
Hamiltonian Cycles

in Sparse Graphs

By

Alexander Hertel

A Thesis Submitted in Conformity With the Requirements
For the Degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2004 by Alexander Hertel

Abstract

Hamiltonian Cycles

in Sparse Graphs

Alexander Hertel

Master of Science

Graduate Department of Computer Science

University of Toronto

2004

The subject of this thesis is the Hamiltonian Cycle problem, which is of interest in

many areas including graph theory, algorithm design, and computational complexity.

Named after the famous Irish mathematician Sir William Rowan Hamilton, a Hamilto-

nian Cycle within a graph is a simple cycle that passes through each vertex exactly once.

This thesis provides a history of the problem, a survey of major results, as well as a de-

tailed account of the author’s original contributions with respect to sparse graphs. The

first of these is the “Stonecarver’s Algorithm”, which is successful in finding Hamilto-

nian Cycles in random regular graphs. The second gives upper and lower bounds on the

creation of a specific obstruction to Hamiltonicity under the context of the Stonecarver

Algorithm. Finally, the third is a theorem which strengthens Barnette’s Conjecture.

ii

Acknowledgements

First and foremost, I would like to thank my girlfriend Tanya Pearson for supporting

me while working on my Master’s degree at the University of Toronto.

I would like to thank my brother Philipp with whom I have worked very closely for

many years. The Stone Carver’s algorithm was developed jointly with him, and he also

deserves credit.

Next I would like to thank my mother for making the sacrifices to pay for my expensive

private school education.

A number of professors at the University of Victoria also deserve my gratitude. In

the Philosophy Department, I would like to thank Dr. Charles Morgan for being an

exceptional teacher, and for encouraging me to attend graduate school; were it not for

him, I would probably have entered industry.

In the Computer Science Department, I would like to thank Dr. Valerie King for

likewise encouraging me to attend graduate school, but also for supervising Philipp and

myself during the two Directed Studies courses in which we developed the Stone Carver’s

algorithm. Her input was extremely valuable.

Also in the Computer Science Department, I would like to thank Dr. Ulrike Stege

and Dr. John Ellis for supervising the research which we performed while holding our

NSERC Undergraduate Student Research Awards. That research was both fruitful and

enjoyable. Ulrike in particular was always as helpful and friendly as possible, and even

got us involved in some of her research. I can only hope that we made a fraction as

positive an impression on her as she did on us.

iii

On a similar note, I would also like to thank Dr. Hausi Mueller for always encouraging

us and also for supervising our Directed Studies course in Software Engineering.

In the Mathematics Department, I would like to thank Dr. Gary MacGillivray for his

helpfulness and willingness to answer what must have been trivial questions early on

during our study of Hamiltonian Cycles.

At the University of Toronto, I would like to thank my supervisor, Dr. Alasdair

Urquhart in the Philosophy Department for taking me on as his graduate student and

also for spending the time meeting with me, lending me his books, photocopying papers

on my behalf, and for otherwise giving me advice concerning my research.

I would like to thank Dr. Derek Corneil from the Computer Science Department. Even

though he hadn’t met me yet, he generously spent his time reading and giving feedback

on my work with Barnette’s Conjecture. When I finally met him for the first time, I

audaciously asked if he would be willing to act as my second reader for this thesis. Once

again, he generously agreed to guide me despite having considerable time pressures from

elsewhere.

I would likewise like to thank Dr. Toniann Pitassi from the Computer Science Depart-

ment for all the time she spent meeting with me before I started working with Alasdair.

She has always been very supportive and friendly.

I am grateful to Dr. David Johnson at AT&T labs for helping me find a suitable

heuristic with which to compete, and to Dr. Keld Helsgaun from the Department of

Computer Science at Roskilde University for being so kind as to give me the code for

that heuristic.

iv

On a sad note, I would like to acknowledge three researchers who unfortunately all

passed away very recently. Claude Berge and William Tutte died in 2002, and Donald

Coxeter died in 2003. I was never fortunate enough to meet any of them, yet their work

influenced this thesis a great deal.

Last but not least, I would like to thank the Department of Computer Science at the

University of Toronto as well as NSERC for supporting me financially.

v

Contents

1 Introduction 1

1.1 Terminology . 1

1.2 Subject . 1

1.3 Motivation . 2

1.4 Purpose . 3

1.5 Overview . 3

2 Background 6

2.1 History . 6

2.1.1 Early History . 6

2.1.2 Hamilton . 7

2.1.3 Kirkman . 10

2.1.4 Later History . 12

2.2 Interesting Results . 14

2.2.1 Definitions . 14

2.2.2 Graph Theoretic Results . 14

Sufficient Conditions For Hamiltonicity 14

Necessary Conditions For Hamiltonicity 15

Other Graph Theoretic Results 18

2.2.3 Algorithmic Results . 19

vi

Algorithms For Restricted Inputs 20

Heuristics & Exponential Algorithms 20

2.2.4 Complexity-Related Results . 22

3 Algorithmic Results 23

3.1 Preliminaries . 23

3.1.1 Forced Edges & Pruning . 23

3.1.2 Necessary Conditions Involving Forced Edges 25

3.1.3 The Look-Ahead Theorem . 27

3.1.4 Algorithmic Impact . 29

3.2 Divide & Conquer Algorithm . 34

3.2.1 Overview . 34

3.2.2 Algorithm Description . 34

3.3 The Stone Carver’s Hamiltonian Cycle Algorithm 37

3.3.1 Introduction . 37

3.3.2 The Probability Mill Subroutine 38

3.3.3 SCHCA Pseudocode . 43

3.3.4 Empirical Running Times . 45

High-Level Empirical Analysis . 45

Three Versions Of The SCHCA 46

Experimental Evidence & Analysis 47

Performance On Other Graph Classes 52

3.3.5 Comparison With Established Heuristic 56

3.3.6 Future Research . 59

3.4 More On Deletion Sequences . 61

3.4.1 Introduction . 61

3.4.2 Finding Shorter Deletion Sequences 62

The Hub / Deletion Sequence Lemmas 63

vii

3.4.3 Deletion Sequences Of Unbounded Necessary Length 65

3.4.4 Future Research . 68

4 Strengthening Barnette’s Conjecture 70

4.1 Introduction . 70

4.2 Partial & Related Results . 72

4.3 Main Result . 73

4.3.1 The Mirroring Procedure . 74

4.4 Future Research . 77

5 Concluding Remarks 79

Bibliography 80

Glossary 85

viii

List of Figures

2.1 Sir William Rowan Hamilton (1805 - 1865) 7

2.2 Planar Embedding Of A Dodecahedron 8

2.3 Hamilton’s Icosian Game . 9

2.4 Thomas Penyngton Kirkman (1806 - 1895) 10

2.5 Kirkman’s Planar, 3-Connected, Bipartite, Non-Hamiltonian Graph . . . 11

2.6 Examples Of Graphs Which Are Not 1-Tough 16

2.7 The Grinberg Graph . 18

3.1 The Graph On The Left Contains A Forced Edge, Whereas The Graph

On The Right Contains Two (Safely) Forced Edges. 24

3.2 A Graph Containing Two Chains . 25

3.3 A Graph Containing 8 Odd-Forced-Cuts 26

3.4 A Graph Containing A Hub . 26

3.5 A Graph Containing A Barricade . 27

3.6 Repeated Applications Of Corollary 3.1.5 & Rule 3.1.4 30

3.7 An Application Of Rule 3.1.5 . 31

3.8 The Petersen Graph . 32

3.9 Divide & Conquer Being Applied Across A 2-Edge Cut 35

3.10 Divide & Conquer Being Applied Across A 2-Vertex Cut 35

3.11 Divide & Conquer Being Applied Across A 3-Edge Cut 36

3.12 The Three Possible Ways For Probability Mill To Terminate 42

ix

3.13 Chart Comparing The Average Number Of Probability Mill Iterations

Between The Three Versions Of The SCHCA Running On Random 3-

Regular Graphs . 48

3.14 Chart Comparing The Running Time Of The Three Versions Of The

SCHCA On Random 3-Regular Graphs 49

3.15 Chart Comparing Average Time Per Probability Mill Iteration For The

Three Versions Of The SCHCA On Random 3-Regular Graphs 50

3.16 Chart Showing The Average Number Of Probability Mill Iterations For

Version 3 Of The SCHCA Running On Random 3-Regular Graphs 51

3.17 Chart Showing The Average Time Required For The SCHCA Running On

Square Knight’s Tour Graphs . 53

3.18 Chart Showing The Average Time Required For The SCHCA Running On

Square Toroidal Grids . 54

3.19 An ICCS Component . 55

3.20 Chart Showing Running Time Comparison Between The SCHCA & Keld

Helsgaun’s Lin Kernighan Variant . 58

3.21 Two Different Deletion Sequences Resulting In The Same Hub 63

3.22 A Graph Accompanying The Hub / Deletion Sequence Lemmas. 64

3.23 A Template For Building Graphs For Which Deletion Sequences Cannot

Be Shortened . 66

3.24 One Possible Way To Construct Components That Cause Long Deletion

Sequences To Be Necessary . 67

3.25 The Indicated Hub’s Creation Requires The Deletion Of At Least 4 Edges 68

4.1 The 46-Vertex Tutte Graph . 70

4.2 The 96-Vertex Horton Graph . 71

4.3 The Mirroring Procedure, Step 1 . 74

4.4 The Mirroring Procedure, Step 2 . 75

x

4.5 The Mirroring Procedure, Step 3 . 75

4.6 The Mirroring Procedure, Step 4 . 75

4.7 The Faces Affected By The Mirroring Procedure 76

xi

Chapter 1

Introduction

1.1 Terminology

This thesis falls in the area of overlap between the fields of graph theory and computer

science. As such, we assume that the reader is familiar with elementary graph-theoretic

terminology, the basic ideas behind NP-Completeness, as well as tools for algorithm

analysis such as asymptotic ‘Big-O’ notation. We will use [51], [21], and [13] as our

respective references for these fundamentals.

For the purpose of this thesis, all graphs are undirected and unweighted, with no

self loops nor any multiple edges. Consistent with the standard definition, we use the

notation G = (V, E). In addition, we use n to denote |V |, and m to denote |E|. For the

reader’s convenience, the end of this thesis contains an alphabetized glossary.

1.2 Subject

The subject of this thesis is the Hamiltonian Cycle problem, which we shall explore

as both computer scientists and graph theoreticians. Formally, a Hamiltonian Cycle is a

simple cycle which passes through every vertex in a graph exactly once. The Hamiltonian

Cycle problem is that of determining whether a given graph contains a Hamiltonian Cycle,

1

Chapter 1. Introduction 2

and such graphs are termed to be ‘Hamiltonian’. More specifically, however, we will focus

on Hamiltonian Cycles in sparse graphs. A graph is considered to be sparse if m is O(n),

and considered to be dense if m is Ω(n2).

1.3 Motivation

There is considerable motivation for studying the Hamiltonian Cycle problem. Firstly,

it is a well-studied problem with a long history, and is of interest in its own right.

Secondly, it is NP-Complete, so the discovery of an efficient polynomial-time algorithm

which solves the Hamiltonian Cycle problem would immediately yield efficient algorithms

for solving hundreds of other NP-Complete problems. Finally, the Hamiltonian Cycle

problem lies at the heart of the Traveling Salesman problem (TSP), which is probably

the most studied combinatorial optimization problem in history. TSP takes as input a

complete weighted graph G, and an integer k, and asks whether the graph contains a

Hamiltonian Cycle whose combined edges weigh at most k. The optimization version

of TSP leaves out the integer k, and basically amounts to finding the lowest-weight

Hamiltonian Cycle. TSP has many real-world applications, the least of which is the

routing of vehicles and door-to-door salesmen. Although it is not obvious, problems

in the areas of robot control, computer wiring, VLSI design, chronological sequencing,

crystallography, and many others can be formulated as instances of TSP [30].

Sparse graphs are of interest for two reasons. Firstly, most graphs seen in practical

applications such as computer or road networks are sparse. Secondly, difficult problems

tend to attract more attention, and with respect to Hamiltonicity, sparse graphs tend to

be more difficult to solve than dense graphs. Intuitively, this is because dense graphs con-

tain many more edges, and the presence of more edges typically increases the likelihood

and ease of finding a Hamiltonian Cycle in a graph.

Chapter 1. Introduction 3

1.4 Purpose

First and foremost, the purpose of this thesis is to present research results. Rather

than presenting one major result, however, we focus on several smaller results pertaining

to Hamiltonian Cycles in sparse graphs.

In addition, as a Master’s thesis, this work has the secondary purpose of demon-

strating a capacity for original research, as well as a capacity for organizing ideas in a

useful way. Also consistent with the idea of a Master’s thesis, the results described herein

should not be viewed as a finished product. On the contrary, almost all of the results

can be improved, and are meant to be ‘stepping stones’ on the path to more impressive

work. Since these improvements are not trivial, this thesis represents a natural transition

to Ph.D. level research.

1.5 Overview

This thesis follows the typical introduction / results / conclusion layout and contains

5 Chapters.

Chapter 2 provides an introduction to Hamiltonian Cycles, and contains two parts.

Section 2.1 describes the history of the problem with an emphasis on early history, es-

pecially the roles played by Hamilton & Kirkman. This leads into Section 2.2, which

categorizes Hamiltonicity research into the three areas of graph theory, algorithms, and

computational complexity. Although giving a comprehensive survey of the field is im-

practical due to the enormous amount of research that has been done, we do give a brief

overview, with an emphasis on the necessary conditions for Hamiltonicity that have been

discovered so far. The reason for this emphasis is that these necessary conditions are very

useful tools for determining non-Hamiltonicity, and will resurface in subsequent sections

under various contexts.

Chapter 3 constitutes the bulk of this thesis, and is divided into a number of sections,

Chapter 1. Introduction 4

each containing a different aspect of the author’s research. In some ways, Section 3.1

is the most important section of this thesis. This is because it describes several ideas

that are critical to understanding the remaining sections. These ideas are ‘forced edges’,

‘pruning’, and the ‘Look-Ahead Theorem’. A forced edge in a graph G is an edge that

must be included in every Hamiltonian Cycle of G. Forcing arbitrary edges is somewhat

risky because it can destroy a graph’s Hamiltonicity. However, some edges happen to

be in every Hamiltonian Cycle of a graph. Identifying such edges and ‘safely’ forcing

them is a great advantage because it provides us with extra information that can be used

to determine Hamiltonicity. In contrast, some edges are part of no Hamiltonian Cycle,

and should therefore be deleted. The act of identifying such edges and deleting them is

referred to as ‘pruning’. We use the concept of forced edges to extend the list of necessary

conditions given in Section 2.2. Finally, the ‘Look-Ahead Theorem’ is a powerful tool both

algorithmically and theoretically. Algorithmically, it can be used to speed up Hamiltonian

Cycle algorithms. Theoretically, it allows us to phrase our necessary conditions as rules

that can be implemented within Hamiltonian Cycle algorithms, and allows us to build

powerful compound necessary conditions for Hamiltonicity, taking this research into the

realm of proof complexity.

Referring to Section 3.1 as ‘original research’ would be inappropriate, although it

does contain some original research. Many of the ideas have been thought of thousands

of times before, but rarely published due to their simplicity. Others have been published,

but under different contexts. What is original about this section, however, is that this

seems to be the first time that anyone has potently and formally combined the ideas

of forcing, pruning, and look-ahead simultaneously under the banner of determining

Hamiltonicity. We submit that this a powerful and useful way to group these ideas.

Section 3.2 gives a straightforward demonstration of how forced edges can be used

by illustrating a simple but effective divide & conquer algorithm for finding Hamiltonian

Cycles in graphs which contain sparse cuts. This algorithm is generic in that it can be

Chapter 1. Introduction 5

combined with almost any other Hamiltonian Cycle algorithm.

In Section 3.3, we further develop the ideas of forcing and pruning to define the

concept of a ‘deletion sequence’, which we use to develop the Stone Carver’s Hamiltonian

Cycle Algorithm, a simple yet effective search heuristic for finding Hamiltonian Cycles to

be used primarily on graphs that are strongly expected to be Hamiltonian. We present

a partial analysis of the algorithm together with empirical evidence supporting that its

running time is O(n2). The goal of this research is to develop a simple algorithm for which

it is possible to show it to be the fastest known proven algorithm for finding Hamiltonian

Cycles in random regular graphs. In addition, we compare its running time with that of

another well-established heuristic in order to establish its usefulness in practical terms.

