
Fall 2008 Python: Introduction

The current topic: Python

! Introduction

! reasons for studying languages

! language classifications

! simple syntax specification

• Object-oriented programming: Python

• Types and values

• Syntax and semantics

• Functional programming: Scheme

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Python: Introduction

Announcements

• The course information sheet is now available.

• Office hours will be M1:30-2:30 and W11-12 in SF3207.

• Make sure you use an ECF email address when signing up for a bulletin 

board account.

2

Fall 2008 Python: Introduction

Python

• A scripting language.

– Script: A chunk of text that gets executed without any fuss. 

• origins: “shell scripts” in Unix, and later batch files in DOS.

• Though called “scripting languages”, Python and Perl are full-scale 

programming languages. (We won’t cover Perl here; like Python it's 

often used on web servers and for general system administration tasks.)

• An evolving language.

– In this course, we'll use version 2.5 (more precisely, version 2.5.2, the latest 

release). 

• An object-oriented language.

– similar in some ways to Java and C++, but with important and interesting 

differences.

3 Fall 2008 Python: Introduction

Python

• No separate compilation phase.

– At runtime, your program is first converted into byte code and then the byte code 

is run by the Python Virtual Machine.

– The byte code is platform-independent.

– "Byte code" and "virtual machine" should remind you of Java. The key difference 

is that with Python, this is all dealt with in the background.

– The lack of compilation to machine code (as happens with C/C++) can lead to 

slower performance, but it's not as bad as you might expect:

• Many of Python's built-in functions are implemented in C. 

• Can make developers more productive.

– Syntax is simple. 

– Proper indentation is required. This contributes towards simpler syntax since it 

eliminates the need to explicitly mark the beginning and end of a block (like the 

body of a loop).

– The result is readable code. 

• Makes programming fun! 

4



Fall 2008 Python: Introduction

Python Trivia

• Released in 1991 by Guido van Rossum.

• Named after Monty Python!

• Python is used by:

– Google

– YouTube

– BitTorrent

– Industrial Light & Magic

– Pixar

– NASA

– ...and others!

– Source: Mark Lutz, Learning Python, O'Reilly, 2008.

5 Fall 2008 Python: Introduction

Features

• non-C-like syntax

– It's good to learn a language that looks different. 

• multiple inheritance

– like C++, but unlike Java

• garbage collection

– like Java, but unlike C++

• exceptions

• built-in lists, tuples, and dictionaries

– dictionaries are like maps in C++ and Java

6

Fall 2008 Python: Introduction

Running Python

• You can run individual commands within the Python interpreter.

• You can run entire programs from the command-line or within an IDE

– IDEs include IDLE, and Eclipse with the Pydev plugin.

• On ECF, the default installation of Python (in /usr/bin/python) is 

rather old (version 2.3). I've installed the latest version (2.5.2) in a public 

area of my home directory (that is, ~ajuma/share/bin/python2.5). 

Your assignments will be tested using version 2.5.2. The easiest way 

to run this version on ECF is to add ~ajuma/share/bin to your PATH 

environment variable; then you can just use the command python2.5 

to run the correct version of Python.

7 Fall 2008 Python: Introduction

Running Python programs

• Say your program is in the file prog.py.

– The ".py" extension isn't always required, but is a good practice to follow.

• Option 1: Use the following command.

     python2.5 prog.py

• Option 2: Make prog.py an executable script. This works on Unix-like 

systems (e.g. Linux, Mac OS X, Cygwin). 

– Make the following the first line of the file:

#!/u/prof/ajuma/share/bin/python2.5

(On non-ECF machines, use the actual path to python instead.)

– Set the file's permissions, making the file executable by its owner (you):

chmod 700 prog.py

– You can now run the program using the command:

./prog.py

8



Fall 2008 Python: Introduction

Variables

• In Python, variables are just names for values.

• Variables are not declared.

– Unlike C or Java.

– Variables are created by their first use:

   lis = [0, 1]   #creates a variable called lis

• Observe that "#" is used for comments.

