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1 Introduction

Proof complexity and machine learning theory seem to overlap in a very interesting way. Namely,
automatizability in proof complexity appears to be very closely related to learnability in machine learning
theory [ABF+04].

Intuitively, a proof in proof system P can be viewed as a circuit from the corresponding underlying
circuit class C(P ). Therefore, if an efficient proper PAC learning algorithm exists for C(P ) then perhaps
this algorithm can used to automatize P , since any algorithm which properly learns C(S) efficiently is
capable of efficiently finding a specific poly-sized circuit / proof.

If this connection can be made formal, it has obvious negative implications; namely if a proof system
S is not automatizable, then C(S) can not be properly PAC learned efficiently. A result such as the main
theorem from [AR02], which shows that under the assumption that W [P ] is not tractable Resolution
is not automatizable, would strongly suggest that there is no efficient PAC learning algorithm for DNF
formulas, Resolution’s apparent underlying circuit class.

However, the negative implications would work in the other direction as well. Consistency model
algorithms are very simple, and can nearly always lead to PAC learning algorithms given a large enough
sample set. Therefore, if a circuit class C(P ) is not PAC learnable, then that may rule out a large class
of algorithms as candidates for automatizing P . In fact, it may be the case that an inability to PAC learn
C(P ) efficiently even implies the non-automatizability of P . Efficient PAC learning and automatizability
may be totally equivalent.

The purpose of this paper is to provide a survey of the literature pertaining to learnability and autom-
atizability with an emphasis on the learnability of intersections of halfspaces and the automatizability of
the Cutting Planes proof system.

This survey is laid out as follows: In Section 2 we discuss various proof systems whose underlying
circuit classes are of interest to machine learning. In Section 3 we discuss what is known about the
automatizability of these proof systems. Next, in Section 4 we discuss the connections which have been
observed between proof systems and their corresponding circuit classes. In Section 5, we shall discuss
what is known about the learnability of these circuit classes. Finally, in Section 6 we relate learnability
to the automatizability of proof systems and suggest avenues of future research.

2 Proof Systems

We shall use the standard Cook-Reckhow definition for proof systems:

Definition 1. [CR74, Rec76, CR79] A proof system for a language L ⊆ Σ∗ is a poly-time computable
onto function f : Σ∗

p → L where Σp is some alphabet.

Intuitively, Σp is an alphabet of ‘proof symbols’, and f maps proofs to the elements in L which they
prove. The words ‘poly-time computable’ enforce our intuitive notion that when given a proof, we should
be able to tell (compute) what exactly it is that the proof is trying to prove within a feasible amount of
time.

Proof systems must be sound; for example, a proof system for tautologies should not be able to prove
a non-tautology. Similarly, proof systems must be complete; for example, a proof system for unsatisfi-
ability must be capable of proving the unsatisfiability of every possible unsatisfiable formula. Another
characteristic of the Cook-Reckhow definition is that it implicitly demands soundness and completeness.
Soundness is guaranteed because in practice f is also total, since syntactically incorrect proofs are usually
all mapped to a dummy element in L. In other words, no proof is mapped outside of L. The fact that
f is onto guarantees completeness.
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A central concept in the area of proof complexity is that of p-simulation, since it allows us to objectively
compare the strength two proof systems:

Definition 2. Let f1 : Σ∗
1 → L and f2 : Σ∗

2 → L be proof systems for L. If for all x1 ∈ Σ∗
1, there exists

an x2 ∈ Σ∗
2 such that f1(x1) = f2(x2) where |x2| ≤ p(|x1|) for some polynomial p, and if there exists a

polytime computable function t : Σ∗
1 → Σ∗

2 such that for all x ∈ Σ∗
1, f1(x) = f2(t(x)), then we say that

f2 p-simulates f1.
Proof systems that p-simulate each other are said to be p-equivalent.

We will focus on the Resolution, Cutting Planes, Bounded-depth Frege, and Polynomial Calculus proof
systems, and use the concept of p-simulation to tie them together.

2.1 Resolution

Resolution in all of its many forms is perhaps the best-studied propositional proof system, and is used
as a refutation system for unsatisfiable CNF formulas. The resolution rule is quite simple: given two
clauses (A ∨ x) and (B ∨ x), we resolve on the variable x to derive the new clause (A ∨B). A resolution
refutation of a contradictory set of clauses consists of the application of a sequence of resolution steps
until the empty clause Ø is derived. This proof can be written as a sequence of clauses in which each
is either an initial clause or follows by the resolution rule from two previous ones. It is also possible to
represent a resolution proof as a directed graph instead of as a sequence of clauses. The vertices of these
graphs are labeled with clauses. Initial clauses have in-degree 0, whereas all other clauses have in-degree
2, with the edges indicating which clauses they were derived from.

Tree Resolution

If the underlying structure of a resolution proof forms a tree, then we say that the proof is ‘tree-
like’. Intuitively, this implies that each clause may only be resolved on once, so if a clause needs to be
used again, it must be re-derived. Tree Resolution (TRES) is Resolution in its weakest form, and its
exponential lower bounds are easily understood.

The algorithmic form of TRES is called DLL and is a centrally important algorithm in the field of
automated theorem proving.