In Section 3.4 we continue our study of deletion sequences more formally, and provide

two results. The first is that regardless of their length, certain deletion sequences can

be shortened to contain at most three edges. This appears to be a weak result, but

is vindicated by the second result, which shows that the necessary length of deletion

sequences in cubic graphs is unbounded.

Barnette’s Conjecture states that all planar, cubic, 3-connected, bipartite graphs are

Hamiltonian, and has stood unresolved for many years. We refer to all such graphs as

‘Barnette graphs’. In Chapter 4 we strengthen Barnette’s Conjecture by proving that

it holds if and only if every edge in every Barnette graph is part of some Hamiltonian

Cycle. A stronger version may be easier to work with, so the goal of this research is to

help settle the conjecture.

Finally, in Chapter 5 we discuss avenues of future research.

Chapter 2

Background

2.1 History

2.1.1 Early History

The Hamiltonian Cycle problem, also known as the Hamilton Circuit problem, has an

interesting history. It is predated by two related problems. The first, now more than

a thousand years old, is the Knight’s Tour problem. It is a simple problem relating

to the game of chess: given an (arbitrarily sized) chessboard and a knight, move the

knight using only standard L-shaped moves such that it visits every square on the board

exactly once, and finishes in the starting square. It is not hard to see that if each square

is viewed as a vertex, and legal moves are viewed as edges, the Knight’s Tour problem is

equivalent to finding a Hamiltonian Cycle in the corresponding graph. Rouse Ball and

Coxeter provide a good account of early results in [3]. Of course, Knight’s Tours were not

studied in terms of graph theory before recent times. This, however, is not true of the

second related problem, which was solved in 1763 by the famous Swiss mathematician

Leonhard Euler (1707-1783) in what may be the first formal use of graph theory [43].

The Seven Bridges of Königsberg problem asked if it is possible to cross all seven

bridges in the city of Königsberg (modern day Kaliningrad) without using any bridge

6

Chapter 2. Background 7

more than once. Euler proved the answer to be no, but his proof was much more general.

An Euler Circuit in a multigraph G is a circuit which contains one instance of every

edge in G, without explicit restrictions on how many times vertices may be visited. Euler

showed that a connected multigraph is Eulerian if and only if each of its vertices has

even degree.

2.1.2 Hamilton

Despite the widespread knowledge of these two problems, it took quite some time for

the Hamiltonian Cycle problem to be formally discovered. It is named for the famous

Irish Mathematician Sir William Rowan Hamilton (Please refer to Figure 2.1, below).

Figure 2.1: Sir William Rowan Hamilton (1805 - 1865)

By all accounts, Hamilton was a genius and a child prodigy. He started studying

languages at an early age, and was already fluent in more than a dozen by the time

he was 13 years old. Hamilton later switched his interest to mathematics and achieved

many interesting results. His intellect was so compelling that in 1822 he was appointed

Royal Astronomer of Ireland, quite a feat considering that he had not even finished his

undergraduate degree yet. When he did graduate, he received top marks in both the

arts and sciences, a very rare feat. Hamilton’s greatest discovery was the quaternions,

Chapter 2. Background 8

the first noncommutative algebraic system. His achievements led him to be knighted in

1835.

Interestingly enough, it was his ongoing interest in noncommutative systems that

led to his discovery of Hamiltonian Cycles. Hamilton invented the ‘Icosian Calculus’, a

noncommutative algebra so called because it involved a planar embedding of the graph

of a dodecahedron, which has 20 vertices (Please refer to Figure 2.2, below).

Figure 2.2: Planar Embedding Of A Dodecahedron

The system has two operations: L and R, standing for ‘left’ and ‘right’ respectively,

the idea being that if one has just arrived at a vertex, one can choose to go left or

right, with the value 1 being reserved for an expression which returns to one’s point of

origin. For example, a path that turns right twice and then left once can be expressed

as the term R2L. Similarly, since each face of a dodecahedron is pentagonal, we know

that R5 = L5 = 1. Hamilton showed that symmetry notwithstanding, the equation

LLLRRRLRLRLLLRRRLRLR = 1 defines the only Hamiltonian Cycle on a dodeca-

hedron. Since LR 6= RL, the Icosian Calculus is clearly noncommutative. However, it is

associative. For example, (LR)L = L(RL). A more complete account can be found in

[6].

According to [7], Hamilton’s first communication about his Icosian Calculus was to

his friend Robert Graves (See [26], page 71) in a letter dated Oct. 7th, 1856. Hamilton

Chapter 2. Background 9

later published his ideas in [28] and [29]. Hamiltonian Cycles were not only discussed in

academic circles, however. Perhaps even more relevant to their proliferation was the fact

that Hamilton had his Icosian Calculus turned into a board game. Dubbed “The Icosian

Game”, it consisted of a board inscribed with the planar embedding of a dodecahedron, as

well as twenty pegs. Each of the 20 vertices was inscribed with one of the 20 consonants

(excluding y), and each peg was numbered from 1 to 20. (Please refer to Figure 2.3,

below.)

Figure 2.3: Hamilton’s Icosian Game

The game was played with two players; the first put down the numbers 1 through

5 to form a partial path, and the second player’s job was to use the rest of the pegs

to complete the cycle, thereby creating a complete tour. In the rule book, Hamilton

suggested a number of alternate games that could be played. For example, another was

for the second player to cover the board with a Hamiltonian path after the first placed

three pegs. The complete rules including patent can be found in [7]. Hamilton sold

the rights to the Icosian Game to a businessman for £25. This turned out to be a bad

investment on the businessman’s part, since it never sold very well. Hamilton also sold

Chapter 2. Background 10

a second game called both “The Traveller’s Dodecahedron”, and “A Voyage Round The

World”. This game had similar rules, but was played slightly differently. It consisted of

a solid dodecahedron with pegs at the vertices representing famous cities ranging from

Brussels to Zanzibar. The idea was to create a Hamiltonian Cycle or “voyage ’round the

world” by looping a string around successive pegs.

Hamilton lived most of his life at Dunsink Observatory near Dublin. Unfortunately his

later years were quite unhappy; his marriage was miserable, which was at least in part

due to his alcoholism. Sadly, he died of gout at the age of 60, leaving behind mounds of

unpublished research. He lived just long enough to learn that he had become the first

foreign associate to be elected to the National Academy of Sciences of the United States.

2.1.3 Kirkman

It may surprise the reader to learn that Hamiltonian Cycles should not have been

named after Hamilton at all. In fairness, they should be called ‘Kirkman Cycles’, or

perhaps ‘Kirkmanian Cycles’ after Thomas Penyngton Kirkman, the man who actually

first discovered them. (Please see Figure 2.4, below.)

Figure 2.4: Thomas Penyngton Kirkman (1806 - 1895)

Chapter 2. Background 11

A devoutly religious man, Kirkman was the rector of the small parish of Croft with

Southworth for over 50 years. Indeed, he lived to be almost 90 years old, which is well

beyond even today’s average life expectancy. Elected to the Royal Society in 1857, Kirk-

man made dozens upon dozens of significant mathematical discoveries during his lifetime.

His interest in polyhedra led him to discover Hamiltonian Cycles, a result which he pub-

lished in [36]. This paper, received by the Royal Society on Aug. 6th, 1855, predates

Hamilton’s earliest communication, let alone his first publication on the subject, by more

than a year. However, precedence is not the only argument on Kirkman’s side. Whereas

Hamilton considered only the one special case of cycles in the dodecahedron, Kirkman’s

result was much more general, because he pondered the existence of Hamiltonian Cycles

in all graphs corresponding to planar embeddings of solid shapes. In addition, Kirkman

was the first to discover an infinite class of non-Hamiltonian polyhedra. He showed that

any bipartite graph with an odd number of vertices must be non-Hamiltonian. He gave

an example of a planar, 3-connected, bipartite, non-Hamiltonian graph shown in Figure

2.5, below.

Figure 2.5: Kirkman’s Planar, 3-Connected, Bipartite, Non-Hamiltonian Graph

In addition, it can be argued that Kirkman’s paper dealt with graph theory which

became a fruitful field of future research, whereas Hamilton’s noncommutative algebra

Chapter 2. Background 12

viewpoint ended up being a dead-end that has not yet led to any major results.

It is somewhat strange that Kirkman was not given credit for the discovery of Hamil-

tonian Cycles. Both men were from the same generation, and worked in the same geo-

graphical area; they both reported their findings to the Royal Society, and indeed even

knew each other. According to [7], Hamilton visited Kirkman in 1861, and the two sub-

sequently exchanged flattering letters, showing a mutual professional respect. Perhaps it

was Hamilton’s greater fame, or the marketing of his board game which upstaged Kirk-

man. Perhaps it was Kirkman’s isolation, or a lack of self-promotion. Perhaps political

issues within the Royal Society itself robbed Kirkman of the credit. More than likely

it was a combination of these factors, and more. Unfortunately, this was not the only

time that poor Kirkman went uncredited. It turns out that he also solved the problem

of Steiner Triples more than half a decade before Steiner even formulated the problem

[12], and similarly lost that claim to fame.

In any case, things may have turned out for the best. Many technical papers from

and before Kirkman’s era are poorly written by modern standards. Even so, reading

Kirkman’s paper is a particularly surreal experience. Graph theorists everywhere should

be grateful that his terminology did not proliferate. Instead of using intuitive terms,

Kirkman talks about p-edral q-acrons, walls, bases, summits, and constantly uses colour-

ful adjectives such as sympolar, heteropolar, autopolar, syncral, etc. He concludes the

paper by arguing that the word ‘polyhedron’ is misspelled, and should actually be spelled

‘polyedron’, justifying this argument by stating that the word ‘periodic’ is not spelled

‘perihodic’.

2.1.4 Later History

The only other major interest in the Hamiltonian Cycle problem during its infancy

was in connection to the much more famous 4-Colour Conjecture, which states that the

countries on any geographical map can each be coloured with one of four colours such

Chapter 2. Background 13

that no two adjacent countries have the same colour. This conjecture was widely ac-

cepted, but nobody seemed able to prove it as fact. Peter Guthrie Tait thought that he

had discovered a short, elegant proof to the problem [31]. In what has become known

as the ‘Tait Conjecture’, he stated that all planar, cubic, 3-connected graphs are Hamil-

tonian. Tait then argued that all such graphs are 3-Edge-Colourable by referring to

their Hamiltonicity; simply colour the edges of a Hamiltonian Cycle alternately red and

white, and then colour all non-cycle edges blue. He then appealed to a theorem which

states the equivalence of 3-Edge-Colourability and the 4-Colour-Conjecture to complete

the ‘proof’. Tait’s erroneous proof came in 1884 [45], and it did not take long for his

assumption to be pointed out. However, more than 60 years passed before Tutte in 1946

[47] constructed the first counterexample to Tait’s Conjecture (please refer to Figure

4.1), thereby finally concluding the early history of the Hamiltonian Cycle problem. The

4-Colour-Conjecture, on the other hand, was only finally proven in 1976 with the aid of

computers [2].

For most of the 20th century, Hamiltonian Cycles remained a purely graph-theoretic

entity. Researchers attempted without success to discover a simple characterization of

Hamiltonian graphs that is both necessary and sufficient. They reasoned that since such

a characterization exists for Eulerian graphs, one probably also exists for graphs that are

Hamiltonian. Only with the birth of NP-Completeness and its corresponding effect on

how we view computational complexity did they finally concede that in all likelihood,

this is impossible. The Hamiltonian Cycle problem was shown to be NP-Complete by

Richard Karp in 1972 [34], proving that it is solvable in polynomial time if and only if

P = NP. Since then, Hamiltonian Cycles have been of interest to computer scientists

as well, as will be described in the following section.

Chapter 2. Background 14

2.2 Interesting Results

Although it is tempting to include a complete survey of the problem, this is impracti-

cal. Literally hundreds of theorems concerning Hamiltonian Cycles have been published

within various different contexts. These fall into three approximate categories: graph the-

oretic results, algorithmic results, and complexity-related results. Instead of providing a

full survey, we will focus on results which are relevant to the research that is described

in the next chapter.

2.2.1 Definitions

The following sections contain non-elementary definitions. Before continuing, it may

be worthwhile to review some of them. We say that a graph is 1-tough if it contains

no set of k vertices that, if removed, would disconnect the graph into k + 1 or more

components. A k-connected graph is one that cannot be disconnected by removing

fewer than k vertices. A k-vertex-cut is a subset of k vertices that, if removed, would

disconnect the graph, and a k-edge-cut is a similar subset of edges. An r-regular graph

is one in which each vertex has degree r, and 3-regular graphs are typically referred to as

cubic. Finally, a graph is said to be Hamiltonian connected if each pair of vertices

has a Hamiltonian Path between them.

2.2.2 Graph Theoretic Results

Sufficient Conditions For Hamiltonicity

Graph theorists have published an incredible amount of research pertaining to Hamilto-

nian Cycles. Many sufficient conditions as well as necessary conditions for Hamiltonicity

have been discovered. One of the most notable sufficient conditions is a theorem by Dirac

[14]:

Chapter 2. Background 15

Theorem 2.2.1 Let δ be the minimum degree of any vertex in a graph G. If δ ≥ n/2,

then G is Hamiltonian.

Bondy and Chvátal [8] strengthen this result with the following theorem:

Theorem 2.2.2 If u and v are non-adjacent vertices in a graph G, and d(u)+d(v) ≥ n,

then G is Hamiltonian if and only if G + u, v is Hamiltonian.

The concept of the ‘Bondy-Chvátal Closure’ or ‘B-C Closure’ follows from this theorem.

The idea of the B-C Closure is to take a graph G and recursively add edges between all

non-adjacent vertices whose degrees sum to at least n until no such vertices remain. The

resulting graph, which is sometimes complete, is called the B-C Closure of G. Although

non-constructive, this technique can easily be turned into a constructive algorithm for

finding Hamiltonian Cycles.

Necessary Conditions For Hamiltonicity

Unfortunately, the known sufficient conditions tend to be useful only in dense graphs.

In contrast, the known necessary conditions for Hamiltonicity are much more useful from

an algorithmic point of view, especially with respect to sparse graphs. We will therefore

focus on necessary rather than sufficient conditions. The following rules constitute the

major necessary conditions for Hamiltonicity:

Necessary Condition 2.2.1 All Hamiltonian graphs are biconnected.

Proof: Follows directly from the definition of Hamiltonian Cycle. �

Necessary Condition 2.2.2 All Hamiltonian graphs are 1-tough.

Proof: Suppose there exists some Hamiltonian graph G that is not 1-tough. Therefore

G contains some Hamiltonian Cycle C as well as some cutset S of vertices of size q

Chapter 2. Background 16

that, if removed, would disconnect G into p components where p ≥ q + 1. Since C is

a Hamiltonian Cycle, each vertex in S must be incident on exactly 2 edges of C. The

edge-cut between S and the p components crosses exactly 2q edges. In other words, at

least one of the p components has fewer than 2 of C’s edges entering it, showing that C

cannot be a Hamiltonian Cycle. This is a contradiction, as required. �

Example 2.2.1

The graphs in Figure 2.6 below are not 1-tough and therefore are not Hamiltonian.

The relevant cutsets are indicated with arrows.

Figure 2.6: Examples Of Graphs Which Are Not 1-Tough

Necessary Condition 2.2.3 Every Hamiltonian bipartite graph has bipartitions of equal

size.

Proof: Suppose there exists some Hamiltonian bipartite graph G with uneven biparti-

tions. Such a graph is not 1-tough because the removal of the smaller bipartition would

disconnect the graph into too many components. Therefore, by Necessary Condition

2.2.2, G is non-Hamiltonian, which is a contradiction, as required. �

Necessary Condition 2.2.4 (Grinberg’s Theorem [9]) Every planar graph G = (V, E)

containing a Hamiltonian Cycle C satisfies the following equation:

Chapter 2. Background 17

n∑

i=3

(i − 2)(f ′

i − f ′′

i) = 0, (2.1)

where f ′

i represents the number of faces of degree i on the interior of C, and f ′′

i represents

the number of faces of degree i on the exterior of C.

Proof: (From [9]) Let E ′ denote the set of edges on the interior of C which are not part

of C itself, and let ε′ = |E ′|. We know that the interior of C contains exactly ε′ +1 faces.

