not necessary in this case.

A ‘pebbling strategy’ is a history which has met the termination condition of the game.

The second concept which we need to define before proceeding is called an I-RES refutation ‘Backbone’,
and it is very similar to the idea of a one-colour pebbling strategy:

Definition 8.4 (I-RES Backbone). Let T be the tree underlying an I-RES refutation π of a formula F .
The Backbone B of π is the linear portion of T starting at π’s top clause C0 and ending at the goal clause
Ck, with all of the remaining clauses (which are all input clauses) removed from T . B can therefore be
written as a sequence of clauses B = B0, B1, ..., Bk. Depending on our application we may consider B0

to be the top clause and Bk to be the goal clause, or the other way around.

8.1.1 The Equivalence of Black Pebbling & Input Total Space With Weakening

Our first lemma proves the forward direction of our equivalence and states that it is possible to take
a pure black pebbling strategy of an arbitrary DAG G and from it build an I-RES-W− derivation from
Peb1(G)∗ with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which the backbone perfectly encodes
the strategy.

The intuition behind this translation is illustrated by the following example: Consider the pyramid
graph G shown below in Figure 2. We will use the labels on its nodes to correspond to the variable
names in its pebbling formula, so Peb1(G)∗ = (4 ∨ ¬α ∨ ¬β) ∧ (5 ∨ ¬α ∨ ¬β) ∧ (6 ∨ ¬α ∨ ¬β) ∧ (¬4 ∨
¬5 ∨ 2) ∧ (¬5 ∨ ¬6 ∨ 3) ∧ (¬2 ∨ ¬3 ∨ 1) ∧ (¬1 ∨ ¬α ∨ ¬β).

Figure 3 below shows how to translate the pure black pebbling strategy S0, S1, ..., S8 for G into an
I-RES-W− derivation of from Peb1(G)∗ with top clause {¬1,¬α,¬β} and goal clause {¬α,¬β} in which
the backbone perfectly encodes the strategy:

21



6

1

2 3

4 5

Figure 2: An Example of a Pyramid Graph; The target node is vertex 1.

(2 ∨ ¬4 ∨ ¬5)

S8 : {1}

S7 : {1, 3}

S6 : {2, 3}

S5 : {2, 3, 6}

S4 : {2, 5, 6}

S3 : {2, 5}

S2 : {4, 5}

S1 : {4}

S0 : {} (¬α ∨ ¬β)

(4 ∨ ¬α ∨ ¬β)(¬4 ∨ ¬α ∨ ¬β)

(5 ∨ ¬α ∨ ¬β)(¬4 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬5 ∨ ¬6 ∨ ¬α ∨ ¬β) (6 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬3 ∨ ¬6 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬3 ∨ ¬α ∨ ¬β)

(¬1 ∨ ¬3 ∨ ¬α ∨ ¬β)

(¬1 ∨ ¬α ∨ ¬β)

Weaken

Weaken

(1 ∨ ¬2 ∨ ¬3)

(3 ∨ ¬5 ∨ ¬6)

Figure 3: A Pure-Black Pebbling Strategy for G (Left) and its Corresponding I-RES-W− Refutation
(Right)

More formally, translating a pebbling strategy into an I-RES-W− proof can be carried out according
to the following lemma:

Lemma 8.5. For any DAG G with target node t, if G has a pure black k-pebbling strategy (using sliding)
S = S0, S1, S2..., Sj−1, Sj where t ∈ Sj , then Peb1(G)∗ has an I-RES-W− derivation π with top clause
{¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has a backbone B = B0, B1, ..., Bj−1, Bj (where Bj is
the top clause and B0 is the goal clause) such that for all 0 ≤ i ≤ j, Bi =

⋃

v∈Si
{¬v} ∪ {¬α,¬β}.