• Variables have no types, but values do have types.

– Python is dynamically typed (since types don't need to be declared).

– Python is strongly typed: 

• Types are checked and type restrictions are enforced when performing operations.

– Example:

x = 123

x = "hello"  #x's value was first an int, now it's a string

y = 456

x + y    #This produces a TypeError.

9 Fall 2008 Python: Introduction

Variables

• Variables cannot be used before they receive values.

– There is no default value.

– Example:

z+2  #This produces a NameError.

10

Fall 2008 Python: Introduction

Strings

• Use single or double quotation marks for string literals:

'hi' + "there"  #this produces 'hithere'

– Note that the + operator is used for concatenation.

• Converting a value to a string: use the str() function:

str(13)   #produces the string '13'

• Getting multiple copies of a string: use the * operator:

'ha'*3    #produces 'hahaha'

• Converting a string to an int or a float:

int('543')    #produces the int 543

float('4324.4343')   #produces the float 4324.4343

11 Fall 2008 Python: Introduction

Numbers

• Three types:

– Integers

• e.g. 34, -43, 0

• automatic conversion to "long integers" (which can grow as large as needed) when 

the value overflows a standard integer.

2**100  #correctly calculates 2100, no overflow error.

• "long integers" are displayed with a L at the end: e.g. 1099511627776L

– Floating-point numbers

• e.g. 43.3, 10.0, -3.3

– Complex numbers: 

• e.g. 43 + 6j,  -1j,  43.43 + 1.3j

• Note that the letter j is used in place of i (the "imaginary" part).

12



Fall 2008 Python: Introduction

Booleans

• Values are True and False (capitalized). These are of type bool.

• As in C, all values have a boolean meaning:

– 0, None, empty structures are false.

• Here, structures include lists, dictionaries, strings.

– Everything else is true.

• Operators:  and, or, not.

• and and or are short-circuit and return the last value evaluated (as 

opposed to returning the value True or False):

'a' or 'b'   #value is 'a'

'' or 'z'    #value is z

'a' and 0    #value is 0

'a' and 'b'  #value is 'b'

type('a' and 0)   # <type 'int'>

13 Fall 2008 Python: Introduction

Comparison operators

• Operators are: >, <, >=, <=, ==, !=

– Same as C and Java.

• Results are True or False.

• Can be chained:

-1 < 0 < 1   # True

14

Fall 2008 Python: Introduction

Basic input/output

• Output to stdout using print.

– Unless the statement ends with a comma, the output ends with a newline 

character.

print "hello"               #output ends with a newline

print "hello no new line",  #output does not end with a                   

                            #newline

print "hello", "world", 123, "csc"  #commas cause items to 

                                    #be separated by spaces

print "hello"+"world"+str(123)+"csc"  #no spaces

• Read from stdin using raw_input().

– Optionally, you can pass a prompt to raw_input().

name = raw_input("Please enter your name:")

15 Fall 2008 Python: Introduction

If statements and while loops

• The symbol ":" and indenting are used to denote the body of the 

statement.

a = 3

if a < 0:

    print "less"

elif a == 0:     #Observe it's *not* "else if".

    print "equal"

    print "other stuff"

else:

    print "greater"

while a > 0:

    print a

    a -= 1   #There is no ++ or -- operator.

16



Fall 2008 Python: Introduction

Exercises

• These are good things to ask about in tutorial (after you've tried working 

on them).

1. Add ~ajuma/share/bin to your PATH environment variable, and make 

sure you can run python2.5.

2. Write a simple "Hello World" program, and run it both of the ways 

described on slide 8.

3. Modify your program to ask the user for their name, and then output 

"Hello <user's name>". 

4. Write a program that asks the user to input an integer n, and then 

outputs the first n Fibonacci numbers. The Fibonacci sequence is 

defined as follows:

F1 = 1, F2 = 1, Fk = Fk-2 + Fk-1 for k > 2.

So the first ten Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

17