Therefore,

n∑

i=3

f ′

i = ε′ + 1 (2.2)

Each edge in E ′ is incident on exactly two faces in the interior of C, and each edge

of C is incident on exactly one face on the interior of C. Therefore,

n∑

i=3

if ′

i = 2ε′ + n (2.3)

We can isolate ε′ in equation 2.2 and substitute it into equation 2.3 to get

n∑

i=3

(i − 2)f ′

i = n − 2 (2.4)

This argument can be similarly applied to the exterior of C to get

n∑

i=3

(i − 2)f ′′

i = n − 2 (2.5)

To finish, we simply combine equations 2.4 and 2.5 to create equation 2.1, as required.

�

Example 2.2.2

Grinberg gave an example of a non-Hamiltonian graph that violates his theorem. It is

shown in Figure 2.7, below.

Chapter 2. Background 18

Figure 2.7: The Grinberg Graph

The Grinberg Graph contains multiple faces which have degrees 5 and 8, and a single

face which has degree 9. We assume that the graph is Hamiltonian and apply Grinberg’s

theorem to get the following equation:

3(f ′

5
− f ′′

5
) + 6(f ′

8
− f ′′

8
) + 7(f ′

9
− f ′′

9
) = 0 (2.6)

Which implies that

3[(f ′

5
− f ′′

5
) + 2(f ′

8
− f ′′

8
)] = 7(f ′′

9
− f ′

9
) (2.7)

Since we have only one face of degree 9, we know that f ′′

9
− f ′

9
= ±1, so

3x = ±7, (2.8)

where x is some integer. This is a contradiction, so the graph is not Hamiltonian, as

required.

Other Graph Theoretic Results

The proof of the Hamiltonian Cycle problem’s NP-Completeness caused most graph

theorists to abandon their attempts to unify necessary and sufficient conditions in the

Chapter 2. Background 19

hope of finding a simple characterization for Hamiltonian graphs. However, they did

not simply throw their hands in the air and abandon all Hamiltonian Cycle research.

Instead, they prudently expanded the study of Hamiltonicity to restricted cases such

as planar graphs, bipartite graphs, n-connected graphs, random graphs, etc., and have

achieved some interesting results. For example, in [48], Tutte proves that every planar

4-connected graph is Hamiltonian. In [46], Thomassen extends this result by showing

that every planar 4-connected graph is Hamiltonian connected. In [41], Robinson and

Wormald prove that asymptotically speaking, almost all cubic graphs are Hamiltonian.

Correspondingly, this shows that with high probability, any random 3-regular graphs is

Hamiltonian. In [42] they extend this result to show that almost all r-regular (random)

graphs are Hamiltonian for all r ≥ 3. A number of additional graph classes have been

explored; please refer to Chapter 4 for more information.

Although no single source contains a complete survey of all graph theoretic results,

an interested reader can easily access many partial surveys. Most modern graph theory

textbooks contain a chapter on Hamiltonian Cycles, and some partial survey papers have

been written. For example, reading [6], [9], [12], [31], and [51] together provides a fairly

detailed exposition.

2.2.3 Algorithmic Results

The literature contains dozens of algorithms for finding Hamiltonian Cycles. Although

there are some exceptions, Hamiltonian Cycle algorithms are usually search algorithms.

Instead of simply determining whether a graph is Hamiltonian, most are designed to find

a Hamiltonian Cycle as a certificate. However, similar certificates for non-Hamiltonicity

are typically not given as output, reflecting the common belief that NP 6= coNP. In

this case, most algorithms simply return the equivalent of ‘no’. These many algorithms

generally fall into three categories: polynomial-time algorithms for restricted inputs,

Chapter 2. Background 20

polynomial-time heuristics, and exponential backtrack algorithms. This trichotomy re-

flects the NP-Completeness of the problem. Much like modern graph theorists, some

algorithmists concede that the problem is difficult, so it makes sense to look at restricted

inputs. Others are not daunted by the difficulty but know when to give up and so design

heuristics. Others yet are more stubborn and are willing to accept exponential running

times in the worst case.

Algorithms For Restricted Inputs

Researchers have published many interesting Hamiltonian Cycle algorithms for re-

stricted inputs. For example, it should be easy to see that if every vertex has degree 2,

then the input is simply a 2-factor, which is clearly solvable in linear time [38]. Similarly,

most algorithms perform well on complete graphs, which are clearly all Hamiltonian. In

many cases, researchers provide corresponding algorithmic results for an earlier graph

theoretic results. For example, in [25], Gouyou-Beauchamps puts Tutte’s proof that all

planar 4-connected graphs are Hamiltonian [48] to practical use by providing a corre-

sponding O(n3) search algorithm. This result was later improved by Chiba and Nishizeki

in [11]. They give an algorithm for solving 4-connected planar graphs in linear time, a

surprisingly efficient result. In [19], Frieze gives an O(n3log(n)) expected time algorithm

for finding Hamiltonian Cycles in random r-regular graphs for r ≥ 85. In [20], Frieze

et al. improve this result by giving an O(n6) expected time algorithm for r ≥ 3. This

corresponds to the theoretic result in [42] by Robinson & Wormald.

Heuristics & Exponential Algorithms

The distinction between the categories of Hamiltonian Cycle algorithms is more for

taxonomical purposes than anything else. Indeed, absolute categorization is often mis-

leading. Firstly, it is difficult to define exactly what a heuristic is. Heuristics are general

procedures, so by the Church-Turing Thesis, one can argue that all heuristics are also

Chapter 2. Background 21

algorithms. Generally, heuristics are given extra leeway in that they are not always ex-

pected to return the correct answer. For example, some Hamiltonian Cycle heuristics

search for a certain number of steps, and if they are still unsuccessful, they return some

value indicating failure rather than Hamiltonicity or non-Hamiltonicity. Secondly, many

algorithms in the three groups are easily interchangeable given only minor modifications.

For example, most of the algorithms for restricted inputs could be converted into heuris-

tics by simply adding a counter that causes the algorithm to halt after some number of

search steps. These could then be run on graph classes for which they were not specifi-

cally designed. Likewise, it would not be hard to attach an exponential backtrack tree to

most heuristics in order to turn them into true algorithms. Furthermore, most of these

algorithms and heuristics can be randomized and tweaked in various other minor ways

to make them more or less effective.

There seems to be a stigma against exponential backtrack algorithms because of their

poor running times. However, labelling backtrack algorithms as somehow inferior simply

because they have worst-case exponential running times is inappropriate. Firstly, unless

P = NP, we will have to settle for exponential runtimes. Furthermore, even the most

naive exponential algorithm may do very well on certain input classes. For instance,

consider the algorithm which simply looks at all possible permutations of the vertices,

and each time checks if that permutation corresponds to a cycle in the graph. With

an O(n!) running time, it would be difficult to design a less efficient algorithm without

becoming creative. However, this algorithm performs better than some others when given

very dense graphs as input.

In any case, the literature contains too many algorithms for us to do them all justice in

this exposition. Since they are not particularly relevant to our later results, an interested

reader should consult Basil Vandegriend’s Master’s thesis [50]. He describes many Hamil-

tonian Cycle algorithms in fair detail and discusses general Hamiltonian Cycle algorithm

design techniques.

Chapter 2. Background 22

2.2.4 Complexity-Related Results

After Karp’s 1972 proof [34] that the Hamiltonian Cycle problem is NP-Complete, a

number of other researchers refined his result to include more restricted graph classes.

The first was Krishnamoorthy, who in 1975 proved that the Hamiltonian Cycle problem

remains NP-Complete even when the input is restricted to bipartite graphs [37]. In

1976, Garey, Johnson, and Tarjan collaborated to prove that it remains NP-Complete

even when restricted to planar, cubic, 3-connected graphs with no face having fewer

than 5 sides [22]. Also in 1976, Papadimitriou and Steiglitz showed that it remains

NP-Complete even when a Hamiltonian-Path is given as part of the instance [40]. In

1980 Akiyama, Nishizeki, and Saito published a paper [1] in which they showed that

the Hamiltonian Cycle problem remains NP-Complete for two classes of graphs: planar,

cubic, 2-connected, bipartite graphs, as well as cubic, 3-connected, bipartite graphs. The

first of these two classes is of special interest because it is so similar to the class from

Barnette’s Conjecture (See Chapter 4). More recently, Chvátal [12] and Wigderson [52]

independently proved that the problem remains NP-Complete when restricted to trian-

gulations (maximal planar graphs). Interestingly, although planar 4-connected graphs

can be solved in linear time (see Subsection 2.2.3), when restricted to 4-connected, 4-

regular graphs, the problem once again becomes NP-Complete [44]. On a related note,

Karp also proved that the Directed Hamiltonian Cycle problem is NP-Complete [34].

Various results for restricted versions of this problem are also known [21]. The cor-

responding directed and undirected versions of the Hamiltonian-Path problem are also

NP-Complete [21].

Karp reduced from Vertex Cover to Hamiltonian Cycles by converting formulas to

graphs using ‘widgets’, or intermediate graph components which enforce certain prop-

erties. Many of the subsequent reductions are from 3-SAT, which is slightly easier to

manipulate, with different widgets being used in various clever ways.

Chapter 3

Algorithmic Results

3.1 Preliminaries

The remaining sections constitute the author’s original contributions to the field, and

contain results which rely heavily on certain notions and terminology which are supplied

in this section as preliminaries. The ideas of ‘forced edges’ and ‘pruning’ are particularly

important. In addition, the ‘Look-Ahead Theorem’ as well as the additional necessary

conditions for Hamiltonicity given here will resurface later.

These ideas are not new, but this is the first time that they have been combined and

listed together under the context of finding Hamiltonian Cycles. It should be emphasized

that these ideas ‘fit’ together very naturally, and that they work particularly well when

used in concert.

3.1.1 Forced Edges & Pruning

The key idea in many of the following results is the notion of a ‘forced edge’. A forced

edge in a graph G is an edge that is marked as having to be included in every Hamiltonian

Cycle of G, and we therefore define a Hamiltonian Cycle in a graph with forced edges to

be one which contains each of the forced edges. Note that forcing an edge which belongs

23

Chapter 3. Algorithmic Results 24

to no Hamiltonian Cycles will lead to the incorrect conclusion that a Hamiltonian graph is

non-Hamiltonian. Forced edges should therefore generally be viewed as constraints which

can reduce the number of possible Hamiltonian Cycles which can be found. However, not

all forced edges should be viewed as constraints. We say that a forced edge in a graph

G is ‘safely forced’ if it is marked as forced but also happens to necessarily be part of

every Hamiltonian Cycle in G. In other words, the act of forcing such an edge does not

reduce the number of Hamiltonian Cycles in G, but rather serves the role of providing

information about G that may be very useful. For example, both edges incident on

any degree-2 vertex can be safely forced. Even non-Hamiltonian graphs can have safely

forced edges, and in this case it still means that these edges are (vacuously) part of every

Hamiltonian Cycle. We indicate forced edges by drawing hash marks across them, as

shown in Figure 3.1 below.

Figure 3.1: The Graph On The Left Contains A Forced Edge, Whereas The Graph On

The Right Contains Two (Safely) Forced Edges.

Since the Hamiltonian Cycle problem is so difficult, any extra information about a

graph that can be obtained is very precious. Safely forced edges are such a source of

information, and should therefore be exploited whenever possible, because they can be

used to determine Hamiltonicity, as will be shown in subsection 3.1.2.

In contrast with safely forced edges, an edge in a graph which is necessarily part of

Chapter 3. Algorithmic Results 25

no Hamiltonian Cycle may be safely deleted. We use the term ‘pruning’ to refer to the

act of safely deleting an edge. Pruning can be viewed as ‘cutting the fat’ out of a graph,

and much like forcing is an important tool for determining Hamiltonicity.

On a related note, we say that a ‘chain’ is a path containing q vertices subject to the

following constraints: 2 ≤ q < n, and each of the q − 1 edges along the path is forced,

the 2 endpoints each have degree at least 3, and the remaining q−2 vertices, if any, have

degree of exactly 2. These endpoints are referred to as ‘heads’ of the chain. (Please refer

to Figure 3.2, below.)

Figure 3.2: A Graph Containing Two Chains

3.1.2 Necessary Conditions Involving Forced Edges

In addition to the necessary conditions for Hamiltonicity given in Subsection 2.2.2,

the notion of a forced edge leads us to a number of other necessary conditions. Our

first necessary condition pertains to edge-cuts across forced edges. We say that an ‘odd-

forced-cut’ is a cut across an odd number of edges, all of them forced. Figure 3.3 below

illustrates a graph containing such cuts.

Chapter 3. Algorithmic Results 26

Figure 3.3: A Graph Containing 8 Odd-Forced-Cuts

Necessary Condition 3.1.1 No Hamiltonian graph contains an odd-forced-cut.

Proof: The odd-forced-cut separates the graph into two components. Since the cut

contains an odd number of forced edges, though, the forced edges have no hope of con-

tributing to a cycle. At best, they might be part of a Hamiltonian Path that has one end

in each component. �

Corollary 3.1.1 Given any p-edge-cut in a graph, any Hamiltonian Cycle contains q

edges crossing that cut, where 2 ≤ q ≤ p and q is even.

A ‘hub’, shown in Figure 3.4 below, is a vertex which is incident on 3 or more forced

edges.

Figure 3.4: A Graph Containing A Hub

Necessary Condition 3.1.2 No Hamiltonian graph contains a hub.

Chapter 3. Algorithmic Results 27

Proof: Every vertex in a Hamiltonian Cycle has exactly two Hamiltonian edges incident

on it. A hub therefore violates the very definition of Hamiltonian Cycle. �

It is tempting to somehow prove that this Necessary Condition follows as a corollary

from Necessary Condition 3.1.1, but hubs can also contain an even number of forced

edges, which does not constitute an odd-forced-cut.

Finally, we say that a forced edge incident on the two vertices of a 2-vertex-cut is called

a ‘barricade’, shown below in Figure 3.5.

Figure 3.5: A Graph Containing A Barricade

Necessary Condition 3.1.3 No Hamiltonian graph contains a barricade.

Proof: Let us label the two endpoints of the barricade x and y. The barricade guarantees

that exactly one additional Hamiltonian edge will leave each of x and y. Therefore the

forced path through x and y cannot lie on a Hamiltonian Cycle, since x, y forms a 2-cut.

�

3.1.3 The Look-Ahead Theorem

With respect to Hamiltonian Cycles, it is the edges of a graph which are of paramount

importance. Any given edge falls into exactly one of three groups: edges which are in all

Hamiltonian Cycles, edges which are in some Hamiltonian Cycles, and edges which are

Chapter 3. Algorithmic Results 28

in no Hamiltonian Cycles. Edges in the first and third groups can be identified using the

following theorem:

Theorem 3.1.1 (Look-Ahead Theorem) If a graph is non-Hamiltonian after delet-

ing an edge, then that edge can be safely forced. Likewise, if a graph is non-Hamiltonian

after forcing an edge, then that edge can be safely pruned.

Proof: If forcing an edge causes the graph to become non-Hamiltonian, it cannot be part

of any Hamiltonian Cycle, and therefore may be pruned. Similarly, if deleting an edge

causes the graph to become non-Hamiltonian, then it must be part of every Hamiltonian

Cycle, and therefore may be forced. �

The Look-Ahead Theorem is so called because the act of testing an edge by forcing it

or deleting it is equivalent to a common algorithmist’s trick, namely ‘looking ahead’ one

step. Of course, with many graphs one step is not nearly sufficient to show that it can

be safely forced or pruned. Nonetheless, even with one step, the Look-Ahead Theorem

can be quite useful. For example, it provides some interesting corollaries:

Corollary 3.1.2 Any edge added to a non-Hamiltonian graph can be safely forced.

Corollary 3.1.3 Every edge in a non-Hamiltonian graph can be safely forced.

Corollary 3.1.4 Every edge in a non-Hamiltonian graph can be safely pruned.

The Look-Ahead Theorem is obviously not limited to looking ahead by just one step. It

is possible to use an arbitrary number of iterations of the Look-Ahead Theorem in order

to create powerful compound necessary conditions for non-Hamiltonicity. This forms the

basis for a potentially powerful proof system for non-Hamiltonicity. We will not explore

this topic in this thesis, but rather suggest that this is an interesting area for future

research.