Proof: Let G be any arbitrary DAG with target node t and let S = S0, S1, S2..., Sj−1, Sj be any pure
black k-pebbling strategy (using sliding) of G. Note that S0 = ∅ and t ∈ Sj . We will show that there is a
corresponding I-RES-W− derivation with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} by induction
on the number of steps in the pebbling strategy S. It is useful to picture the pebbling strategy as a linear
sequence of sets drawn with the first step at the bottom, and the last step at the top. We will construct
the I-RES-W− proof and backbone from the bottom (goal clause) to the top (top clause). Note that
because the dummy literals ¬α and ¬β are present in every clause of the proof backbone, each backbone
clause has a width that is two greater than the corresponding step in the pebbling strategy.
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Basis: Step 0 of the pebbling strategy contains no pebbles. Therefore S0 = ∅. The corresponding
clause in our backbone is the clause that we are trying to derive. Therefore B0 = {¬α,¬β}. Since
⋃

v∈S0
{¬v} = ∅, it is clear that B0 =

⋃

v∈S0
{¬v} ∪ {¬α,¬β}.

Induction Hypothesis: Suppose that we have been able to translate our pebbling strategy up to and
including step i to I-RES proof steps in which the backbone clauses encode the pebbling strategy. More
specifically, Bi =

⋃

v∈Si
{¬v} ∪ {¬α,¬β}, holds for step Si.

Induction Step: We now show how to translate step i+1 of our pebbling strategy into a corresponding
backbone clause. More specifically, we need to show that Bi+1 =

⋃

v∈Si+1
{¬v}∪{¬α,¬β} holds for Si+1,

step i + 1 in our pebbling strategy. Pebbling step Si+1 could have come from step Si in one of exactly
three ways:

1. By pebbling a source node s.

2. By removing a pebble from vertex u.

3. If nodes a and b are pebbled predecessors of c, by sliding one of the pebbles from a or b to c.

Case 1: In this case, Si+1 = Si ∪ {s}. Let Bi+1 = Bi ∪ {¬s}. Then we can derive Bi from Bi+1

by resolving Bi+1 with the input clause {s,¬α,¬β}, so this is a valid resolution step resolving on the
variable s. By our induction hypothesis, Bi =

⋃

v∈Si
{¬v} ∪ {¬α,¬β}, but Bi+1 = Bi ∪ {¬s}, so Bi+1 =

⋃

v∈Si
{¬v} ∪ {¬α,¬β} ∪ {¬s}. Since Si+1 = Si ∪ {s}, we know that Bi+1 =

⋃

v∈Si+1
{¬v} ∪ {¬α,¬β},

as required.

Case 2: In this case, Si+1 = Si − {u}. Let Bi+1 = Bi − {¬u}. Then we can derive Bi from Bi+1

by weakening Bi+1 to introduce {¬u}, so this is a valid resolution step. By our induction hypothesis,
Bi =

⋃

v∈Si
{¬v} ∪ {¬α,¬β}, but Bi+1 = Bi − {¬u}, so Bi+1 =

⋃

v∈Si
{¬v} ∪ {¬α,¬β} − {¬u}. Since

Si+1 = Si − {u}, we know that Bi+1 =
⋃

v∈Si+1
{¬v} ∪ {¬α,¬β}, as required.

Case 3: Without loss of generality, assume that we are sliding the pebble from a to c. In this case,
Si+1 = Si − {a} ∪ {c}. Let Bi+1 = Bi − {¬a} ∪ {¬c}. Then we can derive Bi from Bi+1 by resolving
Bi+1 on variable a with the input clause {¬a,¬b, c}, so this is a valid I-RES-W− step resolving on the
variable c. By our induction hypothesis, Bi =

⋃

v∈Si
{¬v} ∪ {¬α,¬β}, but Bi+1 = Bi − {¬a} ∪ {¬c},

so Bi+1 =
⋃

v∈Si
{¬v} ∪ {¬α,¬β} − {¬a} ∪ {¬c}. Since Si+1 = Si − {a} ∪ {c}, we know that Bi+1 =

⋃

v∈Si+1
{¬v} ∪ {¬α,¬β}, as required.

Therefore, in all cases, there exists a valid next step in the backbone such that Bi+1 =
⋃

v∈Si+1
{¬v}∪

{¬α,¬β}, so by induction we can translate a pure black pebbling into an I-RES-W− proof in which the
backbone perfectly encodes the pebbling strategy. In order to ensure that the I-RES-W− proof has top
clause {¬t,¬α,¬β}, we may have to apply several weakenings in reverse. This is because the pebbling
strategy may end with more than just the target node pebbled, in which case we would have to remove
the literals corresponding to these superfluous pebbles in order to ensure that the top clause is indeed at
the top of our I-RES-W− proof.

