
Instructor: Ali Juma

Fall 2008 Introduction: languages and syntax

CSC 326H1F, Fall 2008

Programming Languages

1 Fall 2008 Introduction: languages and syntax

What languages do you know?

• The usual suspects: C, C++, Java

– fine languages

– nearly the same

• Perhaps you've also learned some others?

– assembler

– Basic, Visual Basic, Turing, Pascal, Fortran, Modula, Eiffel

– Perl, Python, PHP, C#, Ruby

• But these are also nearly the same.

• What about these?

– Scheme/Lisp

– Prolog

– Haskell

– ML

2

Fall 2008 Introduction: languages and syntax

A survey of counted loops ("for loops"): C, C++, Java

int sum = 0;

int i;

for (i = 1; i < 11; i++)

 sum += i;

/* Note the semicolons everywhere. */

3 Fall 2008 Introduction: languages and syntax

A survey of counted loops: FORTRAN

 SUM = 0

 DO 100 I = 1,10

 100 SUM = SUM + I

4

Fall 2008 Introduction: languages and syntax

A survey of counted loops: COBOL

 MOVE 0 TO SUM

 MOVE 1 TO I

 PERFORM ADD-I-TO-SUM

 UNTIL I = 11.

ADD-I-TO-SUM

 ADD I TO SUM

 ADD 1 TO I.

5 Fall 2008 Introduction: languages and syntax

A survey of counted loops: Turing

var sum := 0

for i : 1..10

 sum += i

end for

-- or --

var sum := 0

type range : 1 .. 10

for i : range

 sum += i

end for

6

Fall 2008 Introduction: languages and syntax

A survey of counted loops: Python

sum = 0

for i in range(11):

 sum += i

7 Fall 2008 Introduction: languages and syntax

Looping over a list

• Python:
 for i in list:

 # Do something with i.

• Java:
 for (Iterator it = myList.iterator(); it.hasNext();) {

 MyClass mc = (MyClass) it.next();

 // Do something with mc.

 }

• Java 1.5:
 List<MyClass> myList; // It's a list of MyClass objects.

 for (MyClass mc : myList) {

 // Do something with mc.

 }

8

Fall 2008 Introduction: languages and syntax

What's the point?

• Not "Java is wonderful" (though it is).

– Some of you are advocates of C++, C#, Python, Perl, etc.

– They all have good points, and you can program well in them and enjoy it.

• Here's what our examples mean:

– There are many languages, and they say the same thing in very different ways.

– Over time, what you're allowed to say has changed, and the changes tend to
make programming easier.

– What you're allowed to say affects what you are able to think.

• And that's why we study programming languages: to be able to think
better because we've seen different ways of expressing programs.

9 Fall 2008 Introduction: languages and syntax

A few languages

• FORTRAN

• Algol

• LISP

• COBOL

• PL/I

• SNOBOL

• APL

• Pascal

• Simula

• Basic

• C

References: Sebesta, chapter 2; and (a nice diagram)
http://www.oreilly.com/news/graphics/prog_lang_poster.pdf

• Prolog

• Smalltalk

• Scheme

• Ada

• Turing

• C++

• ML

• Java

• Perl

• Python

• C#

10

Fall 2008 Introduction: languages and syntax

Major topics of this course

• Introduction

• Object-oriented programming: Python

• Types and values

• Syntax and semantics

• Functional programming: Scheme

• Exceptions

• Logic programming: Prolog

• We won't be spending the same amount of time on each topic.

11 Fall 2008 Introduction: languages and syntax

Administrative stuff

• Course website: http://www.cs.toronto.edu/~ajuma/326f08

– Announcements, slides, and assignments will be posted here.

– There will be a bulletin board for discussion too.

– Read the announcements and the bulletin board regularly! I will assume that you
are aware of any information posted there.

– You'll need to sign up for a bulletin board account – use your ECF email address.

• Bulletin board: arranged by topics

– Post in the correct location – mis-posted items may not be answered.

• Email to me: used only for personal issues
– not for advice about a lab, project or test – these questions belong on the bulletin

board.

– Include "CSC326" in the subject line of your email message.