Chapter 3. Algorithmic Results 29

3.1.4 Algorithmic Impact

When used in concert with the Look-Ahead Theorem, the known necessary conditions

for Hamiltonicity in Subsections 2.2.2 and 3.1.2 provide us with a rich assortment of algo-

rithmic tools. The following rules represent some of these tools. They can be considered

as ‘algorithmic rules’, since their wording directly suggests a course of action. Naturally,

these rules are all meant to apply only within the context of searching for Hamiltonian

Cycles.

Action Rule 3.1.1 Both edges across any 2-edge-cut can be safely forced.

Proof: Let us call these two edges e1 and e2. If we delete e1, we are left with a graph

that is not biconnected, and therefore non-Hamiltonian by Necessary Condition 2.2.1.

By the Look-Ahead Theorem, we may therefore safely force e1. We may force e2 for the

same reason. �

This rule also leads to a very useful corollary:

Corollary 3.1.5 Both edges incident on a degree-2 vertex can be safely forced.

Action Rule 3.1.2 Suppose a graph contains a cut across q edges, and q − 1 of those

edges are forced. If q is even, then the remaining edge can be safely forced. If q is odd,

then the remaining edge can be safely pruned.

Proof: Follows from Necessary Condition 3.1.1 together with the Look-Ahead Theorem.

�

Action Rule 3.1.3 If a graph contains an unforced edge between the two vertices of a

two-vertex-cut, then that edge can be safely pruned.

Proof: Follows from Necessary Condition 3.1.3 together with the Look-Ahead Theorem.

�

Chapter 3. Algorithmic Results 30

Action Rule 3.1.4 If a vertex of degree at least 3 has exactly two forced edges incident

on it, then all of the remaining edges incident on it can be safely pruned.

Proof: Follows from Necessary Condition 3.1.2 together with Look-Ahead Theorem. �

In practice, Rule 3.1.4 is perhaps the single most useful pruning rule. A single applica-

tion can prune many edges, revealing a number of degree-2 vertices. By Corollary 3.1.5,

the edges incident on these vertices can be safely forced. These resulting forced edges

often set up a number of other vertices where Rule 3.1.4 can once again be applied, and

so on. This type of pruning is therefore highly effective, especially in sparse graphs. In

many cases, cascading iterations will solve the entire graph quite effectively. An example

of this is given in Figure 3.6, below.

5

31 2

4

Figure 3.6: Repeated Applications Of Corollary 3.1.5 & Rule 3.1.4

Action Rule 3.1.5 If a graph contains a chain which has an unforced edge between its

two heads, then that edge may be safely pruned.

Chapter 3. Algorithmic Results 31

Proof: Since a chain can never contain all of the vertices in a graph, if we were to force

the edge between the chain heads, the chain would form a closed cycle that is not a

Hamiltonian Cycle. Each of its vertices would have exactly 2 forced edges incident on

it, so repeated applications of Rule 3.1.4 would disconnect this cycle from the rest of the

graph. Since this graph is not biconnected, it is not Hamiltonian. The act of forcing an

edge therefore created a graph which is obviously non-Hamiltonian, so the Look-Ahead

Theorem allows us to safely prune this edge, as required. �

In practice, Rule 3.1.5 is also an effective pruning rule. An example of its application

is given in Figure 3.7, below.

1 2

Figure 3.7: An Application Of Rule 3.1.5

In some cases, we can exploit the symmetry of a graph in order to determine whether it

is Hamiltonian. More specifically, we may prune edges based on symmetry. For example,

this principle can be applied to the Petersen Graph in Figure 3.8, below.

Chapter 3. Algorithmic Results 32

Figure 3.8: The Petersen Graph

The Petersen graph consists of an inner star separated from an outer pentagon by a

5-edge-cut. We know from Corollary 3.1.1 that we may delete one of these edges. Usually

this is a problem, because we do not necessarily know which edge to delete. However,

in this case, symmetry guarantees that regardless of which edge we choose, we will be

left with one of five isomorphic graphs. We can therefore proceed and delete any one of

the edges. This principle can be similarly applied to the Tutte Graph, shown in Figure

4.1. Deleting any arbitrary edge incident on its central vertex would leave us with one of

three isomorphic graphs, showing that any one of the central edges can be safely pruned.

More formally, this technique can be stated as follows:

Action Rule 3.1.6 If a graph contains a p-edge-cut, p odd, and each of the p graphs

resulting from deleting one of these edges is isomorphic to the others, then we may safely

prune any single one of the edges in the cut.

Proof: We know from Corollary 3.1.1 that one of the p edges must be deleted, and

that removing this edge will not reduce the number of Hamiltonian Cycles in the graph.

Because of symmetry, it does not matter which of the edges we delete, as required. �

Unfortunately, the graph isomorphism problem is in NP, but is not known to be in P,

and is not known to be NP-Complete, which prevents a proper analysis. Nevertheless,

Chapter 3. Algorithmic Results 33

this area may yield future results, since there may be special cases which are exploitable

in polynomial time.

This is by no means an exhaustive list of necessary conditions, pruning rules, or forc-

ing rules. The literature contains additional rules that are useful under very specific

circumstances. Indeed, we can expect many more rules to be developed in the future.

Of course, the effectiveness of any Hamiltonicity theorems and rules depends largely on

the graph on which they are applied. Implementations of these rules also have various

different running times. For example, Necessary Condition 2.2.1 tells us to check for

biconnectivity, which is widely known to be solvable using depth first search, which has

an O(n + m) running time. In contrast, Necessary Condition 2.2.2 tells us to check if

the graph is 1-tough, which is NP-Hard for cubic graphs [5], and Rule 3.1.6 deals with

a problem whose difficulty is not yet understood. Therefore, an algorithmist must weigh

poor running times with the effectiveness of executing a certain rule when deciding which

ones to include in an algorithm. In Section 3.3 we put some of these rules to use in order

to develop a fast Hamiltonian Cycle algorithm.

Chapter 3. Algorithmic Results 34

3.2 Divide & Conquer Algorithm

3.2.1 Overview

This section serves a twofold purpose. Firstly, it describes a generic divide & con-

quer algorithm for finding Hamiltonian Cycles that can be combined with most other

algorithms. Secondly, this algorithm makes simple use of the forced edges which were

described in Section 3.1, and therefore lends some practical intuition to a concept which

will become more complicated in subsequent sections.

3.2.2 Algorithm Description

Using a divide & conquer strategy is an effective algorithmic technique that has been

applied to many different problems. It turns out that this can also be applied in order

to help determine whether or not a given graph is Hamiltonian. This is a more general

technique that can be used to augment other search algorithms. It should therefore be

viewed more as a collaborative technique rather than a substitute for them.

Determining whether a graph is Hamiltonian by using a divide & conquer approach

is only effective under special conditions, namely when a graph contains a relatively

sparse edge-cut separating it into two halves which are approximately equal in size. For

example, if the graph contains a 2-edge cut as shown in Figure 3.9 below, then it is a

perfect candidate. Technically speaking, such graphs are not necessarily ‘sparse’ by the

standard definition, but sparse graphs are typically much more conducive to the presence

of sparse cuts than are dense graphs, so the divide & conquer technique should be seen

as an algorithm for sparse graphs.

Chapter 3. Algorithmic Results 35

2G1

1x 2x

1y 2y

G

x1 x2

y1 y2

G

Figure 3.9: Divide & Conquer Being Applied Across A 2-Edge Cut

Note that any graph with a 2-edge-cut also contains a number of 2-vertex cuts. Any

edges between vertices x1 and y1, x1 and y2, x2 and y1, or x2 and y2 could therefore

be pruned by appealing to Rule 3.1.3, and hence they are not shown. Suppose we were

to delete the edges of the cut to disconnect the graph into two components. Then the

entire graph G contains a Hamiltonian Cycle if and only if its left component contains

a Hamiltonian Path between x1 and y1, and its right component contains a Hamiltonian

Path between x2 and y2. Therefore, if we force these edges as indicated in graphs G1

and G2, we know that G is Hamiltonian if and only if both G1 and G2 are Hamiltonian,

suggesting that this style of divide & conquer is prudent. We may now use any available

algorithms to solve G1 and G2.

We may similarly use this technique across a 2-vertex-cut, as shown below in Figure

3.10, below.

x

G1 G2

y

G

y y

xx

Figure 3.10: Divide & Conquer Being Applied Across A 2-Vertex Cut

The only difference here is that the vertices x and y are copied so that they appear

in both G1 and G2.

This divide & conquer technique is not limited to 2-edge-cuts and 2-vertex-cuts,

Chapter 3. Algorithmic Results 36

however. As shown below in Figure 3.11, it can also be applied across 3-edge-cuts,

albeit at a price.

z1

2y1y

x1 x2

G b

G a

z2z1

2y

x1 x2

1y

z2z1

2y1y

x1x

y1 y2

1z 2z

G c

z2

2

x1 x2

G

Figure 3.11: Divide & Conquer Being Applied Across A 3-Edge Cut

We know from Corollary 3.1.1 that any Hamiltonian Cycle in G crosses exactly 2 of

the edges in the cut. We may therefore create three copies of G, one corresponding to

each of the three cases where one of the edges across the cut has been removed. Each of

these graphs contains a 2-edge-cut, and may therefore also be divided and conquered.

As the cuts become more complicated, dividing & conquering yields diminishing re-

turns. For example, a 3-vertex-cut requires us to make 6 copies of the graph which may

each then be treated using the 2-vertex-cut divide & conquer technique. In general, the

number of divided graphs necessary increases exponentially with the size of the cut, re-

gardless of whether it is an edge-cut or a vertex-cut, showing that this technique indeed

is only useful given small cuts.

Chapter 3. Algorithmic Results 37

3.3 The Stone Carver’s Hamiltonian Cycle Algorithm

3.3.1 Introduction

In this section, we describe the Stone Carver’s Hamiltonian Cycle algorithm (SCHCA),

a randomized heuristic search algorithm for finding Hamiltonian Cycles in Hamiltonian

graphs which implements some of the ideas given in Section 3.1. In Subsection 3.3.2,

we start off by describing its main subroutine, the ‘Probability Mill’. Since the SCHCA

is a very natural algorithm, its pseudocode, given in Subsection 3.3.3, is very simple

and requires only a few lines. The SCHCA amounts basically to repeatedly calling the

Probability Mill subroutine until a Hamiltonian Cycle is found.

Normally, after an algorithm is described, an analysis of its running time is given.

We have been able to prove the running time of the Probability Mill subroutine, but

a complete analysis depends very much on the class of graphs that is being used as

input. For the purposes of this research, we are particularly interested in sparse random

regular graphs. Unfortunately, we have not yet been able to prove the running time of

the SCHCA on these graphs, which is why we refer to it as a heuristic. In the absence of

such a proof, we give two alternate measures of its effectiveness. The first such measure,

given in Subsection 3.3.4, is empirical evidence illustrating its running time. The second,

given in Subsection 3.3.5, is an empirical comparison between the SCHCA and a heuristic

which has already been established as working well.

It turns out that the SCHCA is not the fastest heuristic available for finding Hamil-

tonian Cycles in sparse Hamiltonian graphs. However, the goal of this research is not

to create a fast practical Hamiltonian Cycle algorithm, but rather to develop a simple

algorithm for which it might be possible to prove the running time on random regular

graphs. Empirical evidence suggests that the SCHCA has a running time of O(n2) on

random regular graphs, which, if proven, would be a considerable improvement over the

Chapter 3. Algorithmic Results 38

current best, O(n6) [20]. As stated in Subsection 3.3.6, the ultimate future goal of this

research is to prove this running time.

The SCHCA is designed to be used on graphs that are Hamiltonian, and fares poorly

when given non-Hamiltonian graphs as input. It will only give the correct answer on very

simple cases of non-Hamiltonian graphs, whereas complicated ones will cause it to run

indefinitely. We are interested primarily in solving sparse random regular graphs. As al-

ready stated in Section 2.2, any graph chosen from this class is almost surely Hamiltonian,

so we need not worry about infinite running times.

The SCHCA is unique in how it works. Many Hamiltonian Cycle algorithms such as

HAM, SparseHAM, MultiPath, and others work by selecting edges and building partial

paths in the hope of forming a Hamiltonian Cycle [50]. The SCHCA works in exactly the

opposite way; instead of selecting edges to include, it selects edges to exclude, and deletes

them. Incidentally, this is the source of its name. A quote attributed to Michelangelo

states that every block of marble contains a statue, and that it is the carver’s job to

‘liberate’ it by cutting away the excess pieces. Similarly, the SCHCA deletes the extra

edges in a graph in order to ‘liberate’ a Hamiltonian Cycle. Although it is not unheard

of for Hamiltonian Cycle algorithms to be randomized, this is another distinguishing

characteristic of the SCHCA.

3.3.2 The Probability Mill Subroutine

Probability Mill is the subroutine that performs the actual edge deletions, and is

called repeatedly by the SCHCA. Because it is destroying the graph, we only run this

subroutine on a backup copy of the graph. Probability Mill’s purpose is to execute a

‘deletion sequence’ on a graph. A deletion sequence is a sequence of edges that are

deleted in order. The resulting graph depends very much on the order in which the edges

Chapter 3. Algorithmic Results 39

of a deletion sequence are removed, showing that ‘deletion sets’ are insufficient for our

needs. After each edge is deleted, we apply some subset of the pruning and forcing rules

described in the previous sections. Edges deleted by pruning are not considered to be

part of the deletion sequence. In effect, any edge that appears in a deletion sequence

may be unsafe in that its deletion may reduce the number of possible Hamiltonian Cycles

in the graph. In contrast with these ‘Probability Mill deletions’, pruning deletions are

perfectly safe.

Probability Mill is randomized in that it executes random deletion sequences on the

graph. The rationale for its randomization is quite simple; Probability Mill deletions are

unsafe and may destroy any chance of finding a Hamiltonian Cycle. In other words, any

single deletion within a deletion sequence may be a critical mistake. This mistake may

come at any point in the sequence, but more importantly, such mistakes are not neces-

sarily detectable. Therefore, if Probability Mill were repeatedly called in a sequential,

depth-first manner that filled out a search tree, a mistake early in the very first dele-

tion sequence executed would guarantee that the algorithm wastes an incredible amount

of time hopelessly searching a potentially enormous subtree nested below that mistake.

Randomization avoids this problem by allowing deletion sequences to ‘warp’ out of dan-

gerous areas of the search tree. Although this step sacrifices the completeness of the

algorithm in a computational sense, empirical evidence confirms that the running time

is improved substantially.

The only decision to be made with respect to the Probability Mill subroutine is to

determine which pruning and forcing rules to run. It should be intuitively obvious that

without any pruning rules, the running time of Probability Mill is O(m) (after all, we

can only delete a maximum of m edges). However, it turns out that if we are somewhat

clever, we can include some powerful pruning rules without increasing the running time.

Intuitively, the strategy here is to include as many pruning rules as possible into the

Chapter 3. Algorithmic Results 40

Probability Mill subroutine without increasing its asymptotic running time so that we

strike a balance between its effectiveness while maximizing the number of times it can

be executed.

We can include Corollary 3.1.5, which allows us to force both edges incident on any

degree-2 vertex. We can also include Rule 3.1.4, which allows us to look at any vertex

with exactly two forced edges incident on it, and safely prune all of its other unforced

edges. We shall henceforth refer to this pruning rule as ‘Lightning’, because it works so

quickly and effectively. Finally, we can include Theorem 3.1.5, which allows us to safely

prune any unforced edge incident on both heads of a chain. We will therefore refer to

this pruning rule as ‘Head Hunter’.

The only extra data structure that we need is an array of chain data structures, each of

which keeps track of its two heads as well as how many vertices it contains. Conceptually,

each chain data structure should be thought of as a constant-sized representation of an

arbitrarily long chain. The maximum number of chains in a graph is bounded by O(n).

In order to minimize the time spent manipulating chains, we assume that our graph is

represented using adjacency lists, but that the degree of each vertex is bounded by a

constant (as is the case with sparse random regular graphs).

Chains play an important role in ensuring that Probability Mill runs quickly. They

can be easily created, deleted, merged and closed to form cycles in O(1) time. They

allow us to choose a random edge to be deleted in O(1) time. Part way through our

deletion sequence, our graph will contain many forced edges. Instead of searching for

unforced edges, we want to be able to find a random, unforced edge more quickly, so we

first choose a chain at random, and then randomly choose an edge incident on one of

that chain’s heads. In addition, chains allow us to execute our Head Hunter pruning rule

in O(1) time; every time a chain is modified, we check to see if there is an unforced edge

incident between its two heads. If so, we can safely prune it using Head Hunter.

