CSC 2504F Computer Graphics
Graduate Project -Motion From Primitives

Alex & Philipp Hertel

December 2, 2002



Introduction

Most partner dances such as Salsa, Swing, Cha Cha, Merengue, and Lindy Hop are danced to music with
eight beats per bar. Typically, dancers perform a series of ‘moves’ during each song, where each ‘move’
takes eight beats to complete. We will consider ‘moves’ to be the atomic building blocks out of which
these dances are built. The idea is that certain moves lead very well into others and with only a few
moves it is possible to put together many different combinations, which keeps the dance from becoming
repetitive.

Each of these dances therefore has an underlying structure which completely captures it, namely
a directed graph whose nodes represent moves, and whose directed edges represent valid transitions
between those moves. When motion or animation data is included in such a graph, we call it a ‘motion
graph’ (MG for short).

Motion graphs can be used in computer graphics to create quite sophisticated and realistic animations.
For example, performing a random walk of a Salsa MG and outputting the corresponding moves to the
screen as nodes are visited will give rise to characters that seemingly ‘know’ how to dance. Unlike simple
repetitive animations which become boring after a few cycles, animations derived from motion graphs
contain greater variety and do not become repetitive. If the motion data is obtained from a motion
capture device and if the MG is designed correctly, the animations become increasingly realistic and
sophisticated.

Of course, pretty animations are not the only benefit gained from motion graphs. They also provide
a means of motion control, and have many more extensions and potential applications in industry, which
will be discussed under the section below entitled ‘Extensions’.

Project Overview

The purpose of this project is to explore the use of motion graphs for capturing and animating a partner
dance called the Salsa, a Latin dance that has become very popular during the past few years. As already
mentioned, Salsa is a couple dance that is danced on eight beats. Prior to starting this project, we had
already developed a MG for Salsa. The subgraph of ‘basic’ Salsa moves is shown below (Figure 1).

Side 587
But end with
right leg
slighty forwar

Open break,
no hands

Back &wrap

1-2:3 using

hand on her
back

Woman's
567
Basic 123
(turning a5
couple)

Bring het ta
frant on 567

open break

Back & wrap

with hands
123

Basic 667

‘turning as
couple)

567 Bring
around inte
slosed apen
break

Faonuard for
orass-ba

lead 1-2:3

Open break
with hands

Back & clase
587

Cress-body op7
lead 587

around 567

Figure 1: The Beginner’s Salsa Motion Graph



In this MG, moves have each been split into two nodes, one representing beats 1,2,3,4, and the other
representing beats 5,6,7,8. Although not strictly necessary, this subdividing of nodes makes the MG
more expressive, and therefore more powerful. It also allows for some automated debugging to be done;
any MG with split nodes must be bipartite, a condition that can be automatically checked.

The coloured nodes represent moves which are fundamentals of Salsa, in that they lead into many
other moves. As this MG was hopelessly non-planar, colour-coding the high degree nodes allowed for
‘shorthand’ coloured edges to be created, thereby simplifying the embedding and making it more readable.
Techniques such as this become more important as the complexity of the MG increases. Though a
colour-coding scheme such as this has not been implemented in the current project it is clearly a useful
UI feature.

At the heart of the Salsa dance is a move called the ‘basic’. To use the Salsa MG, once the music
begins, one starts at the node labelled ‘basic 1-2-3 (turning as couple), and then follows edges until the
music stops. The Salsa MG is robust, because it is connected. In other words, from any single node,
there is a path to any other. This is important because it ensures that all motions are accessible at
all times. This MG represents only the moves that are typically taught in a beginner’s Salsa class, and
therefore contains only a tiny subset of all possible Salsa moves.

For this project, our main objective was to implement an animation engine that could create and
read serialized MG (.mg) files, and display animated stick figures dancing Salsa. We implemented this
animation engine in C++ using OpenGL for the graphics, and Microsoft Foundation Classes (MFC) for
the windowing. The implementation is not meant to be comprehensive, and contains only a small subset
of all beginner’s moves. The moves that were included were hand-modelled, and are only to demonstrate
how MGs work. It is our intention to expand this project in the near future by adding motion captured
data, thereby making the animation more complete and much more realistic.

Using The Application

The application is dialog-based, and consists of three dialog boxes:
1. The Main (animation) Dialog Box (Figure 2)

S =

Fie Help

I
-

Speed

Figure 2: The Main Dialog Box



This dialog box is used for viewing the animation resulting from randomly traversing the Beginner’s
Salsa MG.

The main dialog box’s menu and its quit button are operated in the familiar, intuitive way.
The vertical slider allows you to zoom in on the dancers.
The horizontal slider allows you to rotate the camera around the dancers.

The button labelled ‘DANCE!” will start the figures dancing, and change the label on the button
to ‘STOPY!. Repeatedly pressing on the button will toggle dancing on and off.