General Resolution

General Resolution (RES) is resolution in which the underlying structure of the proof forms a directed
acyclic graph (DAG). Exponential lower bounds for RES were proved in [Hak85] by Haken, who used
the pigeonhole principle (PHP). The PHP is a combinatorial principle which states that it is impossible
to put n pigeons into n − 1 holes such that no two pigeons share the same hole. The formula encoding
the negated PHP is called PHP n

n−1, and since the PHP is clearly true, the formula PHP n
n−1 must be

unsatisfiable. Haken showed that any RES proof of PHP n
n−1 requires exponentially many clauses.

2.2 Cutting Planes

Motivated by integer programming, Cutting Planes (CP) is a proof system that is used to refute a set
of linear inequalities. A linear inequality is of the form Σiaixi ≥ k, where ai and k are integers, and the
underlying variables are xi.

Formally, CP is defined as follows:

Axioms

1. xi ≥ 0

2. 1 - xi ≥ 0
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Rules

1. Addition of Inequalities

n
∑

i=1

aixi ≥ k,

n
∑

i=1

bixi ≥ k
′ ⇒

n
∑

i=1

(ai + bi)xi ≥ k + k
′

2. Multiplication by a Constant

n
∑

i=1

aixi ≥ k ⇒
n

∑

i=1

c · aixi ≥ c · k

3. Division with Ceiling

n
∑

i=1

t · aixi ≥ k ⇒
n

∑

i=1

aixi ≥
⌈k

t

⌉

For Example:

2x1 + 2x2 ≥ 3 ⇒ x1 + x2 ≥ 2

A CP refutation of a set of linear inequalities L = {C1, C2,. . . , Cq} is a sequence of inequalities, S1,
S2,. . . , Sm where each Si is either from L or is an axiom or follows from two previous inequalities by a
valid rule, and the final inequality Sm = (0 ≥ 1). A CP proof may equivalently be viewed as a DAG. A
more restricted form of CP is tree-like CP (TCP) in which the underlying DAG of the proof is required
to be a tree. The leaves of the tree each correspond to one of the initial linear inequalities, the root
corresponds to the final inequality Sm, and the edges correspond to inference rules. An example of a
tree-like CP proof is shown below in Figure 1.

0 ≥ 1

a + b + c ≥ 1 a − c ≥ 0 d − a ≥ 0 b − d ≥ 0 −b ≥ 0

2a + b ≥ 1b ≥ 0

2a + 2b ≥ 1

a + b ≥ 1

b + d ≥ 1

2b ≥ 1

b ≥ 1

Figure 1: An Example of a Cutting Planes Refutation

In [BPR97], the authors describe a restricted form of TCP which we shall call TCP∗. It is identical
to TCP except that coefficients must be bounded by a polynomial.
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2.3 Bounded-Depth Frege Systems

Frege systems (Frege), also called Hilbert-style systems, are a group of robust proof systems that are of
particular interest in the area of proof complexity. Any sound and complete proof system that includes
a finite number of axiom schemes instead of axioms is considered to be a Frege system. Axiom schemes
are axiom templates that allow for a simultaneous and uniform substitution of any arbitrary formulas
for sentence letters. For example, if a Frege system has an axiom scheme of the form p → p, then a
substitution of the formula (q ∨ r) for p yields the formula (q ∨ r) → (q ∨ r), which can be introduced at
any point in a proof. In effect, Frege systems have an infinite number of axioms. Tree-like and DAG-like
Frege systems are p-equivalent [CK01, p.372].

When we place a restriction on Frege systems requiring that all formulas can have a depth of at most
a constant d, we create a new class of proof systems called Bounded-Depth Frege systems (AC0−Frege).

Definition 3. The depth of a formula F is the minimum height among all unbounded fan-in circuits
equivalent to F .

For example, all CNF and all DNF formulas have depth 2.

2.4 Polynomial Calculus & Nullstellensatz

Nullstellensatz (NS) [CK01, p.308] and Polynomial Calculus (PC) [CK01, p.316] are algebraic refutation
systems. PC is strictly stronger than NS [CK01, p.316], so we shall focus on it. PC is a refutation system
for unsatisfiable sets of polynomial equations.

Formally, PC is defined in the following way [CK01, p.317]: Fix a field F and let P ⊆ F [x1, ..., xn] be
a finite set of multivariate polynomials over F . The axioms and rules of PC are as follows:

Axiom

1. x2
i − xi for 1 ≤ i ≤ n

Rules

1. Multiplication by a Variable

From polynomial p, infer xi · p where 1 ≤ i ≤ n.

2. Linear Combination

From polynomials p and p′, infer a · p + b · p′ where a, b ∈ F .

A PC refutation of a polynomial P is a derivation of 1 from P .

2.5 Relationships Between Proof Systems

Some relationships between proof systems are immediately obvious. For example, AC0−Frege systems
p-simulate RES, which in turn p-simulates TRES. Similarly, CP obviously p-simulates TCP, which p-
simulates TCP∗. It is also not hard to see that CP p-simulates RES (and that TCP p-simulates TRES)
[CK01, p.345]. Furthermore, CP has poly-sized refutations of PHP formulas, which shows that even
AC0−Frege cannot p-simulate it [CK01, p348].

Perhaps not as obvious is that TCP does not p-simulate resolution [CK01, p.365]. Furthermore,
AC0−Frege and TCP∗ do not p-simulate each other [BPR97]. As mentioned before, PC p-simulates NS,
but the algebraic proof systems seem to be incomparable with the others, since AC0−Frege systems
cannot p-simulate NS, and NS cannot even p-simulate TRES [BP01].