Before running Probability Mill, we assume that all possible chain data structures

Chapter 3. Algorithmic Results 41

have first been built. If the graph contains no chains, then we repeatedly delete edges at

random from the graph until at least one chain has been created, at which point we switch

over to randomly deleting edges from chain heads. Every time a deleted edge creates a

degree-2 vertex, we immediately force its two edges in O(1) time. This may create chains,

extend chains, or merge chains. We look at the endpoints of any newly-created chain

and see if Lightning or Head Hunter apply. If so, we enter the relevant vertices into our

‘pruning queue’, which is an ordinary fifo queue. We mark these vertices so that they

cannot have multiple instances on the queue. The pruning queue is then executed by

removing the vertices and deleting the appropriate edges from their adjacency lists. Other

than their safety, Lightning and Head Hunter deletions are otherwise the same as normal

Probability Mill deletions; they can create degree-2 vertices, affect chains, and put other

vertices onto the pruning queue. Likewise, the pruning queue will not add anything to

our running time, because all actions associated with it are O(1) operations, and every

pruning deletion simply means that we will have to perform one fewer Probability Mill

deletion. In accordance with the idea of a deletion sequence, we repeatedly apply a

random deletion, followed immediately by an execution of the pruning queue, provided

that it is non-empty. We know that the Probability Mill subroutine has completed an

iteration when one of its termination conditions has been met.

Probability Mill has only three termination conditions; one represents success, and

the other two represent failure. In addition to allowing us to perform a number of actions

in O(1) time, chains also allow us to know when a Hamiltonian Cycle has been found; if

a chain closes upon itself to form a cycle, we check to see if it contains all of the vertices

of the graph in O(1) time. If not, then we have found a disjoint cycle, which is one of our

two failure conditions because it shows that the graph is disconnected, which is a special

case of Necessary Condition 2.2.1. The other failure condition is a hub, as described by

Necessary Condition 3.1.2. Hubs can be detected in O(1) time because we simply need

to check the endpoints of any edge that we force. When any one of these conditions is

Chapter 3. Algorithmic Results 42

met, Probability Mill immediately terminates.

Example 3.3.1

Figure 3.12.1 below illustrates a graph before any edges have been deleted. Figure

3.12.2 shows this graph after the deletion sequence (e1, e2) has created a hub. Figure

3.12.3 shows the graph after the deletion sequence (e2, e3) has created a disjoint cycle.

Finally, Figure 3.12.4 shows the Hamiltonian Cycle found by deletion sequence (e4, e5).

In all three cases, notice the edges that were deleted by pruning.

2

e 3e

5e4e

e2

e3

4e

1e

5e

e1

2e

3 4

1

2

Figure 3.12: The Three Possible Ways For Probability Mill To Terminate

Within the framework of the Probability Mill, every deletion sequence will result in

a Hamiltonian Cycle, a hub, or a disjoint cycle. Clearly, it is impossible for the deletion

of an edge to cause a vertex to have a degree less than 2, since all degree-2 vertices

Chapter 3. Algorithmic Results 43

immediately have their edges forced, and are therefore immune to deletion. Probability

Mill is sound in that it cannot find a ‘false Hamiltonian Cycle’, since it does not add

edges. It is also complete, because every Hamiltonian graph obviously has some deletion

sequence that will liberate a Hamiltonian Cycle.

Most importantly, the chain manipulation, hubs, disjoint cycles, pruning, etc. can

all be implemented for free along with the actual deletion sequence. Probability Mill

therefore has an O(m) upper bound on its running time. In fact, this is the best possi-

ble, because Probability Mill is clearly bounded from below by Ω(m), giving us a total

running time of Θ(m). This fast running time is desirable because it allows us to run

this subroutine as many times as possible.

3.3.3 SCHCA Pseudocode

The details of Probability Mill are the most complicated aspect of the algorithm. The

remaining pseudocode for the SCHCA is quite simple and is shown below.

01 SCHCA(G) {

02 Initialize Data Structures

03 InitialPruning(G)

04 If (solved(G)) then Output HC or return that no HC exists

05 Do {

06 Copy(G, G*)

07 ProbabilityMill(G*)

08 } While (not Hamiltonian(G*))

09 Output HC or return that no HC exists

10 }

Chapter 3. Algorithmic Results 44

Initializing the data structures on line 2 simply consists of setting up the chains, ini-

tializing an empty pruning queue, etc. The InitialPruning subroutine on line 3 is the

only chance of determining that the graph is not Hamiltonian; non-Hamiltonian graphs

that are too complicated to be solved by InitialPruning will cause the while loop to run

an infinite number of times. The InitialPruning subroutine is a one-time cost outside of

Probability Mill, so all Hamiltonicity checks and pruning with reasonably fast running

times should be included here. For example, at the very least, InitialPruning should build

all possible chains, run Lightning and Head Hunter as many times as possible, and check

to make sure that the graph contains no hubs, is biconnected, and not unevenly bipartite.

Since Probability Mill has already been described, the remainder of the pseudocode is

self-explanatory.

Of course, alternate implementations are possible. For example, instead of making

copies of the graph, we could simply maintain an ‘undo list’ that reverses the affects of

every failed Probability Mill iteration. In practice, however, this provides little benefit,

since the deletion sequences executed by Probability Mill often have O(m) length. In

any event, the asymptotic running time of the algorithm would not be affected.

It would not be difficult to attach a backtrack tree to the SCHCA so that it becomes

a true algorithm rather than a heuristic by gaining the additional capacity to identify

all non-Hamiltonian graphs. There seems little point in doing this, however, since non-

Hamiltonicity would correspond to a backtrack tree that has been exhaustively filled out.

This would take an exponential amount of time, and would therefore be useful only with

very small graphs.

Chapter 3. Algorithmic Results 45

3.3.4 Empirical Running Times

High-Level Empirical Analysis

The running time of the SCHCA depends entirely upon the graph class on which it

is executed. For that reason, it does not make sense to ask the question, “What is the

running time of the Stone Carver Algorithm?” Instead, one must ask, “What is the run-

ning time of the Stone Carver Algorithm on the following class of graphs...?” In general,

the expected running time for the SCHCA on a graph class X is O(IP + PM ∗EI(X))

where IP is the running time for Initial Pruning, PM is the running time for Probability

Mill, and EI(X) is the expected number of Probability Mill iterations needed to solve

a member of X. This running time is contingent on X being Hamiltonian; otherwise if

Initial Pruning fails to show the graph to be non-Hamiltonian, then Probability Mill will

run indefinitely. Designing Initial Pruning to be so complicated so that it dominates the

running time would defeat its purpose, so we may ignore its impact, leaving us with a

running time of O(m ∗EI(X)), since we know that the running time of Probability Mill

is O(m).

Calculating EI(X), however, is very difficult for most graph classes. Unfortunately,

here we have been unsuccessful in rigorously proving any results. Nonetheless, the exper-

imental evidence supporting the SCHCA’s strength is quite compelling. In particular,

the SCHCA appears to perform very well on random r-regular graphs for any r ≥ 3. As

already stated in Section 2.2, any graph chosen from this class is almost surely Hamilto-

nian, so we need not worry about infinite running times.

Our empirical evidence illustrating the running time of the SCHCA on random regular

graphs was obtained by repeatedly running the algorithm on many different random 3-

regular graphs of varying sizes, and analyzing the average number of Probability Mill

iterations. Random 3-regular graphs are of particular interest because they are the

sparsest non-trivial random regular graphs (random 2-regular graphs are just random

Chapter 3. Algorithmic Results 46

2-factors). All of our 3-regular random graphs were generated according to the standard

‘Configuration Model’ [33].

Three Versions Of The SCHCA

We tested three progressively stronger versions of the algorithm. The only difference

between them is found in the Probability Mill subroutine. We refer to these different

implementations as ‘Version 1’, ‘Version 2’, and ‘Version 3’ of the SCHCA, where Version

1 is the most simple, and Version 3 is the most complicated.

Version 1 of the SCHCA is as described above. The Probability Mill subroutine runs

in O(m) time, and incorporates the Lightning and Head Hunter pruning rules.

Version 2 of the SCHCA is slightly more complicated. The asymptotic running time of

Probability Mill cannot be improved, but it turns out that the number of probability Mill

iterations can be reduced significantly while increasing its running time only modestly.

By incorporating the Look-Ahead Theorem into Probability Mill, the algorithm gains

the ability to sidestep potential mistakes, which significantly cuts down on the number

of Probability Mill iterations that terminate in hubs and disjoint cycles. This step is

fairly straightforward to implement; every time we are about to perform a Probability

Mill deletion, we first run a simulation that deletes the edge in question. If that deletion

causes the graph to become non-Hamiltonian, then we force the edge. Otherwise, we

delete it. A simulated deletion with pruning could cascade and delete O(m) edges.

However, in practice this does not seem to occur with random 3-regular graphs, and

pruning cascades tend to have constant length. Therefore, instead of making a copy of

the graph, we implement the Look-Ahead simulation using an undo list.

Version 3 also uses the Look-Ahead Theorem, but this time uses it more extensively.

It still simulates every deletion, but we call this version ‘Variable Look-Ahead’ because

every time a simulated deletion saves a mistake from occurring, we run a ‘Full Look-

Ahead’ on every unforced edge in the graph. That is, we sequentially simulate the

Chapter 3. Algorithmic Results 47

deletion of every unforced edge, and accordingly force those that cause the graph to

become non-Hamiltonian. Naturally, all subsequent Lightning and Head Hunter pruning

is also performed.

Experimental Evidence & Analysis

Before coming to the charts which compare these three versions and illustrate their

suspected running times, let us describe the experiments. All tests were run on random

3-regular graphs. We selected several graph sizes; our first experiments looked at graphs

with 100 vertices up to 1,000 vertices separated by increments of 100 vertices. In each

of these 10 groups, we generated 1,000 graphs, and solved them using the three versions

of the SCHCA. The performance was better than expected, so we ran more tests on

larger graphs. With Version 1, we solved graphs having 5,000 vertices up to 50,000

vertices, separated by increments of 5,000. With Versions 2 and 3, we continued up

to 100,000 vertices. Again, each group contained 1,000 graphs. All experiments were

run under Windows XP Professional on a normal desktop computer containing a single

AMD Athlon XP 1800+ processor and 768 MB of RAM. Consistent with the result

that any randomly-generated regular graph is Hamiltonian with high probability [42], no

non-Hamiltonian graphs were seen.

The chart in Figure 3.13 below shows the average number of Probability Mill iterations

that each of the three versions required for finding Hamiltonian Cycles in random 3-

regular graphs.

This data strongly suggests that the relationship between graph size and the expected

number of Probability Mill iterations is at worst linear for the SCHCA, regardless of

which version is being run. In other words, for random 3-regular graphs, EI(X) appears

to be O(n). Experiments on 4, 5, 6, and 7-regular graphs as well as complete graphs

yielded similar linear relationships. If future research can prove this relationship to hold,

Chapter 3. Algorithmic Results 48

Ver.1

Ver.2

Ver.3

Figure 3.13: Chart Comparing The Average Number Of Probability Mill Iterations Be-

tween The Three Versions Of The SCHCA Running On Random 3-Regular Graphs

it would mean that the expected running time of the SCHCA on random regular graphs

is O(n) ∗ O(m) = O(n · m) = O(n2) for sparse random regular graphs. This would be a

considerable improvement over the current best, O(n6), published in [20].

In addition, this data shows that adding the Look-Ahead step into the Probability Mill

subroutine of Versions 2 and 3 has a dramatic effect on reducing the number of Probability

Mill iterations. Whether or not it is worthwhile to include this step, however, is not a

foregone conclusion. There is a possibility that the amount of running time added in each

Probability Mill iteration exceeds the time saved by reducing the number of iterations.

It turns out that for random regular graphs, this is not a concern, as shown by the chart

Chapter 3. Algorithmic Results 49

below in Figure 3.14.

Ver.1

Ver.2

Ver.3

Figure 3.14: Chart Comparing The Running Time Of The Three Versions Of The SCHCA

On Random 3-Regular Graphs

As was predicted, the running time of Version 1 forms an obvious parabola. The

Look-Ahead steps included in Versions 2 and 3 clearly pay off in terms of running time,

and their running times at worst seem to be quadratic, tempered by small constants.

In fact, a closer look at the experimental evidence raises the possibility that the Look-

Ahead step may actually improve the asymptotic running time of the SCHCA. The chart

in Figure 3.15 below shows the average time per Probability Mill iteration for the three

version of the SCHCA.

Chapter 3. Algorithmic Results 50

Ver.1

Ver.2

Ver.3

Figure 3.15: Chart Comparing Average Time Per Probability Mill Iteration For The

Three Versions Of The SCHCA On Random 3-Regular Graphs

The fact that the average time per iteration for Version 1 is linear should be of no

surprise. As already discussed, the fact that the data for Version 2 is linear suggests that

the single Look-Ahead step is rarely associated with an O(m) pruning cascade. However,

the most interesting data comes from Version 3. Given that we are running the Look-

Ahead step on every single edge in the graph, it is somewhat surprising that the average

time per iteration does not suffer, and remains linear. This seems to indicate that adding

O(n) steps into the Probability Mill subroutine does not necessarily increase its running

time.

Chapter 3. Algorithmic Results 51

The data in Chart 3.13 shows that the number of Probability Mill iterations for Versions

1 and 2 grows linearly with graph size. However, the data for Version 3 is so scaled that

it is difficult to see. The chart below in Figure 3.16 gives a better view.

Ver.3

Figure 3.16: Chart Showing The Average Number Of Probability Mill Iterations For

Version 3 Of The SCHCA Running On Random 3-Regular Graphs

This chart shows the performance of Version 3 in terms of Probability Mill iterations.

Because the curve looked suspicious, we performed experiments including graphs with up

to 800,000 vertices separated by increments of 50,000. Again, each data point contains

the average number of Probability Mill iterations needed to solve 1000 random graphs.

Version 3 has clearly become very successful, and even large graphs require very

few Probability Mill iterations. Although the increase in Probability Mill iterations for

Chapter 3. Algorithmic Results 52

Versions 1 and 2 is linear, EI(X) for Version 3 appears to be sub-linear. This, together

with the evidence from Chart 3.15 indicating that the average time per Probability Mill

iteration increases linearly for Version 3, seems to suggest that the SCHCA’s running

time on random regular graphs may be even better than O(n2).

Interestingly, if we take the Probability Mill subroutine to the next level of complexity

by running Full Look-Ahead on every edge after every Probability Mill deletion rather

than waiting for a mistake to be saved, the running time on random regular graphs

increases by a factor of at least O(n), and the SCHCA loses its advantages.

Performance On Other Graph Classes

The SCHCA was successfully used by Dr. Frank Ruskey and his graduate student,

Scott Effler at the University of Victoria to find Hamiltonian Cycles in Cayley graphs

[15]. Their work was focused on trying to disprove the conjecture that all Cayley graphs

are Hamiltonian by finding a counterexample. They have as of yet been unable to settle

the conjecture, but empirically the SCHCA performed very well. It was unable to solve

a few Hamiltonian instances, but at the very least one can claim that the SCHCA is a

good filter for isolating potential candidates for non-Hamiltonicity among Cayley graphs.

The SCHCA was also tested on square Knight’s Tour graphs, the famous class de-

scribed in Section 2.1. By ‘square’, we mean that the chessboards corresponding to the

graphs have an equal number of rows and columns. As square Knight’s Tour graphs with

odd-by-odd dimensions are not Hamiltonian [50], we focus on those corresponding to

chessboards with an even number of rows and columns. Experimental evidence showing

the performance of the SCHCA on square Knight’s Tour graphs is shown below in Figure

3.17.

The testing conditions and number of samples taken were identical to those used for

random regular graphs. Although the SCHCA did not perform as well on Knight’s Tours

Chapter 3. Algorithmic Results 53

Ver.1

Ver.3

Ver.2

Figure 3.17: Chart Showing The Average Time Required For The SCHCA Running On

Square Knight’s Tour Graphs

as it did on random regular graphs, and it is difficult to make any claims about asymptotic

running times based on this evidence, the results are interesting because Version 2 of the

algorithm outperformed Version 3. In other words, the added Look-Ahead steps included

in Version 3 seem to be a hindrance rather than an asset for this graph class.