Our next lemma shows the opposite direction, namely that it is possible to take any arbitrary I-RES-W−

derivation π and translate it into a pebbling strategy which uses at most two fewer pebbles than π’s
backbone width.

Once again, we use the pyramid graph G from Figure 2 above as our example. Figure 4 below
shows how to translate the I-RES-W− derivation of from Peb1(G)∗ with top clause {¬1,¬α,¬β} and
goal clause {¬α,¬β} into a pure white pebbling strategy S0, S1, ..., S10 in which the strategy perfectly
encodes backbone of the proof. In fact, weakening is never required in this example, so it actually
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translates an I-RES derivation to a pebbling strategy. Note how each Resolution step may require up to
two corresponding pebbling moves.

S6 : {5, 6}

S0 : {1}

S1 : {1, 3}

(¬2 ∨ ¬3 ∨ ¬α ∨ ¬β)

S3 : {2, 3, 5}

(¬3 ∨ ¬4 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬3 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬5 ∨ ¬6 ∨ ¬α ∨ ¬β)

S7 : {6}

S8 : {}

(6 ∨ ¬α ∨ ¬β)

(¬α ∨ ¬β)

(¬4 ∨ ¬α ∨ ¬β)

(¬1 ∨ ¬α ∨ ¬β)(1 ∨ ¬2 ∨ ¬3)

(3 ∨ ¬5 ∨ ¬6)

(2 ∨ ¬4 ∨ ¬5)

(5 ∨ ¬α ∨ ¬β)

(¬6 ∨ ¬α ∨ ¬β)

S2 : {2, 3}

S4 : {3, 4, 5}

S5 : {3, 5}

Figure 4: An I-RES-W− Derivation of {¬α,¬β} from Peb1(G)∗ (Left) and its Corresponding Pure White
Pebbling Strategy (Right)

More formally, translating a I-RES-W− proof into a pebbling strategy can be carried out according to
the following lemma:

Lemma 8.6. For any DAG G with target node t, if Peb1(G)∗ has an I-RES-W− derivation π with top
clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has a backbone B = B0, B1, ..., Bj (where B0 is
the top clause and Bj is the goal clause), then there exists a pure white pebbling strategy (using sliding)
S = S0, S1, S2..., Sl where l is ≤ 2j with S0 = {t} and Sl = ∅ such that it is possible to translate each
Bi into either one pebbling step Sq such that Sq =

⋃

¬v∈Bi
{v} − {¬α,¬β}, or to translate Bi into two

consecutive pebbling steps Sq1 , Sq2 such that |Sq1 | ≤ |Bi| − 2 and Sq2 =
⋃

¬v∈Bi
{v} − {¬α,¬β}.

Proof: Let G be any arbitrary DAG with target node t and let π be an I-RES-W− derivation with top
clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has a backbone of width k + 2. We will show
how to take this backbone and use it to create a pure white pebbling strategy which uses at most k
pebbles. It is useful to picture π with the top clause at the top and the goal clause at the bottom. We
shall move down the backbone of π and show how to build a corresponding pure white pebbling strategy.
Note that every clause in the backbone contains the dummy literals ¬α and ¬β and that this accounts
for the ‘+ 2’ in k + 2.

Basis: Consider the top clause of π, B0 = {¬t,¬α,¬β}; we create the equivalent first step of a pebbling
by placing a white pebble on node t to create pebbling step S0 = {t}. Therefore S0 =

⋃

¬v∈B0
{v} −

{¬α,¬β}, as required.

Induction Hypothesis: Suppose that we have been able to translate our backbone into a pebbling
strategy up to and including backbone clause Bi and that Bi was translated to Sp such that Sp =
⋃

¬v∈Bi
{v} − {¬α,¬β}.

Induction Step: We will now show how to translate backbone clause Bi+1 to create either one or two
corresponding pebbling steps. Backbone clause Bi+1 could have come from Bi in one of exactly three
ways:
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1. By resolving Bi with a source clause {u,¬α,¬β} (resolving on variable u).