The spin buttons below the label ‘Speed:’ will speed up and slow down the animation, and adjust
the speed-indicator (progress bar) accordingly. The default speed is 1000 milliseconds per node,
which is equivalent to 2 seconds per 8 Salsa beats. Each click on a spin button will increase or
decrease the time by 50 milliseconds per node.

The button labelled ‘Load Graph Editor’ will load the next dialog box:

. The Graph Editor Dialog Box (Figure 3).

oo x

Mode # 0:
Deszcription:

ITuming Basic 123

Edit Animation |

Copy Node

ik L

Close

Figure 3: The Graph Editor Dialog Box

- This dialog box is used for editing the Salsa MG.

- To add a node, simply click once anywhere in the gridded canvas. Note that nodes cannot be
superimposed on top of one another. Clicking and dragging has two different effects: If you left
click on a node and drag to open space, it will draw an edge from the first node to a newly created
node. If you left click in open space and drag to an already-existing node, it will create a new node
with an edge leading to the second node.



To select a single node, either left or right click on it. There are two ways to select multiple nodes:
Use the right button to drag a bounding rectangle around the nodes you wish to select, or hold
down the shift or control keys and click on different nodes to toggle them. Edges can be selected
only by right clicking on them, not by the bounding box.

To drag a node, simply press on it with the right mouse button and move it to its new location.
Again note that nodes cannot be superimposed. To drag multiple nodes, select them, and hold the
control or shift key down while dragging one of them. Their orientation will be preserved unless
one is dragged onto an already-existing node.

To delete a single node or a group of nodes, make your selection and hit the delete key. Likewise,
to delete edges, first select them and then hit the delete key.

To re-center the gridded canvas, double-right-click on an empty point. Note that since the Salsa
MG for this project is small, the horizontal and vertical sliders are not yet functional.

Information pertaining to the currently selected node is displayed in the upper right corner, which
includes an edit box that can be used to change a node’s description.

The ‘Copy Node’ button will create a duplicate copy of the currently selected node and place it at
the mouse pointer. If the mouse is not in the canvas, then a copy is made at the last point where
the mouse pointer was in the canvas. The keyboard accelerator for this command is ctrl + c.

The button labelled ‘Edit Animation’ will load the next dialog box. It can only be accessed when
exactly one node is selected:

The Animation Editor Dialog Box (Figure 4).

Animation Editor x|

Show Man I
Shaw \woman [

Raotate by

0

= Couple

= Man

 Woman
Fotate |

Heading Change:
35

Change
Add Frame |
Previous Frame Frame #1 of 8 Next Frame Copy This Frame Paste |

Delete This Frame:
B

=]

Figure 4: The Animation Editor Dialog Box

This window is used for editing the animation frames contained by the nodes of the MG, and is
the most complicated of the three dialog boxes. The idea is that with enough frames, it is possible
to make each successive animation frame slightly different than the previous one in order to create
smooth animation.



- Each node by default is created containing only one frame. A node can contain an arbitrarily large
number of animation frames, but because Salsa has a steady rhythm, the amount of time taken to
animate each node is constant. The ‘Previous Frame’ and ‘Next Frame’ buttons are used to scroll
through the animation, frame by frame. The ‘Add’, ‘Delete’, ‘Copy’, and ‘Paste’ buttons work in
the intuitive way.

- The stick figures are implemented as trees, rooted at the pelvic node. Other than the root, each
node has a parent node.

- The canvas is broken up into a front and side view. The dancers are manipulated by directly
moving their joints. Editing the stick figures’ poses is a two step process. Firstly, select a joint
node by clicking on it. If ambiguity exists, the ambiguous nodes will be coloured green in the
other view. Simply click on one of them to resolve the ambiguity. Once a node is selected, a red
circle will be drawn around the node’s parent in both the front and side views. In reality, this is
a sphere centered on the parent node. To move the selected joint node, drag it to any position on
the surface of the sphere. This will create an ambiguity in the other view which must be resolved
by clicking on a green node. The sphere guarantees that distances between parent and child joints
do not change, which models the human skeleton realistically since bones are rigid. Moving a joint
node will also move all of its children, which maintain their original relative positions. To translate
a figure, simply select its root node and drag it to the desired position. Note that the figures can
not be translated vertically because beginner’s Salsa moves do not include any jumps.

- The rotation tools on the right hand side are used to rotate the figures clockwise in degrees.

- The ‘Heading Change’ tools on the right serve an important purpose. When dancing Salsa, certain
moves cause the couple’s orientation to change with respect to the dance floor. In order to seamlessly
put together a series of moves, the orientation must be noted so that the next move can be rotated
appropriately before being played. The ‘Heading Change’ tools allow the user to enter what the
orientation of the couple is at the end of the move.