In addition, we tested the SCHCA on square Toroidal Grids, graphs resembling Knight’s

Tour graphs except that the vertices corresponding to adjacent board squares are them-

selves adjacent so that each vertex has degree 4. The term ‘Toroidal’ is used because

vertices corresponding to squares on the borders are adjacent to those corresponding to

Chapter 3. Algorithmic Results 54

squares on the opposite borders. All toroidal grids are Hamiltonian. The proof of this

statement proceeds by induction on the number of rows and columns in the grid, and is

not difficult. Experimental evidence showing the performance of the SCHCA on square

Toroidal grids is shown below in Figure 3.18.

Ver.1

Ver.3

Ver.2

Figure 3.18: Chart Showing The Average Time Required For The SCHCA Running On

Square Toroidal Grids

Once again, we used our ‘standard’ test conditions from before, and once again the

SCHCA did not perform as well as it did on random regular graphs. However, this graph

class is interesting for two reasons. Firstly, much like with Knight’s Tours, Version 2 of

the SCHCA outperformed Version 3. Secondly, note the zig-zag pattern of the results.

All versions of the SCHCA had more trouble on square Toroidal Grids with odd-by-odd

Chapter 3. Algorithmic Results 55

dimensions than they did on those with even dimensions. This may be an indication that

square Toroidal Grids with odd dimensions contain fewer Hamiltonian Cycles.

We have seen that the SCHCA fares poorly on non-Hamiltonian graphs, but as im-

plied by the conjecture that P 6= NP, there are also some Hamiltonian graphs that it

cannot handle. For example, the SCHCA takes an exponential amount of time to solve

Interconnected Cutset or ICCS graphs. ICCS graphs, described in [50] are graphs built

using ICCS components. Such a component is shown in Figure 3.19, below.

Figure 3.19: An ICCS Component

When these components are joined end to end in order to form a closed ring, the

resulting ICCS graphs are all Hamiltonian, but nevertheless pose a great challenge for

many Hamiltonian Cycle algorithms. Indeed, joining only 4 or 5 components together

will create a graph that causes the SCHCA to slave for days. The reason is that the

two indicated edges are in every possible Hamiltonian Cycle. This is not immediately

obvious, and no mainstream Hamiltonian Cycle algorithms contain forcing rules that

can recognize these edges. In effect, even with the Look-Ahead step, the SCHCA is

‘blind’ to this pitfall, and with enough ICCS components, the probability of at least

one such edge being deleted becomes very high. After that, there is no hope of finding

Chapter 3. Algorithmic Results 56

a Hamiltonian Cycle. Similarly, as reported in [50], algorithms that are based on the

principle of choosing edges rather than deleting them often fail to choose these edges,

and consequently fail to find a Hamiltonian Cycle. ICCS graphs are not special; any

graph that contains a similar pitfall that the SCHCA cannot detect would cause a poor

running time. For example, since the SCHCA does not check for biconnectivity during

each Probability Mill iteration, it stands to reason that a graph which contains many

edge-cuts which contain very few edges will lose its biconnectivity at some point during

most Probability Mill iterations.

3.3.5 Comparison With Established Heuristic

With algorithms whose running times have not been formally established, it is often

useful to compare them with other well-known algorithms in order to establish how fast

they really are. It is obviously desirable to compare algorithms that were designed for

similar inputs. The difficulty lies in finding an appropriate ‘competitor’.

The DIMACS (DIscrete MAthematics & theoretical Computer Science) Center’s ‘Im-

plementation Challenge’ (http://dimacs.rutgers.edu/Challenges/index.html) holds an ‘Im-

plementation Challenge’ attacking a different problem approximately every year. It is

open to anybody who wishes to submit an algorithm, which is then evaluated on different

inputs. Because of its competitive nature, this is a wonderful source of fast and practical

algorithms. Although they have yet to have a formal Hamiltonian Cycle Implementa-

tion Challenge, the eighth DIMACS Challenge, held in 2001, focussed on the Traveling

Salesman Problem (TSP). This problem, described in Section 1.3, is strongly related

to the Hamiltonian Cycle problem in that any TSP algorithm can be easily adapted to

find Hamiltonian Cycles. Recall that the TSP takes a complete weighted graph G as

input along with a constant k, and asks whether G contains a Hamiltonian Cycle whose

edges sum to at most k. In order to use a TSP algorithm to find Hamiltonian Cycles,

simply take the undirected input for the Hamiltonian Cycle problem and turn it into a

Chapter 3. Algorithmic Results 57

complete graph by adding all missing edges while setting the weights of all ‘real’ edges

to 0 and those of ‘non-edges’ to 1. Simply set k to be 0, and input it into any TSP

algorithm. Any TSP tour will correspond to a Hamiltonian Cycle in the original graph.

Many TSP implementations contain a feature for finding Hamiltonian Cycles and do this

automatically so that complete inputs are not required.

The DIMACS TSP Challenge has been divided into nine categories containing dozens

of algorithms. Dr. David Johnson, one of the organizers of the Challenge, suggested that

Dr. Keld Helsgaun’s Lin-Kernighan Heuristic (LKH) would work very well on sparse

random graphs. Dr. Helsgaun was kind enough to supply an implementation.

The LKH, published in [35], is one of the most celebrated heuristics for finding TSP

tours. It has a reputation for being very fast but nevertheless often finds optimal or

near-optimal tours. It is a well-studied ‘local search’ heuristic with many variants and

implementations. Dr. Helsgaun’s LKH variant (H-LKH), published in [30], differs some-

what from the original, but in any event the details of the LK Heuristic are beyond the

scope of this thesis. We refer an interested reader to [30] and [35].

The Helsgaun variant is very effective. For example, at the time of its publication, it

was able to quickly find optimal tours in many non-trivial graphs, including an instance

containing 7397 cities, the largest that had been optimally solved to that date. This

instance took 1065.6 seconds to solve. In contrast, respected exact algorithms working

on the same instance required roughly 3-4 years of CPU time to solve.

Empirical evidence shows that it is also very effective when given random 3-regular

graphs as input and asked to find a Hamiltonian Cycle. The chart shown below in Figure

3.20 illustrates the running time of the Helsgaun LKH variant compared with that of

the SCHCA, Version 3. The running time data for the SCHCA comes from the same

experiments that were described in the previous subsection. The running time data

for the LKH comes from experiments conducted on the same computer under the same

conditions as before, save that each data point contains the average running time needed

Chapter 3. Algorithmic Results 58

to solve 100 graphs instead of 1000. The default parameters were used.

Ver.3

H-LKH

Figure 3.20: Chart Showing Running Time Comparison Between The SCHCA & Keld

Helsgaun’s Lin Kernighan Variant

The H-LKH variant clearly outperforms the SCHCA on the given inputs. The SCHCA

takes a constant factor of approximately 7 times as long to find Hamiltonian Cycles in

random regular graphs. Both running times increase at what appear to be slightly super-

linear rates. This is consistent with the expected number of Probability Mill iterations

and expected time per iteration as discussed in the previous subsection, but is slightly at

odds with the reported running time of approximately O(n2.2) for H-LKH. It may be the

case that the actual running time for H-LKH is married to a very small constant factor.

Another explanation is that the reported running time pertains only to TSP, and is not

Chapter 3. Algorithmic Results 59

tight for the Hamiltonian Cycle problem on random 3-regular graphs.

It should be noted that the SCHCA was implemented in unoptimized C++, whereas

H-LKH was implemented in optimized C for the DIMACS Challenge, suggesting that

the implementation is likely as efficient as the algorithm would allow. However, the

discrepancy between the running times cannot be attributed to the choice of language;

if the SCHCA were reprogrammed in optimized C, the running time probably would not

decrease greatly.

It is of course possible that if, as suggested by the results in the previous section,

the running time of Version 3 of the SCHCA is faster than O(n2), and that of H-LKH is

approximately O(n2.2) as reported, then for progressively larger graphs the gap between

the running times should shrink. This, however, is speculation and cannot be verified

given the current computer resources of this project.

For ‘real world’ applications, H-LKH is clearly the choice for finding Hamiltonian

Cycles in random regular graphs. In any event, the purpose of this research is not to

find the world’s fastest practical algorithm, but rather to develop an algorithm whose

running time can be proven to be faster than O(n6), the current fastest. With respect to

this goal, the SCHCA is the algorithm of choice because it is simple whereas H-LKH is

much more complicated. Since proving even simple things about random graphs tends

to be difficult, it seems unlikely that the running time of H-LKH on this graph class will

ever be proven. In contrast, there is hope for proving the running time of the SCHCA.

3.3.6 Future Research

The obvious next step for this research to take is to prove the running time of Version

1 of the SCHCA on random regular graphs to be as close to O(n2) as possible. With

a little effort, it should be possible to obtain a tight bound. In addition, proving that

the single Look-Ahead step of Version 2 does not affect the expected running time of

Probability Mill also seems within the realm of possibility. In contrast, proving that the

Chapter 3. Algorithmic Results 60

variable Look-Ahead steps of Version 3 do not affect the running time would most likely

be quite difficult due to its complexity.

With greater computer resources, it would be worthwhile to continue to chart the

running times of the SCHCA and H-LKH to see how they perform on very large graphs.

Establishing solid running times on other graph classes would also be a worthwhile

result. This may involve including more pruning and forcing rules into the framework

of Probability Mill. In any case, a formal relationship between the tradeoff of including

expensive pruning rules and their effectiveness would be an interesting result.

An alternate course of research would be devise and study more powerful versions of

Probability Mill by including additional pruning rules. This would most likely mean

sacrificing its fast O(m) running time. Additional pruning might not be worthwhile

on random regular graphs, but perhaps other graph classes would benefit greatly. For

example, including a check for biconnectivity would at worst increase the running time

of Probability Mill by a factor of O(m). As we have seen, O(m) steps do not necessarily

increase the running time of the overall algorithm; if biconnectivity were checked every

time a mistake were saved by the Look-Ahead step, it may not increase the running time

at all. Such things seem very difficult to prove, however.

Chapter 3. Algorithmic Results 61

3.4 More On Deletion Sequences

3.4.1 Introduction

In this section we explore deletion sequences that result in the creation of hubs, and

describe two results. With our first result, we show that given certain types of deletion

sequences that result in hubs in cubic graphs, we can find shorter deletion sequences

that create the same hubs regardless of how long the original sequence was, and prove

that the maximum necessary length of this type of deletion sequence is 3. Given this

result, it is tempting to try to prove that any hub in a cubic graph can be created by a

deletion sequence of length at most 3. However, it turns out that this is not true, and

our second result shows that the necessary length of deletion sequences, even in cubic

graphs, is unbounded. That is, it is possible to create graphs in which some vertex will

only become a hub if subjected to deletion sequences which are necessarily very long.

The framework set up by the SCHC algorithm works to avoid hub creation. During

each Probability Mill iteration, the Lightning pruning rule tries to delete all unforced

edges incident on a vertex which is already incident on two forced edges. Nonetheless,

hub creation is still possible through less direct means. For example, suppose a degree-3

vertex, call it x, has a forced edge incident on it, and the deletion of an edge causes

another of its edges to become forced. At this point, the final unforced edge of x is

placed at the end of the pruning queue. However, as we execute the pruning queue, it is

possible that we are never able to delete this edge, because some other pruning deletion

first causes it to be forced, thereby creating a hub and terminating the Probability Mill

iteration.

Before continuing, and for the sake of clarity, it would be prudent to emphasize certain

attributes of all deletion sequences in this section:

Chapter 3. Algorithmic Results 62

• In order to keep from being bogged down in the complexities of working with too

many pruning rules, the only one being applied is the Lightning rule.

• Pruning proceeds in a breadth-first rather than a depth-first manner. That is, when

an edge is deleted for whatever reason, all edges incident on degree-2 vertices are

immediately forced, and then all edges slated for pruning are placed on the pruning

queue before the next edge is removed and pruned. This guarantees that pruning

spreads concentrically from the deleted edge that triggered it.

• Because graphs with vertices that have a high degree do not lend themselves well

to pruning, we will only consider cubic graphs.

3.4.2 Finding Shorter Deletion Sequences

Given a deletion sequence resulting in a hub, it is often possible to find a shorter dele-

tion sequence resulting in the same hub. The reason for this is that some of the deletions

may not have directly contributed to creating the hub, and are therefore extraneous. If

these extraneous edges are removed from the deletion sequence, we are left with a dele-

tion sequence which still creates the same hub. For example, consider the graph shown

in Figure 3.21.1, below.

In Figure 3.21.2, we execute the deletion sequence (e1, e2, e3, e4, e5, e6, e7) to create a

hub. Clearly, some of these deletions are extraneous, because in Figure 3.21.3 we execute

a proper deletion subsequence, namely (e3, e7), to create the same hub.

When finding a more efficient deletion sequence, we are not necessarily restricted to

proper deletion subsequences. We are often able to include edges that were otherwise

pruned as members of a new, shorter deletion sequence. Likewise, we are sometimes able

to include edges that were not affected at all by the longer sequence.

Chapter 3. Algorithmic Results 63

e5e7

e3

e6

4e
2e

e1

3

e2

e4

6e

3e

7e 5e

1e

21

1e

e2

e4

6e

3e

7e 5e

Figure 3.21: Two Different Deletion Sequences Resulting In The Same Hub

The Hub / Deletion Sequence Lemmas

Let D = (e1, e2, e3, ... , eα) be a deletion sequence executed on a cubic graph that

causes some vertex, call it x, to become a hub. Let us consider the graph containing x

before D is executed. Since we know that x will become a hub, the three edges incident

on x will be forced in a certain order. Let us label the other endpoint of the first edge

to be forced as a, the other endpoint of the second edge to be forced as b, and the other

endpoint of the third edge to be forced as c. Furthermore, the only way for an edge to be

forced is if one of its neighboring edges is deleted. Therefore let us label the soon-to-be-

ex-neighbor of a as a
′

and its other neighbor as a∗, and similarly for the other neighbors

of b and c, as shown in Figure 3.22, below.

If D contains exactly two edges that are incident on the neighbors of x, but not on x,

then the following three lemmas hold:

Lemma 3.4.1 Edge (b, b
′

) is the last edge in D.

Proof: We know that executing D will delete (a, a
′

) before it deletes (b, b
′

). However,

deleting (b, b
′

) will cause x to become a vertex with exactly 2 forced edges, and therefore

also place (x, c) on the pruning queue to be deleted using the Lightning pruning rule.

Chapter 3. Algorithmic Results 64

a’

c*b’

cb

c’xb*

c’’

c’’’
a*

a

Figure 3.22: A Graph Accompanying The Hub / Deletion Sequence Lemmas.

In effect, the execution of the pruning queue will never reach edge (x, c), since we know

that it will first become forced to create the hub at x. Therefore, (b, b
′

) must be the very

last edge in D, as required. �

Lemma 3.4.2 b
′

and c
′

must be adjacent.

Proof: We know that deleting (b, b
′

) sets off the events which force (x, c). Deleting (b,

b
′

) places (x, c) on the pruning queue, which becomes forced before its position on the

pruning queue is reached. Therefore, deleting (b, b
′

) must place some other edge onto

the pruning queue before (x, c). That edge must be (c, c
′

), because if it were any further

away from x, the breadth-first nature of the pruning queue would first delete (x, c). The

only way in which deleting (b, b
′

) could place (c, c
′

) onto the pruning queue is if b
′

and

c
′

are adjacent, as required. �

Lemma 3.4.3 There exists a deletion sequence D∗ containing at most 3 edges that also

causes x to become a hub.

Proof: Since deleting (b, b
′

) places (c, c
′

) on the pruning queue, we know that c
′

must

already have had one of its edges, call it (c
′

, c
′′

) forced. This edge may have been forced

Chapter 3. Algorithmic Results 65

by a pruning deletion, but in the worst case, we assume that it was forced by removing

one of the edges in D. Let us call this edge (c
′′

, c
′′′

). Therefore, we can construct a new

deletion sequence D∗ = ((c
′′

, c
′′′

), (a, a
′

), (b, b
′

)) which will cause x to become a hub,

and D∗ has a length of at most 3, as required. �

Some deletion sequences can be even shorter. For example, it is possible for hubs to

be created by the removal of only two edges. However, it is impossible for the removal

of a single edge to create a hub in a cubic graph, since this could only force a maximum

4 edges, of which only 2 (rather than the required minimum of 3) could be incident on

any vertex.