This hierarchy of p-simulation is shown below in Figure 2.
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Figure 2: The Relationship Between The Various Proof Systems Being Discussed

It is not hard to see that since AC0−Frege systems cannot p-simulate TCP∗ or NS, none of the proof
systems in the middle column can p-simulate any of the proof systems in the left or right columns.

3 Automatizability

First formalized in [BPR97], automatizability is an important concept in proof complexity. Formally,

Definition 4. [BPR97] A propositional proof system S is automatizable if there exists a deterministic
algorithm A such that for every CNF formula F , A returns an S-proof of F in time polynomial in the
size of the smallest S-proof of F . If A is as above except that it returns a proof of F that is not an
S-proof, then S is said to be weakly automatizable.

Intuitively, automatizability tells us if a proof system is useful in any practical sense. If a proof system
is not automatizable, then it is impossible to implement a proof search strategy that is guaranteed to find
proofs that are in any way comparable in length to the shortest possible proof. In other words, even if we
have a powerful proof system that has very short proofs for certain formulas, if it is not automatizable,
then its strengths are inaccessible from the point of view of automated theorem proving.

Note that if a proof system A p-simulates proof system B but B does not p-simulate A, then that does
not let us conclude anything about the automatizability of A. Only when A and B are p-equivalent does
that tell us anything about automatizability; ie. if A and B are p-equivalent then A is automatizable if
and only of B is automatizable.

However, the situation is different with weak automatizability; if proof system A p-simulates proof
system B, B does not p-simulate A, and A is automatizable, then B is weakly automatizable by the
following algorithm: take any input x for B and translate it into f(x), an input for A. Then run A’s
automatization algorithm. The resulting proof is guaranteed to be only polynomially larger than the
smallest B proof of x since it is only polynomially larger than the smallest A proof, and we said that A
p-simulates B.
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3.1 Positive Results

The only proof systems known to be automatizable are NS and PC [BPR97], but to say that they
are automatizable is not quite correct; there is a caveat. For example, PC is automatizable using the
Groebner basis algorithm [CEI96], which is an O(n3d) algorithm, where d is the largest degree of all
equations in the input set. Since d could be as large as n, PC is only automatizable for certain inputs.

3.2 Negative Results

As for negative results, under various cryptographic assumptions, a variety of proof systems are known
to be non-automatizable:

Theorem 5. [AR02] If W [P ] is not tractable, then neither TRES nor RES are automatizable.

Theorem 6. [CK01, p.393] If ∀ε > 0 the Diffie-Hellman cryptographic function cannot be computed by
circuits of size 2nε

, then AC0−Frege systems are not automatizable.

Theorem 7. [BPR00] If factoring Blum integers is hard, then Frege systems are not automatizable.

Theorem 8. [CK01, p.393] If RSA is secure, then ExtendedFrege systems are not automatizable.

Each of these is considered to be good evidence of true non-automatizability since these cryptographic
assumptions are widely believed to be true.

It is worth noting that most of these results were proved by first showing that under their respective
cryptographic assumptions, the various proof systems have no feasible interpolation. Since automati-
zability implies feasible interpolation [CK01, p.298], the non-automatizability results followed. This is
important because CP in fact does have feasible interpolation [CK01, p.362], which means that we cannot
rule out its automatizability. In addition, a non-automatizability result for CP, if possible, would have
to be proved using a different strategy.

3.3 Positive Results For f(s, n)-Automatizability

The best algorithms which automatize TRES and RES do not run in polynomial time [BKPS02].
Therefore, these algorithms cannot technically be said to automatize TRES or RES. Given the negative
results above (notably [AR02]) it seems unlikely that polytime automatizability algorithms will be found.
It is therefore reasonable to have a more general definition of automatizability to distinguish between
the (inevitably weak) powers of different proof search algorithms.

Definition 9. A propositional proof system S is f(n, s)-automatizable if there exists a deterministic
algorithm A such that for every unsatisfiable CNF formula F , A returns an S-proof of F in time bounded
by the function f(n, s) where n is the size of F and s is the length of the shortest S-proof of F . If A
is as above except that it returns a proof of F that is not an S-proof, then S is said to be weakly

f(n, s)-automatizable.

The traditional notion of automatizability therefore corresponds to (s · n)k-automatizability for k a
constant. We will briefly discuss the algorithms presented in [BKPS02] which O(nlog s)-automatize TRES

and O(n
√

n log s)-automatize RES. These algorithms feature prominently in the comparison between
learnability and automatizability [ABF+04]. The high-level ideas of these algorithms are given below.

3.3.1 TRES Algorithm

Theorem 10. [BKPS02] TRES is O(nlog s)-automatizable.
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Given an unsatisfiable CNF formula F , the TRES algorithm works recursively to produce a refutation
of F that is not too large compared to the smallest TRES refutation of F . The TRES algorithm begins
at level one of its recursion by building 2n decision trees in parallel, one for each literal of F . We know
that if a decision tree of size s exists for F , then for some literal l1 there must be a decision tree of size
less than or equal to s/2 for F �l1 . Since we do not know which literal l1 this is true for, we try them
all in parallel. Then at the next level of recursion we know that if there is some decision tree for F �l1

of size s/2, then there must be some literal l2 such that there is decision tree of size less than or equal
to s/4 for F �l1,l2 . So we continue in parallel and each branch from level one is extended in all 2n − 1
ways etc. Since we are trying all possible branches in parallel we are guaranteed to have some branch
which includes l1 and l2. The recursion bottoms out at depth i when a branch finally falsifies F (or
potentially satisfies F if we do not know that F is unsatisfiable). In this case, the current leafs n − i
competing branches are terminated and its sibling tree is computed. Computing the sibling tree has the
weakest guarantees. Just because we know that we are guaranteed to find a tree of size at most s/2i,
it does not guarantee that its sibling will also have small size. We may actually find a left subtree that
is smaller than the optimal’s left subtree, but when we branch in the other direction on the literal that
led the small left subtree, we may be stuck computing a right subtree that is quite a bit larger than the
optimal’s right subtree. All that we know down this second branch is that we must recompute the entire
problem, with one variable fewer. An analysis along these lines yields Theorem 10, above.