2. By resolving Bi with a propagation clause {¬a,¬b, c} (resolving on variable c).

3. By weakening Bi to introduce a negative literal ¬u.

Case 1: By our induction hypothesis, we have translated backbone clause Bi into pebbling step Sp such
that Sp =

⋃

¬v∈Bi
{v} − {¬α,¬β}. We now resolve Bi with the input clause {u,¬α,¬β} on variable u

to create Bi+1 = Bi − {¬u}. Our corresponding pebbling move is to take Sp and create Sq by removing
the white pebble on node u. Therefore Sq =

⋃

¬v∈Bi
{v} − {¬α,¬β} − {¬u}, but Bi+1 = Bi − {¬u}, so

Sq =
⋃

¬v∈Bi+1
{v} − {¬α,¬β}, as required.

Case 2: By our induction hypothesis, we have translated backbone clause Bi into pebbling step Sp such
that Sp =

⋃

¬v∈Bi
{v}−{¬α,¬β}. We now resolve Bi with a propagation clause {¬a,¬b, c} on variable c

to create Bi+1 = Bi∪{¬a,¬b}−{¬c}. We make two corresponding pebbling moves. The first is to place
a white pebble on node a. Therefore Sp1 = Sp ∪ {a}, so the size of our pebbling state has increased by
1. Since Bi+1 = Bi ∪ {¬a,¬b}− {¬c}, and neither a nor b were pebbled in Sp (which has corresponding
backbone clause Sp =

⋃

¬v∈Bi
{v} − {¬α,¬β} of size |Bi| − 2), this means that the variables a and b do

not occur in Bi, so |Bi+1| = |Bi| + 2. Therefore |Sp1 | ≤ |Bi+1| − 2.
The second and final pebbling move is to slide the white pebble on c to b. Therefore Sp2 =

Sp ∪ {a, b}− {c}. But Sp =
⋃

¬v∈Bi
{v} − {¬α,¬β}, so Sp2 =

⋃

¬v∈Bi
{v} − {¬α,¬β} ∪ {a, b}− {c}, but

Bi+1 = Bi ∪ {¬a,¬b} − {¬c}, so Sp2 =
⋃

¬v∈Bi+1
{v} − {¬α,¬β}, as required.

Case 3: By our induction hypothesis, we have translated backbone clause Bi into pebbling step Sp

such that Sp =
⋃

¬v∈Bi
{v} − {¬α,¬β}. We now weaken Bi to introduce the negative literal ¬u, so

Bi+1 = Bi ∪ {¬u}. Therefore our corresponding pebbling move is to take Sp and create Sq by placing a
white pebble on u. Therefore Sq = Sp ∪{u} =

⋃

¬v∈Bi
{v}−{¬α,¬β}∪ {u} =

⋃

¬v∈Bi+1
{v}−{¬α,¬β},

as required.

Therefore, in all three cases, there exists a valid next step in the pebbling such that Sq =
⋃

¬v∈Bi+1
{v}−

{¬α,¬β}, so by induction we can translate an I-RES-W− backbone B into a pure white pebbling strategy
S such that S perfectly encodes B.

The following corollary combines the previous two Lemmas in order to prove an equivalence between
the black pebbling number of DAG G and the I-RES-W− total space of Peb1(G)∗.

Corollary 8.7. For any DAG G with target node t, G has a pure black k-pebbling strategy (using sliding)
S = S0, S1, S2..., Sj with j steps where t ∈ Sj and j is O(l) if and only if Peb1(G)∗ has an I-RES-W−

derivation π with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has total space k + 5 and
the backbone of π contains l clauses where l is O(j).

Proof: Let G be any arbitrary DAG with target node t.

⇒ Suppose that G has a pure black k-pebbling strategy (using sliding) S = S0, S1, S2..., Sj with j
steps where t ∈ Sj and j is O(q). By Lemma 8.5, it is possible to translate this pebbling strategy into
an I-RES-W− derivation π of Peb1(G)∗ with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} such that
the backbone of π contains l clauses, each of which has width at most k + 2. However, since Peb1(G)∗

is a 3-CNF formula, each of the input clauses used to resolve with clauses in the backbone has width
3. Since input refutations only require there to be two clauses in memory at any time, π therefore has
total space k + 5 and its backbone contains O(j) clauses.