• My office hours: TBA

12

Fall 2008 Introduction: languages and syntax

Text and other books

• Text: R.W. Sebesta, Concepts of Programming Languages, Addison-
Wesley, 2008.

– This is the eighth edition.

– We will cover a lot of the text, but far from all of it. The chapter references in the
slides are to this book.

• Other books: none required.

– You will need to write programs in Python, Scheme and Prolog.

– I bet you can manage without buying anything, but if you're serious about any of
the languages you should buy something about that language.

• Python is the most likely candidate. A good book is: Mark Lutz, Learning Python,
O’Reilly, 2007.

– When using any Python book, keep in mind that we will be using Python 2.5.

13 Fall 2008 Introduction: languages and syntax

Grading scheme

• 25%: three labs, one project

– due at 10:30 a.m.: Sept. 29, Oct. 27, Nov. 17 (project), Dec. 1

• all Mondays

– submission is by ECF "submit" command

• deadline is by ECF clock

– weights: 5% for each lab, 10% for project

– labs are to be done individually, and the project is to be done in a group of size at
most 3.

– late penalty: 20% per day up to 2 days, and not accepted after that.

• 25%: two tests

– Oct. 6 and Nov. 3 (to be confirmed)

– weights: 12.5% each

– closed-book except that a single, double-sided aid ("cheat") sheet will be allowed

• Produce this sheet any way you like, using letter-sized (that is, 8.5" x 11") paper.

• 50%: final exam

– same aids allowed as on the tests

14

Fall 2008 Introduction: languages and syntax

Labs and project

• Labs focus on the paradigm represented by the language, not on
algorithm design.

• The project will be done in Python.

• what will get a good mark:

– successful running on the ECF workstations (p1, p2, …)

• Failure to run may result in a mark of 0, even if the code shows signs of intelligence.

– completion of a significant part of the requirements

– clear style

• good variable names

• helpful comments

– good documentation

• within the code unless otherwise specified

15 Fall 2008 Introduction: languages and syntax

Re-mark requests

• Deadline for requests: one week after the marked work was available for
return.

• Use the same standard form from the web site for labs, projects and
tests.

• As usual: marks may go up or down – but I don't plan to lower them.

– Markers are imperfect, and aren't insulted if you ask for a check.

16

Fall 2008 Introduction: languages and syntax

Tutorials

• Most weeks, the tutorial will be run as a help session where a TA will be
present to answer questions.

– SF 1012, Fridays at 12, starting Sept. 12

• We also have SF 1013 available if SF 1012 gets full.

• Any exceptions to this will be announced in class.

17 Fall 2008 Introduction: languages and syntax

Academic offenses

It is not OK to "work together". Don't even look at anyone else's code.

• The labs are to be done individually. The project is to be done by your
group only.

• All work must include the name and student number of the author or
authors.

• You may use material from other sources if you include attribution.

– This includes the textbook and all other references, including online and printed.

• If you include full attribution, you have not committed an academic
offense.

• If your attributions indicate that you haven't done much work, then the
mark you get may be rather low.

• I'll be checking in two cases:

– all submissions together, where possible

– in more detail, where there's reason to wonder

• (Why do I care?)

18

Fall 2008 Introduction: languages and syntax

The current topic: introduction

• Introduction
! reasons for studying languages

– language classifications

• level, natural data types, paradigm

– simple syntax specification

• Object-oriented programming: Python

• Types and values

• Syntax and semantics

• Functional programming: Scheme

• Exceptions

• Logic programming: Prolog

19 Fall 2008 Introduction: languages and syntax

Kinds of languages

• We can classify by:

– level

– natural data types

– paradigm

• Levels:

– machine

– assembly

– high-level

• Data types:

– COBOL: records

– FORTRAN: "real" numbers

– LISP and Scheme: lists, functions

20

Fall 2008 Introduction: languages and syntax

Terminology: "first class"

• First-class "objects" are things that the language allows programs to:

– declare

– assign values to

– return as function values

• or: create without a name

• Example: functions/methods

– C: can't be created by programs (that is, C functions can't construct new C
functions) or assigned values

• but you can have pointers to functions

– Java: can't even have function pointers

– Scheme: functions are first-class objects.