3.3.2 RES Algorithm

Theorem 11. [BKPS02] RES is O(n
√

n log s)-automatizable.

Given an unsatisfiable CNF formula F and some width w (for which a RES proof for any formula of
that width can be computed in an acceptable amount of time), the RES algorithm begins at level one of
its recursion by building 2n decision trees in parallel, just like the algorithm for decision trees. Unlike
the decision tree algorithm, the recursion bottoms out when the residual formula at a node in one of the
trees at depth i has width less than or equal to w. When this occurs, the algorithm continues just like
the decision tree algorithm except that continues to terminate branches using the width condition. In
the end, a RES proof of F is generated that looks tree-like near to where the empty clause is derived and
looks like a series of trivial width w brute-force RES proofs at the tree-like proof’s leaves. There must
always be some literal that is in the average number of clauses of width greater than w and since we
branch in all possible ways until some leaf is reached, in the worst case we will at least branch on such
a literal at each level of the tree. Like in the decision tree algorithm, the problematic side is calculating
the sibling of the shortest tree at each level. The problem is that just because one literal occurs often
enough in F �α, it does not mean that its negation does. So instead of removing a large number of wide
clauses, we simply reduce their widths by one. An analysis along these lines yields Theorem 11, above.

4 Circuit Classes

Although the literature is replete with references to the correspondence of proof systems and circuit
classes, this notion is not particularly clear. For example TRES is associated with circuits that form
decision trees, since every TRES proof is a decision tree. On the other hand, AC0−Frege is associated
with the circuit class AC0 not because the underlying structure of every AC0−Frege proof forms a circuit
from this class (in fact they form DAGs which can have non-constant depth), but rather because every
line of an AC0−Frege proof is a formula that has an AC0 circuit representing it.

In other words, the literature contains different analogies: one is that the structure of the proofs
indicate what circuit class the relevant proof system is associated with, and the other is that the lines
of the proof indicate what circuit class it is associated with. Neither one of these analogies is entirely
acceptable, since each one works with some proof systems, but not with others.
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Proof System Associated Circuit Class Analogy Being Used

TreeResolution Decision Trees Structural

RegularResolution Read-once Branching Programs Structural

Resolution CNFs Search

CuttingP lanes Intersections of Halfspaces Search

AC0Frege AC0 Line

Frege NC1 Line

Table 1: Correspondence between proof systems and circuit classes.

In fact, the analogies break down even further; for example, RES is associated with the class of circuits
for CNF formulas, but RES proofs are not structured like CNF formulas, so the first analogy does not
work. Similarly, every line of a RES proof is a clause, not a CNF formula, so the second analogy also
does not work. CP is similar, since it is associated with circuits that form intersections of halfspaces,
but neither are its proofs structured like intersections of halfspaces, nor is every line of a CP proof a set
of linear inequalities; rather, each line is a single linear inequality. In effect, we need a third analogy:
these proof systems are associated with the circuit classes which represent the set of inputs to the proof
or alternatively to the output of the corresponding search problem.

We shall call the first analogy the ‘structural analogy’, the second analogy the ‘line analogy’, and the
third one the ‘search analogy’. Table 1 lists the proof systems that are being discussed along with their
associated complexity classes, and which analogy is typically used to connect the two.

5 Learning

5.1 PAC Learning

In the PAC learning model, the learner’s goal is to infer an unknown target concept c from some
known concept class C = ∪∞

n=1Cn, where each set Cn is a subset of all boolean functions over {0, 1}n.
The learner is provided with two constants 0 ≤ δ, ε ≤ 1 and has access to a set S of examples drawn
randomly according to a distribution D, which are each labeled according to c. It is the learner’s goal to
output with probability at least 1 − δ a hypothesis h from a class of functions H which has probability
at most ε of disagreeing with c on an example x randomly drawn from D, that is Pr(h(x) 6= c(x)) < ε.
δ is typically referred to as the confidence parameter and ε is typically refered to as the error parameter.
Intuitively, we can have confidence δ that the learner will make less than an ε-proportion of errors once
trained. The formal definition of PAC learning follows:

Definition 12. [KV94, p.10] We say that a concept class C is PAC-learnable if there exists an algorithm
L with the following property: for every concept c ∈ C, for every distribution D, and for all 0 < ε < 1/2
and 0 < δ < 1/2, if L is given access to an oracle EX(c,D) and inputs ε and δ, then with probability at
least 1 − δ, L outputs a hypothesis concept h ∈ H such that the probability that c(x) 6= h(x) ≤ ε. If the
above conditions hold and H = C then we say that C is proper PAC-learnable.