⇐ Suppose that Peb1(G)∗ has an I-RES-W− derivation π of {¬α,¬β} with top clause {¬t,¬α,¬β}
in which π has total space k + 5 and π’s backbone contains l clauses where l is O(j). Since Peb1(G)∗ is
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a 3-CNF formula, π has a backbone with width k + 2. By Lemma 8.6, it is possible to translate this
backbone into a pure white pebbling strategy containing l steps which uses at most k pebbles. But by
Lemma 7.2, it is possible to convert this pure white pebbling strategy into a pure black pebbling strategy
with O(l) steps which uses exactly the same number of pebbles. Therefore G has a pure black k-pebbling
strategy (using sliding) with O(l) steps.

8.1.2 The Equivalence of Black Pebbling & Input Derivation Total Space

We now show that the weakenings in any I-RES-W− proof π can be removed to turn it into a weakening-
free proof π′ with the same backbone width.

Lemma 8.8. For any unsatisfiable set of Horn clauses F , any C ∈ F , and any goal clause D, there
exists an I-RES-W− proof π from F with top clause C and goal clause D such that the backbone width of
π is at most k and the size of π is s if and only if there exists an I-RES proof π′ from F with top clause
C and goal clause D

′

⊆ D such that the backbone width of π′ is at most k and the size of π′ is ≤ s.

Proof: Let F be any unsatisfiable set of Horn clauses, let C be any arbitrary initial clause in F , and let
D be any arbitrary goal clause.

⇒ Suppose that there exists an I-RES-W− proof π from F with top clause C and goal clause D
such that the backbone width of π ≤ k and the size of π is O(s). In order to show that there exists
an I-RES proof π′ from F with top clause C and goal clause D

′

⊆ D such that the backbone width
of π′ ≤ k and the size of π′ is O(s), we will show how to translate π into π′ without losing any of
these properties. We shall first translate π into π∗ by removing all of the weakenings in π as well as all
applications of the Resolution rule which no longer apply due to the fact that weakened variables (and
all other variables derived by Resolving on them) are now missing. It is important to note that π∗ is not
necessarily a legitimate I-RES proof, because our translation method may cause two successive clauses in
the backbone of π to be translated into successive duplicate clauses in the backbone of π∗.

We translate π into π∗ via induction on the depth (the top clause having the smallest depth) of π
according to the following inductive procedure / proof. We shall translate each clause Ci in the backbone
of π into a clause C∗

i in the backbone of π∗ such that ∀i Ci ⊆ C∗

i .

Basis: The top clause in π is C. Set the top clause in π∗ to be C as well. Therefore C0 ⊆ C∗

0 , as
required.

Induction Hypothesis: Suppose that Ci ⊆ C∗

i .

Induction Step: We now show how to translate π into π∗ such that Ci+1 ⊆ C∗

i+1:

Case 1: Suppose that Ci+1 came from Ci in π via weakening. In this case, simply omit this weakening
step in π∗. Since Ci ⊆ C∗

i by our induction hypothesis, and Ci+1 has grown, whereas C∗

i+1 has not, we
can conclude that Ci+1 ⊆ C∗

i+1.

Case 2a: Suppose that Ci+1 came from Ci in π by resolving Ci with the input clause I on variable x,
but this resolution step is not possible in π∗ because x /∈ C∗

i . In this case, simply omit this resolution
step in π∗. We know by the induction hypothesis that Ci ⊆ C∗

i , and since x /∈ C∗

i , we can conclude that
Ci+1 ⊆ C∗

i+1.