• Example: types

– C: types can't be created or manipulated at runtime, but can be declared in your
code (typedefs and structs).

– C++, Java: you can have template arguments (known as type parameters in Java)
which take on a type as their value, but you still can't create or manipulate types
at runtime.

– Who would want to create types at runtime?

21 Fall 2008 Introduction: languages and syntax

Programming paradigms

• imperative: program is sequence of orders to be carried out

– Fortran, Cobol, C, Basic

• object-oriented: program is an interacting community

– Smalltalk, C++, Java, Python

• functional: program consists only of function definitions and function
calls; in particular, there are no assignment statements, no loops.

– Lisp, Scheme, ML

• logic: program finds variables that satisfy predicates

– Prolog

22

Fall 2008 Introduction: languages and syntax

How does this affect a language's power?

• It doesn't. According to the Church-Turing thesis, anything that can be
computed can be computed by a Turing machine, and all of our
languages are capable of doing all that a Turing machine can do. That is,
all of our languages have equivalent computational power.

• But our languages may differ in how easy it is to express particular
computations.

• So we choose a language by how well it suits what we're trying to do,
not for whether or not it permits us to do what we want.

23 Fall 2008 Introduction: languages and syntax

The current topic: introduction

• Introduction
! reasons for studying languages

! language classifications

– simple syntax specification

• Object-oriented programming: Python

• Types and values

• Syntax and semantics

• Functional programming: Scheme

• Exceptions

• Logic programming: Prolog

24

Fall 2008 Introduction: languages and syntax

Syntax

• What are you allowed to say? -- syntax.

• What does it mean? -- semantics.

• We'll come back to both syntax and semantics later on. For now, we just
need to know a little about describing syntax.

• Reference: Sebesta, Chapter 3.

25 Fall 2008 Introduction: languages and syntax

Describing syntax

The standard notation used in computing is Backus-Naur form or BNF.

• Example 1 (in C/Java):

 x = y + z;

 <asst stmt> ::= <vbl> '=' <expr> ';'

– This rule says that an assignment statement is a variable name, followed by an =
operator, followed by an expression, followed by a semicolon. Of course, we'd
also need to give definitions for <vbl> and <expr>.

• Example 2 (for a simplified language):
 <expr> ::= <vbl>
 | <vbl> '+' <vbl>
 | <vbl> '-' <vbl>

– This rule says in our simplified language, an expression is a variable name, or a
variable name followed by a + operator followed by a variable name, or a variable
name followed by a - operator followed by a variable name. Note that the symbol
"|" means "or".

26

Fall 2008 Introduction: languages and syntax

Backus-Naur form (BNF)

• On the left, the form being described.

• Then, the ::= (or !) symbol.

• Then, the components allowed in the form, with pipes used to separate
multiple allowed definitions of the same form.

• Components that must be exactly as shown are put in quotation marks:
e.g. '='.

• The names of the form and of components that are forms themselves
are put in angle brackets <…> or distinguished by a special typeface.

• In other words, BNF is like this:

 <BNF description> ::= <form> '::=' <components>

27 Fall 2008 Introduction: languages and syntax

Extended BNF

• Repetition: use curly brackets, which mean "zero or more" of their
contents.
 <comma expr> ::= <expr> { ',' <expr> }
– A comma expression consists of one or more expressions, separated by

commas.

• Optional parts: use square brackets, which mean "zero or one" of their
contents.
 <if stmt> ::= 'if' '(' <expr> ')' <stmt> ['else' <stmt>]
– An "if" statement has at most one "else" clause.

• Alternatives: use brackets and pipes, which mean "choose exactly one"
 <expr> ::= <vbl> ('+' | '-' | '*' | '\') <vbl>
– An expression consists of a variable followed by exactly one symbol followed by

another variable.

• BNF and Extended BNF are equivalent in what they can describe, but
Extended BNF improves readability.

28

Fall 2008 Introduction: languages and syntax

BNF usage

• BNF style varies:
– <…> may be replaced by font choice or subscripts

– quotation marks may be replaced by font choice or lack of subscripts

• Sometimes usage can be a little loose.
– The reader is supposed to figure it out from context.

29