We consider a learning algorithm efficient if the number of examples drawn and the overall runtime is
polynomial in 1/δ, 1/ε, and n. Analogous to the concept of f(s, n)-automatizability we can define the
notions of f(n, 1/δ, 1/ε)-proper PAC-learnable and f(n, 1/δ, 1/ε)-PAC-learnable which take into
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account a (not necessarily polynomial) time bound of f(n, 1/δ, 1/ε) on the complexity of the learning
algorithm L.

5.2 Membership Queries

The PAC model can be augmented with membership queries. A membership query posed by a learning
algorithm is a point x ∈ {0, 1}n. The query is posed to an oracle for c which responds either positively
or negatively depending on whether c(x) = 1 or c(x) = 0. [KP98]

5.3 Preliminary Definitions For Hardness Results

Some of the hardness results presented below require the following definitions.

Definition 13. A Probabilistic Turing Machine (PTM) is a non-deterministic Turing machine
which randomly chooses between the available transitions at each point during its computation with equal
probability.

Definition 14. RP = { L | L is a language such that there exists a PTM M which accepts any w ∈ L
with probability ≥ 1

2 and rejects any w 6∈ L with probability 1 }

5.4 Individual Halfspaces

Definition 15. A Linear Threshold Function (LTF) is a function of the form h(x1 · · ·xn) =
sign(

∑n
i=1 αixi − θ). Each LTF induces a Halfspace and the terms can be used interchangeably.

Learning a single halfspace was one of the earliest problems in machine learning theory and has been
widely addressed. They are of interest for numerous reasons [KP98]. Learning individual halfspaces are
polytime learnable in most models of learnability including the PAC model. Conceptually the easiest
PAC algorithm for learning a halfspace h from a set of labeled examples S involves converting the labeled
examples in linear inequalities and then solving for the unknown coefficients of h. Many of the following
algorithms for learning more complicated concept classes use learning individual halfspaces as a basic
tool.

5.5 Polynomial Threshold Functions

Definition 16. A Polynomial Threshold Function (PTF) is a function f : {0, 1}n −→ {+1,−1}
such that f(x1 · · ·xn) = sign(p(x1 · · ·xn)) where p(x1 · · ·xn) is a real-valued multivariate polynomial.
The degree of a polynomial threshold function is the degree of the polynomial p.

In [KS01], Klivans and Servedio show how learning any polynomial threshold function of degree d
over n variables can be reduced to learning a single halfspace over nd variables. Their observation is
quite simple. Let p be a polynomial over n variables and let t be any term of p with degree 1 < d′ ≤ d.
Clearly any xi can only take values in {0, 1}, so xd′

i = xi. This means that the degrees of the individual
variables in t are irrelevant to its value. So p is really equivalent to a multivariate monomial where each
term can be the product of at most d variables. This means that any polynomial threshold function of
degree d over n variables must choose its terms (not including the coefficients) from a pool of at most
∑d

i=1

(

n
i

)

≤ nd choices. We can therefore replace each term with one of nd correspondingly set variables
to form a linear threshold function that is equivalent to p. We can then use the polytime algorithm for
learning individual halfspaces described in Section 5.4 to learn the coefficients of p in time nO(d). Since
we will output a hypothesis which is a degree d polynomial, this algorithm properly PAC learns.
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5.6 Intersections of Halfspaces

Definition 17. Let H = {h1(x), h2(x), . . . , hs(x)} be a set of linear threshold functions where x ∈ {0, 1}n.
The intersection f of the halfspaces in H is the function f(x) = h1(x) ∧ h2(x) ∧ · · · ∧ hs(x).

5.6.1 Hardness Results

A number of hardness results are known with respect to learning intersections of halfspaces. The
problem is known to be NP-complete, even when restricted to proper learning the intersection of two
halfspaces that are consistent a sample of points in {0, 1}n [BR89]. More recently the following result
was proved.

Theorem 18. [ABF+04] If NP 6= RP then there is no algorithm A such that for every c in the concept
class of intersections of two halfspaces and for every distribution D, A runs in polytime in n, |c|, and 1/ε
and with probability 2/3 outputs a hypothesis h from the class of intersections of any constant number of
halfspaces such that errorD(h, c) ≤ ε.

This expands on the previous result because it shows that it is unlikely that pairs of halfspaces are PAC
learnable, even when non-proper learning is permitted.

Numerous negative results are known with respect to learning intersections of a larger number of
halfspaces, even if the learning algorithm does not have to be proper. One notable hardness result comes
from Long and Warmuth in [LW94], who show that learning convex polyhedra in the continuous domain
is as hard as learning poly-sized circuits. Blum and Rivest also show that if a polytime algorithm exists
to learn nε halfspaces with hypotheses taken from the class of all sets of n1−ε halfspaces, then NP = RP.

5.6.2 Upper Bounds

Proper PAC Learning Algorithm with Membership Queries [KP98]

In [KP98], Kwek and Pitt introduce an algorithm, which they name POLLY , for learning s intersec-
tions of halfspaces in the PAC model augmented with membership queries. They prove the following
guarantee on the performance of POLLY .