Case 2b: Suppose that Ci+1 came from Ci in π by resolving Ci with the input clause I on variable x,
and x ∈ C∗

i . In this case, simply perform the same resolution step in π∗; i.e. resolve C∗

i with I to get
C∗

i+1. By the induction hypothesis that Ci ⊆ C∗

i , so Ci+1 ⊆ C∗

i+1.
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Therefore, in all cases, Ci+1 ⊆ C∗

i+1, showing that by induction, D ⊆ D∗, where D is the goal clause
of π and D∗ is the goal clause of π∗. Finally, since π∗ might contain duplicate clauses along its backbone,
we simply remove all but one out of each group of duplicates to create π′, which is now a legitimate
I-RES proof. Therefore there exists an I-RES proof π′ from F with top clause C and goal clause D

′

⊆ D
such that the backbone width of π′ ≤ k and the size of π′ is ≤ s, as required.

⇐ Suppose there exists an I-RES proof π′ from F with top clause C and goal clause D
′

⊆ D such
that the backbone width of π′ ≤ k and the size of π′ is ≤ s. Since every I-RES proof is an I-RES-W−

proof, π′ is also an I-RES-W− proof with goal clause D
′

⊆ D. We convert π′ to π by weakening D
′

to
get D. Therefore there exists an I-RES-W− proof π from F with top clause C and goal clause D such
that the backbone width of π ≤ k and the size of π is O(s), as required.

The following corollary is identical to Corollary 8.7 except that instead of proving an equivalence
between the black pebbling number of a DAG G and the I-RES-W− total space of Peb1(G)∗, here we use
our weakening removal Lemma from above to show that this equivalence also holds for I-RES without
weakening:

Corollary 8.9. For any DAG G with target node t, G has a pure black k-pebbling strategy (using
sliding) S = S0, S1, S2..., Sj with j steps where t ∈ Sj and j is O(l) if and only if Peb1(G)∗ has an I-RES

derivation π with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which π ′ has total space k +5 and
size l where l is O(j).

Proof: Let G be any arbitrary DAG with target node t.

⇒ Suppose that G has a pure black k-pebbling strategy (using sliding) S = S0, S1, S2..., Sj with j
steps where t ∈ Sj and j is O(l). By Corollary 8.7, Peb1(G)∗ has an I-RES-W− derivation π with top
clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has total space k +5 and size l where l is O(j).
Because Peb1(G)∗ is a 3-CNF formula, π’s backbone has width ≤ k + 2. By Lemma 8.8 there exists
an I-RES proof π′ from F with top clause {¬t,¬α,¬β} and goal clause D

′

⊆ {¬α,¬β} such that the
backbone width of π′ ≤ k + 2 and the size of π′ is O(j). Since F does not include any positive instances
of the variables α or β, we can conclude that D

′

= {¬α,¬β}. Therefore, since Peb1(G)∗ is a 3-CNF
formula, π′ has total space k + 5 and size O(j), with the same top and goal clauses as π.

⇐ Suppose that Peb1(G)∗ has an I-RES derivation π′ with top clause {¬t,¬α,¬β} and goal clause
{¬α,¬β} in which π′ has total space k + 5 and size l where l is O(j). But every I-RES proof is an
I-RES-W− proof, so there exists an I-RES-W− derivation π with top clause {¬t,¬α,¬β} and goal clause
{¬α,¬β} in which π has total space k + 5 and size l, which is O(l). Therefore, by Corollary 8.7 G has a
pure black k-pebbling strategy.

8.2 The PSPACE-Completeness of Input Derivation Total Space

This section contains some immediate corollaries to the previous results. Here we prove the PSPACE-
Completeness of three slightly different versions of the I-RES derivation total space problem, which is
surprising, since I-RES seems like such a trivial Resolution refinement.

The I-RES derivation total space problem (ITS) is defined as follows: The input instance is (F , C,
D, k), where F is an unsatisfiable set of clauses, C is any clause in F , D is a goal clause, and k is an
integer. The problem is to determine if there exists an I-RES derivation from F with top clause C, goal
clause D, and total space at most k.

We shall prove the PSPACE-Completeness of three different versions of this problem:
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1. The set F is restricted to containing only Horn clauses, and instead of asking whether there exists
an I-RES derivation from F with top clause C, goal clause D, and total space at most k, we ask
whether there exists an I-RES-W− derivation with negative weakening from F with top clause C,
goal clause D, and total space at most k. This is the input derivation with negative weakening
total space problem, and we shall refer to the language associated with it as HWITS, where the
‘HW’ stands for ‘Horn with Negative Weakening’.