Design Decisions
The following were the most important design decisions made for this project:

e Instead of representing the stick figures using a combination of angles and positions in a similar way
to Maya, joint nodes are represented using only x,y,z positions, and not angles at all. Although this
necessitates the use of spheres for guaranteeing that distances between joints do not change, there
are certain advantages. One of the major future extensions to this project is to import motion-
captured data, which is typically represented using x,y,z coordinates, and not angles. This design
decision was made to facilitate the future inclusion of motion capture data.

e The heading change controls in the animation editor dialog box may seem unnecessary, since it
seems that updated headings can be calculated and updated automatically. This may be the case
for beginner’s Salsa moves, but with more advanced moves heading calculation become non-trivial.
In order to allow for such moves, the heading control was left manual.

e Although many 3D modelling applications include three separate views, the animation editor dialog
contains only front and side views. A top view was not included because two views are sufficient
for unambiguously positioning the stick figures’ joints in 3D space.



Extensions

The following are some possible extensions to this project:

Superficial / Simple Extensions:

Make the Skeleton Class more general so that the project is not restricted to humans. For example,
make it possible to create a stick figure for a horse, lion, or whale.

Use the project to animate other activities, for example, Swing dancing, Karate, Kung-Fu, Sword
Fighting, or any other motion that can be broken down into primitive building blocks.

Put meat on the bones; expand the project so that it is not restricted to stick figures, but rather
can handle any animated figures, perhaps using a standard format.

Allow the MG to be more general by allowing the animations at different nodes to take different
amounts of time, instead of being restricted to constant time per node the way dances are.

Allow the user to colour the important nodes, and allow for ‘shorthand edges’ similar to those in
Figure 1, so that the user interface is more friendly towards large motion graphs.

Instead of random traversals of the MG, allow the user to control which transitions are used. The
obvious application for this is the use of MGs in computer games and movies. Another option is
to turn the edges into weighted edges, so that popular moves can be statistically favored.

Allow for ‘hard coded move sequences’; some move combinations flow very well, and the ability to
represent this would make a MG more powerful.

In this project, the MG nodes contain animations and the edges represent legal transitions. It is
unclear whether this representation of motion is the most intuitive for every use. An alternative is to
take the current graph’s dual. That is the edges contain animations, and the nodes contain states.
Adjust the graph editor dialog box so that the user can switch between these two representations
with a simple click. This would allow for interesting extensions of the Ul. For example, each edge
in the graph could double as a slider that displays the edge’s animation frame by frame as it is
manipulated.

Fundamental / Non-trivial Extensions:

This project has been designed from the very beginning to be extended using motion capture data
to make the animations more realistic. Inclusion of motion capture data will give the additional
opportunity of developing a clever user interface for integrating the data with the MG nodes.

Although beat detection seems like a simple concept, the rhythm of Salsa music is not easy to catch.
In fact, it takes most people many months to learn to interpret the beat properly. Including beat
detection and other analysis would allow the figures to dance to any arbitrary song, and perhaps
even start improvising. For example, a popular move is for the man to dip his partner as the song
is ending; a simple analysis of the song being played would allow the figures to perform such dips.

Integrate behavioral characteristics with the MGs. For example, if the male and female dancers
each were to have their own MG, it would be possible to have the woman react behaviorally to
the man’s leads instead of the dance being totally scripted. Moving beyond dance, the inclusion
of behavioral models greatly expands the scope of MGs. For example, assume two characters are
fighting, and each has a sword and shield. A simple MG would give them a library of moves such
as blocking with their shields, thrusting their swords, moving around, etc. However, the inclusion
of a behavioral model would allow the characters to react to one another. For example, they could
circle each other, attempt to block each other’s sword thrusts, search for weaknesses, etc.



e One could integrate a notion of goals into a behavioral model. Setting goals which are in opposition
to the MG would create more realistic behavior and motion. For example, on a crowded dance
floor it is not always possible to perform a flawless move due to a lack of space. A character could
be given the goals of avoiding collisions while trying to stay as close as possible to the motion
described in the MG in order to capture a person’s need to slightly improvise in these situations.
The MG would therefore become a motion schema rather than a script. Another possible set of
goals would be the addition of waypoints which the dancers try to travel through while dancing.

Conclusion

This project was a successful first attempt, and gives a basic demonstration of what MGs are and how
they can be used, but it has really only scratched the surface. The fact that the ‘Extensions’ section
above is so large is a testament to how much this project can still be improved. Many of the ideas
related to the goal/behavior-oriented applications of MGs mark interesting areas for potential research
and original work. We are currently pursuing these avenues of research.

Bibliography

L. Kovar, M. Gleicher, F. Pighin: Motion Graphs. Computer Graphics 2002.