Theorem 19. Let the target concept, c, be an intersection of s halfspaces in [0, 1]n, defining a polytope
P with volume V . Let ε, δ > 0 and let S be an initially obtained random sample of

m = max

{

4

ε
log

4

δ
,

16(n + 1)s log(3s)

ε
log

26

δ

}

examples. Let LP (m, n) be the time needed to solve a linear programming problem with m constraints
and n unknowns. The in time (brace yourself) Õ(( 1

V ln 1
δ + n log 1

d−
)(m log ms

V + mn log n
d−

+ m
V ln 1

δ +
sLP (m, n))) (where d− is the minimum distance between and of the halfspaces in c and any negative
example in S) and with sample complexity m (excluding membership queries), the probability that POLLY
fails to output a collection of s halfspaces with error at most ε is at most δ.

POLLY is defined as a consistency model algorithm augmented with membership queries. Since
Occam’s Razor holds even when membership queries are admitted, POLLY is easily shown to be PAC
compliant when run on a large enough sample size. POLLY is learning in the consistency model and
so it therefore must separate all of the m positive examples from the negative examples using exactly
s halfspaces, where m >> s. POLLY does so by reducing the problem of finding an intersection of s
halfspaces to s instances of finding individual halfspaces, which is easily solved using linear programming
(see Section 5.4).

Each positive example must be included by all s halfspaces in c, whereas each negative example
must have some halfspace in c which excludes it. Let N be the set of negative examples. If POLLY
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could output a hypothesis consisting of as many as |N | halfspaces, POLLY could just solve |N | linear
programming instances, each finding a halfspace that separates a single negative example from all of the
positive examples. But since |N | could be as large as m and m >> s, POLLY must match numerous
negative examples to the halfspaces which it finds using linear programming.

Let ai → p denote a line segment from negative example ai to a positive example p. Ideally, POLLY
tries to match numerous negative examples to a single halfspace f by seeing if the line segment ai → p
intersects the portion of f which forms one of the faces of the polytope P . If the negative examples can
all be matched to unique faces (and therefore halfspaces) in this way, then s individual linear programs
can be solved, one for each face of P which results in a half space that separates all of the positive
examples from the negative examples associated with the face. If two negative examples, ai and aj are
very close to P , then it can be determined that they are not on the same side of a face by checking to
see if the midpoint between ai and aj is in P . POLLY therefore does a binary search using membership

queries at points a
′

i and a
′

j along ai → p and aj → p, and whenever both a
′

i and a
′

j are outside of P , it
checks the midpoint using another membership query. The full details are available in [KP98].

PAC Learning Algorithm for the Uniform Distribution [KOS04]

In [KOS04], Klivans, O’Donnell, and Servedio introduce two algorithms for learning a wide range of
functions of halfspaces. They prove the following result.

Theorem 20. [KOS04] Let g : {+1,−1}k −→ {+1,−1} be any Boolean function on k bits and let
h1, . . . , hk be arbitrary halfspaces on {+1,−1}n. The class of functions {g(h1(x), . . . , hk(x))} can be

learned under the uniform distribution to accuracy ε in time nO(k2/ε2), assuming ε < 1/k2.

If g is restricted to an intersection of read-once halfspaces, (i.e. each variable xi appears as input to at
most one halfspace) then the bound is improved to the following:

Theorem 21. [KOS04] Let h1, . . . , hk be arbitrary halfspaces on {+1,−1}n which depend on disjoint
sets of variables. The class of functions {h1(x) ∧ · · · ∧ hk(x)} of read-once intersections of k halfspaces

can be learned under the uniform distribution to accuracy ε in time nÕ((log k/ε)2), assuming ε < 1/ log k.

Klivans, O’Donnell, and Servedio really prove that these classes of functions have low Fourier con-
centration bounds which allows them to apply the sampling algorithm of Linial, Mansour, and Nisan
[LMN93] which learns a class C over the uniform distribution in time nO(deg(n,ε)) where deg(n, ε) is
the Fourier concentration bound of C. That is, for every c ∈ Cn, all but an ε fraction of the Fourier
Spectrum of c is concentrated on degree up to deg(n, ε). The algorithm works by deriving good approx-
imations for the Fourier coefficients of c (good because the Fourier concentration bound of c low) and
then uses the approximate coefficients to predict the value of c at future points. In [LMN93] there is
also an analysis that shows that any function expressible by AC0 circuits on n inputs has a concentration
bound of deg(n, ε) = O(polylog(n/ε)), which means that they are learnable in time npolylog(n/ε). Klivans,
O’Donnell, and Servedio improve these bounds for Boolean functions involving halfspaces. This approach
does not proper PAC learn and works only for the uniform distribution.

PAC Learning Algorithm for an Arbitrary Distribution [KOS04]

Klivans, O’Donnell, and Servedio’s second algorithm learns intersections of k halfspaces under an
arbitrary Distribution in the PAC model. Again, a new algorithm is not given, rather they show that
various functions of halfspaces, including the intersection, can be represented by polynomial threshold
functions of low degree. This allows the learning of these functions of halfspaces using the algorithm
described in [KS01] which learns the class of degree d polynomial threshold functions in time nO(d) (see
Section 5.5). The following results are given.
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Theorem 22. [KOS04] Let h1, . . . , hk be arbitrary weight w halfspaces on {+1,−1}n. The class of func-
tions {h1(x)∧ · · · ∧hk(x)} of intersections of k weight w halfspaces can be learned under any distribution
to accuracy ε in time nk log k log w/ε.

When k is large the previous bound is superpolynomial. Klivans, O’Donnell, and Servedio therefore show
a trade-off in the analysis between the number of halfspaces k and the weight of the halfspaces w, which
allows them to give the following bound which is better when k is large.