2. This version of the problem is almost identical to the previous one; the set F is still restricted to
containing only Horn clauses, but this time we are dealing with I-RES rather than I-RES-W−. We
shall refer to the language associated with this version of the problem as HITS.

3. Again, this version of the problem is almost identical to the previous one, only this time there is
no restriction on F . We shall refer to the language associated with this version of the problem as
ITS.

8.2.1 PSPACE-Completeness of the Input Total Space Problem with Weakening

The language HWITS is formally defined as follows:

Definition 8.10 (HWITS). HWITS = {(F, C, D, k) | F is a Horn formula for which there exists an
I-RES-W− refutation with top clause C, goal clause D, and total space at most k}

The PSPACE-Completeness of HWITS follows from the equivalence between the black pebbling
number of DAG G and the I-RES-W− total space of Peb1(G)∗ given in Corollary 8.7 from the previous
section. This language is formally defined as follows:

Theorem 8.11. HWITS is PSPACE-Complete under logspace reducibility.

Proof: We first show that HWITS ∈ PSPACE . We are given an input instance (F , C ∈ F , D, k) and
asked to determine if F has an I-RES-W− proof π with top clause C and goal clause D such that π’s
total space is bounded above by k. Since we are dealing with input refutations, we know that if such a
π exists, then each of its configurations contains no more than two clauses. Since each clause contains
at most n literals, it is clear that every configuration in π takes only polynomial space.

Our algorithm proceeds as follows: Start with a configuration C0 = {C}. Guess configuration C1,
check to ensure that it follows from C0 by a legal I-RES-W− step, and erase configuration C0. Next, guess
configuration C2, check to make sure that it follows from C1, and erase configuration C1. Continue this
way until the goal clause has been derived. Note that at any time, there are only two configurations in
memory. But since we are dealing with input refutations, we know that each configuration contains no
more than two clauses. Since each clause contains at most n literals, it is clear that our non-deterministic
algorithm requires polynomial space. This shows that HWITS ∈ NPSPACE . Finally, we appeal to
Savitch’s Theorem [Sav70] to show that HWITS ∈ PSPACE.

Next we show that HWITS is PSPACE-Hard by giving a reduction from the black pebbling number
problem with sliding (BLACK-PEB) from [GLT80] which was shown to be PSPACE-Complete. We
are given an instance (G, k) where t is the target node in G and we wish to convert it to an instance
(F , C ∈ F , D, k) such that (G, k) ∈ BLACK-PEB if and only if (F , C ∈ F , D, k) ∈ HWITS. Our
reduction proceeds as follows: Take (G, k) and output (Peb1(G)∗, {¬t,¬α,¬β}, {¬α,¬β}, k + 5), which
is clearly a logspace reduction. The proof of correctness for this reduction is given by Corollary 8.7.

8.2.2 The PSPACE-Completeness of the Horn Input Total Space Problem

The language HITS is formally defined as follows:

Definition 8.12 (HITS). HITS = {(F, C, D, k) | F is a Horn formula for which there exists an I-RES

refutation with top clause C, goal clause D, and total space at most k}

28



The PSPACE-Completeness of HITS follows immediately from the equivalence between the black
pebbling number of DAG G and the I-RES total space of Peb1(G)∗ given in Corollary 8.9 from the
previous section.

Corollary 8.13. HITS is PSPACE-Complete under logspace reducibility.

Proof: To show that HITS ∈ PSPACE , we simply use the same algorithm given in Theorem 8.11.
To show that HITS is PSPACE-Hard, we give a reduction from BLACK-PEB. As in Theorem

8.11, take (G, k) and output (Peb1(G)∗, {¬t,¬α,¬β}, {¬α,¬β}, k + 5), which is clearly a logspace
reduction, and its proof of correctness is given by Corollary 8.9.

8.2.3 The PSPACE-Completeness of the Input Total Space Problem

The language ITS is formally defined as follows:

Definition 8.14 (ITS). ITS = {(F, C, D, k) | F is a formula for which there exists an I-RES refutation
with top clause C, goal clause D, and total space at most k}

The PSPACE-Completeness of ITS follows trivially from the PSPACE-Completeness of ITS:

Corollary 8.15. ITS is PSPACE-Complete under logspace reducibility.