3.4.3 Deletion Sequences Of Unbounded Necessary Length

Given the above result, it is tempting to try to strengthen it by showing that any hub

in a cubic graph can be created by a deletion sequence of length at most 3. It turns out

that this is not possible because the statement simply is not true. In fact, no constant

will do, and the necessary length of deletion sequences in cubic graphs is unbounded.

To illustrate this, we will describe how to construct graphs that require long deletion

sequences in order to cause a certain vertex to become a hub. This family of graphs is

based loosely on the structure of Tutte’s Graph, shown in Figure 4.1. The idea is to

create a graph with three components incident on a central vertex, as shown in Figure

3.23, below.

The components have a few important properties. Namely, they are not only isomor-

phic to one another, but each one is also bilaterally symmetric. By this, we mean that

it is possible to divide each one using a line that passes through the vertex incident on

x, which passes between the other two corner vertices such that the two halves are also

isomorphic to one another. These properties ensure that the deletion sequence which we

choose is not dependent on graph orientation.

Chapter 3. Algorithmic Results 66

Component 3Component 2

Component 1

e

b c

a

x

Figure 3.23: A Template For Building Graphs For Which Deletion Sequences Cannot Be

Shortened

The idea behind this result is very simple. We will set up the graph so that the following

deletion sequence creates a hub at x: we first force edge (x, a) by deleting some other

edge incident on a. This will be the only edge in component 1 that we need to delete.

We then delete a number of ‘supporting edges’ in components 2 and 3 so that deleting

edge e will cause a cascade of Lightning pruning deletions through those components as

indicated by the arrows to force the remaining 2 edges incident on x, thereby creating a

hub.

The deletion sequence causing x to become a hub therefore is D = ((x, a), s1,

s2,... sp, e), where each si represents a ‘supporting edge’. Given any integer k, we can

ensure that D’s necessary length is longer than k by arbitrarily increasing the size of

each component, which in turn increases the number of supporting edges that will be

needed. The fact that the components are separated by a single edge guarantees that

the necessary number of supporting edges will increase with the size of the components.

Constructing arbitrarily large symmetrical, cubic components that allow for a cascade

of Lightning pruning to create a hub at x is a simple task, as illustrated by Figure 3.24,

below.

Chapter 3. Algorithmic Results 67

21 3

b

x

s

s

s

s

s

s

s

x

b

s

s

s

s

s

s

s

x

b

ee e

Figure 3.24: One Possible Way To Construct Components That Cause Long Deletion

Sequences To Be Necessary

The component shown on the left is drawn to be substituted into Figure 3.23 as

‘Component 2’. Vertex x, which is to become the hub, is shown at the top, and edge

e, which will ultimately trigger the pruning cascade is shown at the bottom. Such a

cascade requires a number of supporting deletions placed periodically along the length of

the component. One possible set of supporting deletions is shown by the edges marked

with an ‘s’ in the center diagram. In the right-hand diagram, we delete edge e, which

triggers the cascade of Lightning deletions. The progress of this cascade is indicated by

the arrow, and will ultimately force edge (b, x). The mirror image of this situation unfolds

in Component 3. It should be obvious by inspection that without supporting deletions at

intervals along the entire length of the component, the pruning cascade will not reach x.

Since we have the power to construct such components with arbitrary length, we can use

them to build graphs in which vertex x can only be forced with arbitrarily long deletion

sequences, as required.

Chapter 3. Algorithmic Results 68

Example 3.4.1

Putting the above method to use, we construct a graph that requires a deletion se-

quence with a length of at least 4 in order to create a hub at the central vertex. This

graph as well as a deletion sequence of length 4 are shown in Figure 3.25, below.

1

3e

2

1e

2e

4e

Figure 3.25: The Indicated Hub’s Creation Requires The Deletion Of At Least 4 Edges

Ultimately, in order to create a hub, each of the 3 components requires at least one

edge to be removed, followed by the final edge, e4, which triggers a cascade of pruning,

resulting in the indicated hub being created. No shorter deletion sequence is possible.

3.4.4 Future Research

It would be interesting to explore deletion sequences that use different pruning rules

and find explicit bounds on their necessary length. In addition, it may be possible to

further strengthen the first result to include a wider class of deletion sequences.

There are, however, even more fundamental open questions concerning deletion se-

quences: Does every (planar) cubic 3-connected graph of sufficient size contain at least

one vertex that can be transformed into a hub by some deletion sequence (with length at

Chapter 3. Algorithmic Results 69

most k for some constant k)? Are some vertices ‘immune’ to becoming hubs? Are ver-

tices in non-Hamiltonian graphs more likely to become hubs than vertices in Hamiltonian

graphs?

We conjecture that the answers to all of these open problems is ‘yes’. For the first

problem, this is because the alternative is for there to be some graph in which every

possible deletion sequence converts the graph into a 2-factor, which intuitively seems

unlikely. Furthermore, we have seen that it is possible to design graphs in which some

vertex requires long deletion sequences, but to design a family of graphs in which every

vertex requires arbitrarily long deletion sequences also seems unlikely. There most likely

are vertices which are ‘immune’ to becoming hubs; the central vertex in the Tutte graph

is a good candidate. Finally, since non-Hamiltonian graphs have no associated deletion

sequences that are successful in finding Hamiltonian Cycles, a greater proportion of them

will produce hubs, showing that hub creation in non-Hamiltonian graphs is more likely.

Chapter 4

Strengthening Barnette’s Conjecture

4.1 Introduction

Barnette’s Conjecture, published in [4], states that all planar, cubic, 3-connected,

bipartite graphs are Hamiltonian. As already discussed in Subsection 2.1.4, this comes

as part of a series of conjectures concerning Hamiltonicity, the first of which dates back

more than 100 years. In [45] Tait conjectured that all planar, cubic, 3-connected graphs

are Hamiltonian. Had this been true, it would have supported a short, elegant proof

of the Four-Colour Theorem. Tait’s Conjecture stood for more than 60 years, but was

disproved by Tutte, who constructed a clever counterexample in [47]. This graph has

come to be known as the ‘Tutte Graph’, and is shown below in Figure 4.1.

Figure 4.1: The 46-Vertex Tutte Graph

70

Chapter 4. Strengthening Barnette’s Conjecture 71

In [49] Tutte then conjectured that all cubic, 3-connected, bipartite graphs are Hamil-

tonian. Tutte’s Conjecture fell due to a counterexample by Horton, published in [9]. The

‘Horton Graph’ is shown below in Figure 4.2.

Figure 4.2: The 96-Vertex Horton Graph

Barnette’s Conjecture subsumes the other two conjectures in that any counterexample

would have to be a simultaneous counterexample to both the Tait and Tutte Conjectures.

Despite considerable effort to prove otherwise, Barnette’s Conjecture has stood since

its publication in 1969. Many partial and related results have been obtained and are

described below, but it still remains unclear whether the conjecture is true or false. The

purpose of this paper is to strengthen Barnette’s Conjecture in the hope that a stronger

conjecture may be easier to disprove. Our main result states that Barnette’s Conjecture

is true if and only if every Barnette graph is Hamiltonian-Edge-Connected. Hopefully this

fact will aid future researchers in constructing a counterexample or a proof. The result is

obtained by first describing a procedure that can be used for building successively larger

Barnette graphs. This construction may in and of itself be of interest to the reader.

Chapter 4. Strengthening Barnette’s Conjecture 72

4.2 Partial & Related Results

Although Barnette’s Conjecture remains an open problem, many partial results have

been achieved. In [23], Goodey proves that any Barnette graph with faces having 6

or fewer sides is Hamiltonian. In [32], Holton et al. confirm through a combination of

clever analysis and computer search that all Barnette graphs with up to and including 64

vertices are Hamiltonian. In [39] this result is extended by McKay et al. to 84 vertices,

inclusive. In [18] Feder and Subi prove a complicated but interesting result, namely

that for any Barnette graph, if the faces can be 3-coloured such that two of the three

colour classes contain only squares and hexagons, and the third colour class contains faces

surrounded by an even number of squares, then that graph is Hamiltonian. The literature

also contains related complexity results; in [1] Akiyama et al. prove that the Hamiltonian

Cycle problem remains NP-Complete even when the input is restricted to planar, cubic,

2-connected, bipartite graphs. Nobody has yet been able to show that it remains NP-

Complete when restricted to Barnette graphs. Such a result would clearly invalidate

the conjecture. It should be noted that instances of non-Hamiltonian, planar, almost

cubic, 3-connected, bipartite graphs have been discovered. For example, Kirkman’s graph

shown in Figure 2.5 contains only three non-cubic vertices. In effect, relaxing any of the

Barnette adjectives leaves us with a class that contains non-Hamiltonian graphs. On the

other hand, adding further constraints such as Goodey has done leaves us with a class

that is Hamiltonian. This seems to suggest that the Barnette graphs lie on the border of

Hamiltonicity and non-Hamiltonicity.

Barnette’s less-famous Hamiltonicity conjecture states that any planar, cubic, 3-connected

(bipartite omitted) graph with faces having 6 or fewer sides is Hamiltonian. Partial re-

sults have also been achieved here. In [10] Brinkmann et al. confirm that this conjecture

holds for up to 250 vertices. In [24] Goodey proves that a proper subset of these graphs,

namely all planar, cubic, 3-connected graphs with faces having 3 or 6 sides, are Hamil-

Chapter 4. Strengthening Barnette’s Conjecture 73

tonian. The Fullerenes are another interesting subset [31]. They are planar, cubic,

3-connected graphs with exactly 12 faces of degree 5, and all other faces having degree

6. These graphs represent possible molecular structures of pure carbon.

4.3 Main Result

We show that Barnette’s Conjecture holds if and only if every Barnette graph is

Hamiltonian-Edge-Connected. While proving the ‘reverse direction’ is trivial, the ‘for-

ward direction’ uses a standard proof by contradiction. Under the assumption that

Barnette’s conjecture is true, the further assumption that some Barnette graph contains

an edge which is in no Hamiltonian Cycle allows us to construct a non-Hamiltonian Bar-

nette graph. This construction is given in detail below. The main theorem requires the

following lemmas:

Lemma 4.3.1 A plane graph is bipartite if and only if all of its faces have even degree.

Proof: Almost every modern graph theory textbook contains a proof of the statement

that a graph is bipartite if and only if it contains no odd cycles. All that remains to be

shown is that a plane graph contains no odd cycles if and only if all of its faces have even

degree.

⇒ Trivial

⇐ Let G be any arbitrary plane graph whose faces all have even degree. Suppose that

G contains some odd cycle, call it C. This cycle cannot be a face, so it must enclose

two or more faces. However, it is impossible to add even-sided faces together to create

an odd-sided perimeter. To see this, suppose one were to attempt to construct C and

all of its internal edges by laying even-sided faces together onto a plane in a way similar

to how someone might tile a floor. Every new face that was added would subtract some

edges from the overall perimeter by turning them into internal edges, but would also add

some edges to the perimeter. Since only even-sided faces are added, any even number of

Chapter 4. Strengthening Barnette’s Conjecture 74

edges subtracted from the perimeter will always be balanced by adding an even number;

likewise, any odd number of edges subtracted from the perimeter will be balanced by

adding an odd number. This guarantees that the perimeter will always maintain an

even number of edges around it, showing that it is impossible to construct C using only

even-sided faces, in turn showing that C must contain at least one odd-sided face, which

is a contradiction. Therefore G contains no odd cycles, as required. �

4.3.1 The Mirroring Procedure

We now describe the steps of an informal procedure that takes as input a cubic planar

graph G, and outputs a different cubic planar graph G′.

1. Take as input any arbitrary embedding of any arbitrary cubic planar graph, call it

G. Let x be any arbitrary vertex on G’s perimeter. Let a, b, and c be x’s neighbors

in a counter-clockwise order as shown in Figure 4.3 and orient G so that x faces

East.

G

c

x

a

b

Figure 4.3: The Mirroring Procedure, Step 1

2. Create a mirror-image copy of G called G∗ by creating a line of reflection near x as

indicated in Figure 4.4. Label G∗’s vertices after their counterparts in G.

Chapter 4. Strengthening Barnette’s Conjecture 75

a*

b*

c*

G*

x*

G

b

a

x

c

Figure 4.4: The Mirroring Procedure, Step 2

3. Reflect G∗ from top to bottom to create an alternate embedding as shown in Figure

4.5.

G

x*

G*

c*

b*

a*c

x

a

b

Figure 4.5: The Mirroring Procedure, Step 3

4. Delete x and x∗ together with all edges incident on them and create edges (a, c∗),

(b, b∗), and (c, a∗), thereby creating a new graph called G′ as indicated in Figure

4.6.

G’
a*c

a

b

c*

b*

e 1

e 2

e 3

Figure 4.6: The Mirroring Procedure, Step 4

Lemma 4.3.2 If the Mirroring Procedure is applied to any Barnette graph, the result

will also be a Barnette graph.

Proof: Suppose we apply the Mirroring Procedure to some arbitrary Barnette graph,

call it G. By Lemma 4.3.1 we know that every face of G must have even degree. Steps

Chapter 4. Strengthening Barnette’s Conjecture 76

2 and 3 of the procedure create a Barnette graph to which Lemma 4.3.1 obviously also

applies. For the following argument, please refer to Figure 4.7.

G*

3

2F

F3

F1

G

2

1F *

F *

F *

Figure 4.7: The Faces Affected By The Mirroring Procedure

Step 4 joins F1 and F ∗

2
to create F

′

α, F2 and F ∗

1
to create F

′

β as well as F3 and F ∗

3

to create F
′

γ. Let fi represent the face degree of Fi, let f ∗

i represent the face degree of

F ∗

i , and let f
′

i represent the face degree of F
′

i . f
′

α = f1 - 2 + f ∗

2
- 2 + 2, which is even,

since f1 and f ∗

2
are even. f

′

β = f2 - 2 + f ∗

1
- 2 + 2, which is even since f2 and f ∗

1
are

even. f
′

γ = f3 - 2 + f ∗

3
- 2 + 2, which is even, since f3 and f ∗

3
are even. Since these are

the only faces which have been modified, every face in G′ must have even degree. By

Lemma 4.3.1, G′ is therefore bipartite. In addition, any damage done to 3-connectivity

is immediately repaired. The procedure also clearly preserves planarity, and maintains

every vertex having degree 3. Therefore, G′ is a Barnette graph, as required. �

Theorem 4.3.1 Barnette’s Conjecture holds if and only if every Barnette graph is Hamiltonian-

Edge-Connected.

Proof: ⇒ Suppose Barnette’s Conjecture holds. For the sake of contradiction, suppose

there exists some Barnette graph, call it G, such that G contains an edge between two

vertices, call them x and a, which is part of no Hamiltonian Cycle. Since G is planar, it is

possible to embed it such that x and a are on the outside face. Let x’s other neighbors be

called b and c as indicated in Figure 4.3. Suppose we create a new graph G∗ by applying

the first 3 steps of the mirroring procedure to G. Since there exists no Hamiltonian Path

Chapter 4. Strengthening Barnette’s Conjecture 77

between a and x, if we were to remove x from G, the resulting graph, call it G1, would

neither contain a Hamiltonian Path from a to b, nor would it contain a Hamiltonian

Path from a to c. Similarly, if we were to remove x∗ from G∗, the resulting graph, call

it G2, would neither contain a Hamiltonian Path from a∗ to b∗, nor would it contain a

Hamiltonian Path from a∗ to c∗. We now complete the Mirroring Procedure to create

G′, which by Lemma 4.3.2 is also a Barnette graph. Consider the cut across the three

newly-created edges labeled e1, e2, and e3 in G′ as shown in Figure 4.6. Any Hamiltonian

Cycle in G′ would have to cross exactly two of those three edges. Such a Hamiltonian

Cycle cannot cross e1 and e2 because there is no Hamiltonian Path from a to b in G1. It

cannot cross e1 and e3 because neither is there a Hamiltonian Path from a to c in G1, nor

is there a Hamiltonian Path from c∗ to a∗ in G2. Finally, it cannot cross e2 and e3 since

there is no Hamiltonian Path from a∗ to b∗ in G2. Therefore, G′ is a non-Hamiltonian

Barnette graph, which is a contradiction. Therefore every edge in any Barnette graph

must be part of some Hamiltonian Cycle, as required.