Theorem 23. [KOS04] Let h1, . . . , hk be arbitrary weight w halfspaces on {+1,−1}n. The class of func-
tions {h1(x)∧ · · · ∧hk(x)} of intersections of k weight w halfspaces can be learned under any distribution
to accuracy ε in time n

√
w log k/ε.

PAC Learning Algorithm Using A Margin [KS04]

In [KS04], Klivans and Servedio give an algorithm for intersections of halfspaces under the assumption
that no example lies too close to any separating hyperplane. Given m examples which are known to
each have minimum distance ρ to any halfspace of the target concept c, their algorithm proceeds as

follows. It first projects the m points in Rn into RO(log m/ε2), which keeps the distances between any
two of the m points within a 1± ε factor. This allows them to learn in a low dimension space compared
to Rn and still be guaranteed a margin of ρ/2. From this point forward they concentrate on learning
a low degree polynomial threshold function for c as in [KOS04]. They then use the Kernel Perceptron
Algorithm to learn c. This is done similarly to Section 5.5, by considering the polynomial threshold
function representing c as a linear threshold function over nd variables. Knowing the margin of c allows
one to bound the number of mistakes which the Kernel Perceptron Algorithm will make when learning
the linear threshold function. The following theorems are proved using different constructions for the
polynomial threshold functions representing c:

Theorem 24. [KOS04] There is an algorithm which PAC learns any ρ-margin intersection of t halfspaces

over Rn in at most n
ε

(

t
ρ log 1

δε

)O(t log t log(1/ρ))

time steps.

Theorem 25. [KOS04] There is an algorithm which PAC learns any ρ-margin intersection of t halfspaces

over Rn in at most n
ε

(

t
ρ log 1

δε

)O(t2 log(1/ρ))

time steps.

When t is constant, the previous two algorithms have quasipolynomial runtime in ρ.

Theorem 26. [KOS04] There is an algorithm which PAC learns any ρ-margin intersection of t halfspaces

over Rn in at most n
ε

(

log t
ρ log 1

δε

)O(
√

1/ρ log t)

time steps.

When ρ is constant, the preceding algorithm has quasipolynomial runtime in t.

5.7 DNFs and Decision Trees

In [ABF+04], the authors observed that the f(n, s)-automatizability algorithms (and accompanying
upper bounds) for RES and TRES discussed in Sections 3.3.2 & 3.3.1 are also PAC learning algorithms for
learning, respectively, the classes of DNF formulas and decision trees. When considered as an algorithm
which learns decision trees from a set of labeled examples the algorithm discussed in Section 3.3.1 yields
the following guarantees:

Theorem 27. [BKPS02] Decision trees are O(nlog s)-proper PAC-learnable.

Similarly, the algorithm discussed in Section 3.3.2 for automatizing RES can be viewed as a learning
algorithm for DNF formulas.

Theorem 28. [BKPS02] DNFs are O(n
√

n log s)-proper PAC-learnable.
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5.7.1 Hardness Results

Many of the techniques used in proving hardness results for learning DNFs and decision trees are
inspired by techniques in [AR02] used to show that automatizing Resolution is difficult [ABF+04]. This
mirrors, in a somewhat weaker way, the link between automatizability and learnability displayed by the
positive results. The following hardness results are the best known with respect to learning decision
trees:

Theorem 29. [HJLT95] If NP 6⊆ RTIME(2logO(1) n), then decision trees of size s over n variables are

not learnable by size s · 2log1−ε n decision trees in polytime, for some ε < 1.

Theorem 30. [ABF+04] If NP 6⊆ DTIME(2nε

), then decision trees are not properly PAC learnable in
polytime, for some ε < 1.

Theorem 31. [ABF+04] If NP 6= RP, then 2-term DNF formulas are not PAC learnable by the hypothesis
class of k-term DNF formulas for any constant k > 0.

Theorem 32. [ABF+04] If NP 6= RP then there is no algorithm A such that for every c in the concept
class of DNF formulas and for every distribution D, A runs in polytime in n, |c|, and 1/ε and with
probability 2/3 outputs a hypothesis h from the class of OR-of-threshold-formulas such that errorD(h, c) ≤
ε.

5.7.2 Upper Bounds

The RES automatizability algorithm is not the best known algorithm for learning DNF formulas. In

[KS01], Klivans and Servedio give an algorithm which learns DNF formulas in time 2Õ(n1/3). Like their
algorithm for learning the intersection of halfspaces under any arbitrary distribution (see Section 5.6.2),
this algorithm reduces the problem of learning a DNF formula to learning a low degree polynomial
threshold function. Their main results are:

Theorem 33. [KS01] Any s-term DNF over {0, 1}n in which each term is of size at most t can be
expressed as a polynomial threshold function of degree O(

√
t log s).

Theorem 34. [KS01] Any s-term DNF over {0, 1}n can be expressed as a polynomial threshold function
of degree O(n1/3 log s).

5.8 Discussion Relating Learning to Automatizability

Some successful initial connections between automatizability and learnability were made in [ABF+04].

1. Both automatizability and learnability are concerned with search problems. Automatizability con-
cerns itself with finding refutations within a given proof system, while learnability concerns itself
with finding a concept from a given concept class.

2. When learnability seems difficult and only super-polynomial upper bounds are known, the concept
classes under consideration correspond to objects which have prominent roles in specific proof
system. For example decision trees correspond to TRES and intersections of halfspaces correspond
to CP.