Proof: To show that ITS ∈ PSPACE, we simply use the same algorithm given in Theorem 8.11.
To show that ITS is PSPACE-Hard, we reduce from HITS. Take the input F for HITS and check

to see if it is a set of Horn clauses. If not, then output a pre-chosen formula which is not in ITS.
Otherwise, simply output F . Clearly this is a logspace reduction, and its correctness is immediate since
Horn formulas are just a special case of what an ITS solver can decide.

9 Related Complexity Results

The PSPACE-Completeness of I-RES total space has some interesting corollaries:

9.1 The PSPACE-Completeness of the Input Derivation Width Problem

One interesting point of note is that I-RES total space and width are virtually identical. More specifi-
cally, for every k-CNF formula, w(F `I-RES D) = TS(F `I-RES D) − k.

The Peb1(G)∗ formulas are 3-CNF formulas, so by Corollary 8.9, the width of any I-RES derivation
of goal clause {¬α,¬β} from Peb1(G)∗ with top clause {¬t,¬α,¬β} is k+2. This implies that the I-RES

derivation width problem is therefore also PSPACE-Complete:

Corollary 9.1. Given a formula F , a top clause C, goal clause D, and integer k, the problem of
determining if there exists an I-RES derivation of D from F with top clause C with width at most k is
PSPACE-Complete under logspace reducibility.

9.2 Optimal Size / Total Space Tradeoffs For Input Resolution

In this section we describe another corollary to the results in Section 8.1. This result also relies closely
on one of the most surprising facts concerning pebbling, namely that there exist infinite families of DAGs
which take an exponential amount of time to be pebbled with the minimum number of pebbles, but if
one is willing to use just one or two more pebbles, then they can be pebbled in linear time. The earliest
known example of this phenomenon can be found in [Lin78], where the author gives an infinite family of

monotone circuits such that pebbling any of them with the minimum number of pebbles requires 2Ω(n1/3)

time, where n is the number of nodes in the circuit. However, if given only two more pebbles, the amount
of time required drops exponentially to only O(n), giving a massive pebble / pebbling time tradeoff.
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This result was later improved by Gilbert, Lengauer, and Tarjan:

Lemma 9.2 ([GLT80]). There exists an infinite family of DAGs G, such that pebbling any G ∈ G with
the minimum number of pebbles takes Ω(2n) time, but if only one more pebble is used, then the amount
of time required to pebble G drops exponentially to only O(n), where n is the number of vertices in G.

Such an exponential separation at the cost of only one pebble is extraordinary, but since Corollary 8.9
gives an exact relationship between black pebbling and total space for I-RES derivations, it is possible
to translate this amazing result from the world of pebbling over to Resolution, thereby giving a massive
size / total space tradeoff for I-RES:

Corollary 9.3. There exists an infinite family of formulas F = {Peb1(G)∗|G ∈ G} such that for every
F ∈ F , every I-RES derivation π of F with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} where π
has the minimum required total space, has size Ω(2n), where n is the number of variables in F . However,
if only one more unit of total space is permitted, then the size of π drops to only O(n).

Proof: Let G be the family of DAGs from Lemma 9.2, and let F be any arbitrary formula from F .
Therefore F = Peb1(G)∗ for some G ∈ G. G can be pebbled with k but not with fewer than k pebbles.
By Corollary 8.9, F has an I-RES derivation π with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β}
such that π requires total space k + 5, but does not have an I-RES derivation with total space less than
k +5. We know that to pebble G with k pebbles requires Ω(2n) time, so by Corollary 8.9, π has a size of
at least Ω(2n). Similarly, we know that pebbling G with k + 1 pebbles requires O(n) time, so again by
Corollary 8.9, there exists a proof π′ with total space k + 5 + 1 = k + 6 and size O(n), as required.

Therefore, using just one extra unit of total space yields an exponential decrease in size, giving an
optimal size / total space tradeoff. As with our PSPACE-Completeness results from the previous section,
this is more evidence that the computational complexity of I-RES is underestimated.
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