⇐ Trivial. �

Corollary 4.3.1 If some edge in some Barnette graph is part of no Hamiltonian Cycle,

then Barnette’s Conjecture does not hold.

Corollary 4.3.2 If Barnette’s conjecture holds, then every pair of adjacent vertices in

any Barnette graph has a Hamiltonian Path between them.

4.4 Future Research

Even if this result does not yield a counterexample to Barnette’s Conjecture, further

strengthening results can only help. For example, we conjecture that Barnette’s Conjec-

ture holds if and only if every pair of adjacent edges in any Barnette graph is part of some

Hamiltonian Cycle. One corollary to this result would be that if Barnette’s Conjecture

holds, then it is possible to delete any single edge out of a Barnette graph without it

Chapter 4. Strengthening Barnette’s Conjecture 78

losing its Hamiltonicity. In other words, Barnette’s Conjecture holds if and only if for

every Barnette graph, every edge is in some Hamiltonian Cycle, and no edge is in every

Hamiltonian Cycle. Such a robust characteristic in sparse, planar graphs may have some

practical applications if the Conjecture turns out to be true.

Since all graphs with 84 or fewer vertices are known to be Hamiltonian, the days of

computers being very helpful with Barnette’s Conjecture may be drawing to a close. Not

only is the number of graphs to be investigated becoming enormous, but any potential

candidates are becoming so large that proving non-Hamiltonicity may be very difficult

in a computational sense. It stands to reason that future research will involve more

theoretical analysis and proportionally less computer power.

Chapter 5

Concluding Remarks

Apart from the potential future research mentioned in Sections 3.3, 3.4, and 4, there

are a few other ways in which this research might proceed.

We have seen that the Hamiltonian Cycle problem is currently of interest in the areas

of graph theory, algorithms, and complexity theory. The Look-Ahead Theorem gives us

a tool for also taking it into the area of proof complexity. If forcing an edge in a graph

causes the graph to become non-Hamiltonian, then we may safely prune it. Likewise, if

deleting an edge causes the graph to become non-Hamiltonian, then we may safely force

it. Corollaries 3.1.3 and 3.1.4 state that for any non-Hamiltonian graph, any edge may

be safely pruned, and likewise may be safely forced. Therefore, in order to create a proof

of non-Hamiltonicity, we need only force and prune edges in some way that creates some

obstruction to Hamiltonicity such as a hub. Of course, we would have to prove that

these forcings and prunings are legitimate by showing that their resulting graphs are

non-Hamiltonian. This can be done recursively by building a tree whose root contains

the original graph in question. The first level of the tree contains O(m) vertices, one

corresponding to the graph created by deleting one of each of the unforced edges in the

root. Similarly, the second level of the tree contains O(m2) vertices, and so on. As we

explore deeper into the tree, we are likely to find more non-Hamiltonian graphs / tree

79

Chapter 5. Concluding Remarks 80

vertices. The goal of this research would be to see how powerful this proof system is.

That is, for any non-Hamiltonian graph, can it always give a polynomially-sized proof

of non-Hamiltonicity, or are there some families of non-Hamiltonian graphs that force it

to give exponentially large proofs? A similar line of research is to compare this proof

system to other proof systems whose complexities are known, and see where it fits in. If

it is very powerful, it may be equivalent to a proof system such as Frege for which no

lower bounds are known. Ultimately, this line of research is addressing whether NP =

coNP, because polynomially-bounded proofs for non-Hamiltonicity are certificates for

‘no’ instances similar to how Hamiltonian Cycles are certificates for ‘yes’ instances of the

problem. Many theoretical computer scientists conjecture that NP 6= coNP, but not

with nearly as much conviction as when they conjecture that P 6= NP.

Bibliography

[1] T. Akiyama, T. Nishizeki, and N. Saito. NP-Completeness of the Hamiltonian Cycle

Problem for Bipartite Graphs. Journal of Information Processing, Vol. 3 No. 2:73–

76, 1980.

[2] K. Appel, W. Haken, and J. Koch. Every Planar Map Is Four-Colorable, Parts I &

II. Illinois J. Math., 21:429 – 567, 1977.

[3] W.W. Rouse Ball and H.S.M. Coxeter. Mathematical Recreations and Essays.

Macmillan, New York, 1962.

[4] D. Barnette. Conjecture 5. In W.T. Tutte, editor, Recent Progress in Combinatorics,

page 343. Academic Press, New York, 1969.

[5] D. Bauer, J. van den Heuvel, A. Morgana, and E. Schmeichel. The Complexity of

Toughness in Regular Graphs. Congr. Numer., 130:47–61, 1998.

[6] C. Berge. Graphs & Hypergraphs. North Holland, Amsterdam, 1973.

[7] N.L. Biggs, E.K. Lloyd, and R.J. Wilson. Graph Theory 1736 - 1936. Clarendon

Press, Oxford, 1976.

[8] J.A. Bondy and V. Chvátal. A Method in Graph Theory. Discrete Math., 15:111–

135, 1976.

[9] J.A. Bondy and U.S.R Murty. Graph Theory With Applications. Macmillan, London,

1976.

81

Bibliography 82

[10] G. Brinkmann, B.D. McKay, and U. von Nathusius. Backtrack Search and Look-

ahead for the Construction of Planar Cubic Graphs With Restricted Face Sizes.

Published On Internet: http://cs.anu.edu.au/˜bdm/papers/plantri ad.pdf.

[11] N. Chiba and T. Nishizeki. The Hamiltonian Cycle Problem is Linear-Time Solvable

for 4-Connected Planar Graphs. Journal of Algorithms, 10:87–211, 1989.

[12] V. Chvátal. Hamiltonian cycles. In E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy

Kan, and D.B. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour

of Combinatorial Optimization, pages 403–429. John Wiley & Sons Ltd., New York,

1985.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

McGraw-Hill, Cambridge, Massachusetts, 1990.

[14] G.A. Dirac. Some Theorems On Abstract Graphs. Proceedings Of The London

Mathematics Society, 2:69–81, 1952.

[15] S. Effler. Enumeration, Isomorphism and Hamiltonicity of Cayley Graphs: 2-

Generated and Cubic. Master’s thesis, University of Victoria, 2000.

[16] M.N. Ellingham and J.D. Horton. Non-Hamiltonian 3-Connected Cubic Bipartite

Graphs. Journal of Combinatorial Theory, Series B, 34:350–353, 1983.

[17] H. Eves. An Introduction To The History of Mathematics, Fourth Ed. Saunders

College Publishing, Orlando, Florida, 1992.

[18] T. Feder and C. Subi. On Barnette’s Conjecture. Published On Internet:

http://theory.stanford.edu/ tomas/bar.ps. Submitted to Journal of Graph Theory.

[19] A.M. Frieze. Finding Hamilton Cycles in Sparse Random Graphs. Journal of Com-

binatorial Theory, Series B, 44:230–250, 1988.

Bibliography 83

[20] A.M. Frieze, M. Jerrum, M. Molloy, R. Robinson, and N. Wormald. Generating

and Counting Hamilton Cycles in Random Regular Graphs. Journal of Algorithms,

21:176–198, 1996.

[21] M.R. Garey and D.S. Johnson. Computers and Intractability -A Guide to the Theory

of NP-Completeness. Freeman & Company, New York, 1979.

[22] M.R. Garey, D.S. Johnson, and R.E. Tarjan. The Planar Hamiltonian Circuit Prob-

lem is NP-Complete. SIAM Journal of Computing, Vol. 5 No. 4:704–714, 1976.

[23] P.R. Goodey. Hamiltonian Circuits in Polytopes With Even Sided Faces. Israel

Journal of Mathematics, 22:52–56, 1975.

[24] P.R. Goodey. A Class of Hamiltonian Polytopes. Journal of Graph Theory, 1:181–

185, 1977.

[25] D. Gouyou-Beauchamps. The Hamiltonian Circuit Problem is Polynomial for 4-

Connected Planar Graphs. SIAM Journal of Computing, 11:529–539, 1982.

[26] R.P. Graves. Life of Sir William Rowan Hamilton, Vol. 3. Dublin University Press,

Dublin, 1889.

[27] H. Gropp. Configurations and the Tutte Conjecture. Ars Combinatoria A, 29:171–

177, 1990.

[28] W.R. Hamilton. Account of the Icosian Calculus. Philosophical Transactions of the

Royal Irish Academy, 6:415–416, 1853-7.

[29] W.R. Hamilton. Memorandum Respecting a New System of Roots of Unity. Phil.

Mag. (4), 12:446, 1856.

[30] K. Helsgaun. An Effective Implementation of the Lin-Kernighan Traveling Salesman

Heuristic. European Journal of Operational Research, 126:106–130, 2000.

Bibliography 84

[31] D.A. Holton and E.L. Aldred. Planar Graphs, Regular Graphs, Bipartite Graphs

and Hamiltonicity. Australasian Journal of Combinatorics, 20:111–131, 1999.

[32] D.A. Holton, B. Manvel, and B.D. McKay. Hamiltonian Cycles in Cubic 3-Connected

Bipartite Planar Graphs. Journal of Combinatorial Theory, Series B, 38:279–297,

1985.

[33] S. Janson, T. Luczak, and Andrzej Rucinski. Random Graphs. John Wiley and

Sons, New York, 2000.

[34] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.

Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum

Press, New York, 1972.

[35] B.W. Kernighan and S. Lin. An Efficient Heuristic Algorithm For The Traveling-

Salesman Problem. Oper. Res., 2:498–516, 1973.

[36] T.P. Kirkman. On the Representation of Polyedra. Philosophical Transactions of

the Royal Society of London, 146:413–418, 1856.

[37] M.S. Krishnamoorthy. An NP-Hard Problem in Bipartite Graphs. SIGACT News,

Vol. 7, No. 1:26, 1975.

[38] C.L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, New York,

1968.

[39] B.D. McKay, G. Brinkmann, and R. Aldred. Personal Communication, March 2000.

[40] C.H. Papadimitriou and K. Steiglitz. Some complexity results for the traveling

salesman problem. In ACM, editor, Proc. 8th Ann. ACM Symp. on Theory of

Computing, pages 1–9. ACM, New York, 1976.

[41] R.W. Robinson and N.C. Wormald. Almost All Cubic Graphs Are Hamiltonian.

Random Structures and Algorithms, 3:117–126, 1992.

Bibliography 85

[42] R.W. Robinson and N.C. Wormald. Almost All Regular Graphs Are Hamiltonian.

Random Structures and Algorithms, 5:363–374, 1994.

[43] K.H. Rosen. Discrete Mathematics and Its Applications, Fourth Ed. McGraw-Hill,

New York, 1999.

[44] M. Rosenfeld. Personal Communication, November 2003.

[45] P.G. Tait. Listing’s Topologie. Phil. Mag., 17:30–46, 1884.

[46] C. Thomassen. A Theorem on Paths in Planar Graphs. Journal of Graph Theory,

7:169–176, 1983.

[47] W.T. Tutte. On Hamiltonian Circuits. J. London Math. Soc., 21:98–101, 1946.

[48] W.T. Tutte. A Theorem on Planar Graphs. Trans. Amer. Math. Soc., 82:99–116,

1956.

[49] W.T. Tutte. On the 2-Factors of Bicubic Graphs. Discrete Mathematics, Vol. 1, No.

2:203–208, 1971.

[50] B. Vandegriend. Finding Hamiltonian Cycles: Algorithms, Graphs and Performance.

Master’s thesis, University of Alberta, 1998.

[51] D.B. West. Introduction to Graph Theory, 2nd. Edition. Prentice Hall, Upper Saddle

River, New Jersey, 2001.

[52] A. Wigderson. The Complexity Of The Hamiltonian Circuit Problem For Maximal

Planar Graphs. Technical Report, Princeton University, Dept. of EECS, Vol. 298,

February, 1982.

Glossary

The following definitions (in alphabetical order) may be helpful to the reader:

• 1-Tough: A graph is said to be 1-tough if it contains no set of k vertices that, if

removed, would separate the graph into k + 1 or more components.

• 2-Factor: A 2-factor of a graph G is a subgraph in which every vertex has a

degree of exactly 2. For example, a Hamiltonian Cycle is a 2-factor.

• Barnette’s Conjecture states that all planar, cubic, 3-connected, bipartite graphs

are Hamiltonian. For the sake of not having to constantly repeat these adjectives,

these graphs will be referred to as Barnette graphs in this thesis.

• Barricade: A barricade is a forced edge incident on the two vertices of a 2-vertex-

cut.

• Biconnected: Biconnected is synonymous with 2-Connected.

• Bicubic: A bicubic graph is both bipartite and cubic.

• Bipartite: A graph whose vertices can be coloured using exactly two different

colours such that no two adjacent vertices have the same colour is called bipartite.

• Chain: A chain is a path containing q vertices subject to the following constraints:

2 ≤ q < n, and each of the q − 1 edges along the path is forced, the 2 endpoints

have degree at least 3, and the remaining q − 2 vertices, if any, have a degree of

exactly 2.

86

Glossary 87

• Cubic: Synonymous with 3-regular, the adjective cubic indicates that a graph’s

vertices all have a degree of exactly 3.

• Cut: A k-vertex-cut is a subset of k vertices that, if removed, would disconnect

the graph. A k-edge-cut is a similar subset of edges.

• Connected: A k-connected graph is one that cannot be disconnected by the

removal of fewer than k vertices. Similarly, a k-edge-connected graph is one that

cannot be disconnected by the removal of fewer than k edges.

• Deletion Sequence: A deletion sequence is a list of edges that are deleted

from a graph in order. After each edge in a deletion sequence is removed, some

predefined subset of pruning and forcing rules are executed. Edges deleted due to

pruning are not considered to be part of the deletion sequence. Furthermore, the

resulting graph depends very much on the order in which the edges of a deletion

sequence are removed, showing that ‘deletion sets’ are insufficient for our needs.

• Face Degree: The number of sides or degree of a face both refer to the number

of edges surrounding its perimeter.

• Forced Edge: Within the context of Hamiltonicity, a forced edge is a constraint

put on a graph stipulating that every Hamiltonian Cycle must contain that edge.

We say that a forced edge in a graph G is safe if the act of forcing it does not

reduce the number of Hamiltonian Cycles that G contains.

• Hamiltonian: A graph that contains a Hamiltonian Cycle is said to be Hamil-

tonian.

• Hamiltonian Cycle: A Hamiltonian Cycle is a simple cycle which passes

through every vertex in a graph exactly once.

Glossary 88

• Hamiltonian Connected: A graph is said to be Hamiltonian Connected if

each pair of vertices has a Hamiltonian Path between them.

• Hamiltonian-Edge-Connected: A graph is said to be Hamiltonian-Edge-

Connected if each of its edges is part of some Hamiltonian Cycle.

• Hamiltonian Path: A Hamiltonian Path between two vertices u and v in a

graph G is a path which contains one instance of every vertex and has endpoints u

and v.

• Head: A head is one of the two endpoints of a chain.

• Head Hunter: Head Hunter is a pruning rule that, when given a chain whose

two heads are adjacent, deletes the edge between them.

• Hub: A hub is a vertex with three or more forced edges incident on it.

• Hypo-Hamiltonian: A graph G is said to be hypo-Hamiltonian if it is not

Hamiltonian, but the removal of any arbitrary vertex causes it to become Hamil-

tonian.

• Lightning: Named for its fast speed, Lightning is a pruning rule that, when given

a vertex of degree at least 3 with exactly two forced edges incident on it, deletes

all remaining unforced edges.

• Obstruction to Hamiltonicity: An obstruction to Hamiltonicity is a struc-

ture within a graph that acts as a certificate for non-Hamiltonicity. For example,

a degree-1 vertex is an obvious obstruction.

• Odd-Forced-Cut: An odd-forced-cut is a cut across an odd number of edges,

all of them forced.

• Planar: A planar graph is one that can be drawn on a two-dimensional plane

such that no two edges cross.

Glossary 89

• Pruning: Pruning is the act of deleting an edge which is part of no Hamiltonian

Cycle. Pruning therefore does not affect the Hamiltonicity of a graph.

• Regular: An r-regular graph is one in which each vertex has degree r.

• Sparse: A graph is considered to be sparse if m is O(n).

• Triangulation: A triangulation is a planar graph in which every face has exactly

three sides.

• Unevenly Bipartite: A graph is said to be unevenly bipartite if it is bipartite,

but the two bipartitions do not contain an equal number of vertices.