3. There are specific algorithms known which have the same guarantees with respect to automatizing
a proof system and to learning a circuit from a circuit class which closely corresponds to the proof
system (RES and DNF formulas, TRES and decision trees).

4. Some ideas used in hardness results for automatizability of proof systems have been used successfully
to prove hardness results for learning the corresponding circuit class.
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Despite these apparent similarities numerous difficulties exist in the comparison. The two algorithms,
which O(nlogs)-automatize TRES and O(n

√
n log s)-automatize RES and learn the correspond circuit

classes, rely on different analogies to make the connection between learnability and proof complexity. In
the case of learning decision trees the analogy is structural, meaning that the object being learned has
the same form as the underlying structure of the proof, whereas in the case of learning DNF formulas the
object being learned corresponds to the result of the search problem being computed by a RES proof. In
fact, this analogy is even weaker because RES proofs actually find groups of clauses (CNF formulas). It
is not clear how to make these differing interpretations agree. The lack of a uniform treatment suggests
that the connections between the algorithms may be coincidental (though it may just mean that the
connection is of a deeper nature). Furthermore, more efficient learning algorithms than the RES algo-
rithm for learning the class of DNF formulas are known [KS01] and it is not clear how they yield search
algorithms for RES.

Relating the automatizability of PC to known learning algorithms for objects which seem related to PC

proofs is also challenging. The one notable candidate for a connection is Klivans and Servedio’s learning
algorithm for polynomial threshold functions. But it is unclear whether the connections are anything
more than superficial. There may be a deeper connection between the Groebner Basis algorithm used to
nO(d)-automatize PC and the nO(d)-learning algorithm of [KS01], which reduces a polynomial threshold
functions to linear programming, but the connections (other than the similarity of the upperbounds) are
not readily apparent.

Finally, we were most interested in looking at algorithms which learn intersections of halfspaces in
order to see if they could give any insight into the automatizability of CP or even TCP. As mentioned
earlier, CP has feasible interpolation and is therefore still a candidate for automatizability. Unfortunately,
we were unable to see an immediate connection between any of the learning algorithms studied and proof
search for CP.

Though we are expressing some skepticism regarding a connection between automatizability and
learnability, there do seem to be some uncanny similarities in the approaches that have worked for both.
The hope is still therefore that a general theorem can be proved that would allow automatizability results
for proof systems to be translated into learnability results for their corresponding circuit classes and vice
versa. It seems clear that the first step should be to understand and present a consistent treatment for
what is meant when we say that a proof system P corresponds to a circuit class C(P ).

Since this project is our first view into this area, our survey of the relevant literature has not been
complete. There is a little more reading which we would like to do before tackling open problems. There
are a few algorithms which we did not have the chance to investigate, most notably Haussler and Ehren-
feucht’s decision tree learning algorithm which has the same runtime as the automatizability/learning
algorithm which was discussed, and Jackson’s DNF learning algorithm which makes use of membership
queries. Learning algorithms which make use of membership queries may still provide insight into the
problem of automatizability since we have unrestricted access to a formula when searching for a refutation
of it.

We would also liked to have studied Lovász, Schrijver Systems which are automatizable and resem-
ble the algebraic systems CP and PC. There are also other hardness result pertaining to learning DNF
formulas which we were not able to study. Supposing a real link between learning DNF formulas and
automatizing RES, close investigation into these techniques may yield insight into improving the result
of [AR02].

6 Open Problems

In surveying the literature related to automatizability and learning concepts which seem related to
proof systems, we identified the following potential avenues of investigation which could further the goal
of discovering whether there is a concrete relationship between learning and automatizability.

• What does it mean for a circuit class to correspond to a proof system?
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This seems to be the most important question regarding the relationship between learning and
automatizability. Ultimately we would like a result which shows something akin to: You can
f(s, n)-automatize proof system P if and only if you can f ′(n, 1/δ, 1/ε)-learn C(P ), where C(P )
is the set of circuits corresponding to proofs in P . In order for such a statement to be made the
notion of correspondence must be clarified.

• If proof system A p-simulates proof system B, and A is automatizable, then is B
automatizable?

Though some work has been done on the relationship between the p-simulation and automatizability
(notably by Bonet and Atserias), we have not been able to find an answer to the above question. If
A p-simulates B, then a proof search algorithm for A must be searching through a richer domain
than the set of B proofs. It therefore seems reasonable to hypothesize that proof search algorithms
which find A-proofs in time proportional to the shortest A proof might be modified to find B proofs
in time that is proportional to the shortest B-proof.

• If proof system A p-simulates proof system B, and B is not automatizable, then is A
also not automatizable?

This is a similar question to the previous one. If it is difficult to find proofs in a smaller domain,
then it would seem counterintuitive to think that one would have an easier time finding proofs in
a richer domain, especially considering that the proofs in A might be considerably shorter than
those in B.

• Find other examples of similarities amongst learning algorithms and automatizability

algorithms.

Though not a very specific goal, finding ways to adapt known automatizability algorithms in order
to learn a related class of concepts or finding ways to adapt known learning algorithms in order
to automatize proof systems would help guide the search for a general result connecting the two
notions. Even this is very difficult, since it is unclear how any of the learning algorithms studied

could help automatize CP. It is not even clear how the 2n1/3

algorithm for learning DNF formulas
can be adapted to speed up proof search for RES. This is despite the fact that there have already
been links established between learning DNF formulas and automatizing RES.
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