
Fall 2008 Python: If statements, sequences, functions, modules

The current topic: Python

! Introduction

• Object-oriented programming: Python

! Features, variables, numbers, strings, Booleans, while loops

– Next up: If statements, sequences, functions, modules

• Types and values

• Syntax and semantics

• Functional programming: Scheme

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Python: If statements, sequences, functions, modules

Announcements

• Tutorials start today in SF1012.

• Lab 1 should be posted by Monday.

– Due: September 29th, 10:30am

• Term tests:

– October 6th, 11:10-12:00, GB405

– November 3rd, 11:10-12:00, GB405

2

Fall 2008 Python: If statements, sequences, functions, modules

Problems with the C/Java If statement

• Consider the following C/Java code:

mark = 85;

comment = "pass";

if (mark >= 50)

 if (mark >= 90)

 comment = "excellent";

else

 comment = "fail";

• What is the final value of comment?

– "fail"!

– The else actually belongs to the inner if statement.

– The indentation suggests a meaning to us, but is ignored by the compiler.

– Python's approach to indentation solves this problem. (And prevents bugs!)

• Reference: Sebesta, Chapter 8.

3 Fall 2008 Python: If statements, sequences, functions, modules

Conditional expressions

• Used to write simple if/else statements in a single line. Instead of:

if mark >= 50:

 grade="pass"

else:

 grade="fail"

we can write:

grade = "pass" if mark >= 50 else "fail"

• New in Python 2.5, and similar to the ? operator in C/Java.

– In C/Java, the statement above would be written:

grade = (mark >= 50) ? "pass" : "fail"

– Which form is more readable?

4

Fall 2008 Python: If statements, sequences, functions, modules

Containers and sequences

• A container is a collection of objects.

– In Python, an object can be practically anything.

– Properties of a container include:

• Size

• Whether or not a particular object is contained

• Whether or not objects can be added or removed

• A sequence is a container with some kind of ordering.

– A sequence can contain a particular object more than once.

– Sequences can be indexed to obtain the N-th object in the sequence.

• In Python:

– Sequence types are lists, tuples, and strings.

– Non-sequence container type is the dictionary.

• Reference: Sebesta, Chapter 6

5 Fall 2008 Python: If statements, sequences, functions, modules

Lists

• A mutable sequence of objects.

– Mutable: Lists can be modified (objects can be added and removed).

• Lists can be heterogeneous.

– Can have different kinds of objects in the same list.

• Similar to arrays and vectors in C++/Java.

• Simple examples:

ls = [1, "CSC", 2, [], "321"]

ls[0] # 1

ls[3] # []

ls[5] # IndexError

6

Fall 2008 Python: If statements, sequences, functions, modules

Lists

• More examples:

ls = [1, "CSC", 2, [], "321"]

i = 0

while i < len(ls): #len returns size of the list

 ls[i] = i

 i+= 1

ls # [0, 1, 2, 3, 4]

7 Fall 2008 Python: If statements, sequences, functions, modules

Nested lists

• Nested lists:

nest = [[1, 2], [3, 4], [5, 6]]

nest[0] # [1, 2]

nest[0][1] # 2

y = nest[0]

y[1] = 4

nest[0][1] # 4 (and not 2!)

y = [99, 99]

nest[0][1] # 4 (and not 99!)

• Observe that values associated with Python variables are actually

references! This should remind you of pointers in C or references in

Java.

– In the example above:

• nest is a reference to a 3-element list

• nest[0] is a reference to the first element of nest

• y=nest[0] sets y to be a reference to the object that nest[0] refers to.

• y[1]=4 modifies the object that y refers to.

8

Fall 2008 Python: If statements, sequences, functions, modules

Adding to lists

• Use the append method to add to a list.

ls = [32]

ls.append(4)

ls # [32,4]

Do not do the following:

ls = ls.append(5) # ls is now None

ls2 = ["cat", "dog"]

ls2.append(["rabbit"])

ls2 # ["cat", "dog", ["rabbit"]]

9 Fall 2008 Python: If statements, sequences, functions, modules

Removing from lists

• Use the pop method to remove and return the last element of a list.

ls = [32, 1, [], "fish", "mouse"]

last = ls.pop()

last # "mouse"

ls # [32, 1, [], "fish"]

• Observe that using append and pop, we can treat a list as a stack.

• What if we want to remove an element other than the last one? Pass an

index to pop.

ls = [32, 1, [], "fish", "mouse"]

last = ls.pop(3)

last # "fish"

ls # [32, 1, [], "mouse"]

10

Fall 2008 Python: If statements, sequences, functions, modules

Adding lists together

• We can create a new list that is the concatenation of two existing lists.

ls1 = ['a', 'e', 'i', 'o', 'u']

ls2 = ['b', 'c', 'd', 'f']

ls3 = ls1 + ls2

ls3 # ['a', 'e', 'i', 'o', 'u', 'b', 'c', 'd', 'f']

• We can create a new list than consists of multiple copies of an existing

list.

ls = [[5, 10]]

ls2 = ls*3

ls2 # [[5, 10], [5, 10], [5, 10]]

ls2[0][0]=1

ls2 # [[1, 10], [1, 10], [1, 10]]

ls2[0] = 'w' # ['w', [1, 10], [1, 10]]

• Remember that lists store references, so when we copy a list we get a

copy of the stored references.

11 Fall 2008 Python: If statements, sequences, functions, modules

Strings

• Strings are essentially lists of characters except:

– Strings are immutable. You cannot change an existing string object. Instead, you

have to create a new object.

– There isn't a "character" type in Python.

– But, intuitively, you can think of strings as unchangeable lists where each element

is a single character.

– As we saw last time, this is exactly what happens when we use a string as a list.

s = 'bear'

s[2] # 'a'

t = ['teddy']

t += s

t # ['teddy', 'b', 'e', 'a', 'r']

12

Fall 2008 Python: If statements, sequences, functions, modules

Tuples

• Tuples are immutable lists. You cannot add or remove elements from a

tuple.

• Normally enclosed in round brackets, but this isn't always necessary.

t1 = (2, 3, 4)

t1[2] # 4

t2 = 2, 3, 4

t1 == t2 # True

t3 = (1) # t3 is *not* a tuple, it's the int 1

t4 = (1,) # t4 is a tuple with one element

t5 = 1,

t4 == t5 # True

• Observe that tuples of size one need a trailing comma to differentiate

them from a single object.

13 Fall 2008 Python: If statements, sequences, functions, modules

Swapping values

• Tuples make it easy to swap values.

a = 5

b = 6

a, b = b, a

a, b # (6, 5)

• Python creates a new tuple (in the background) to store the right side

when it evaluates a,b = b,a, and then it assigns from this new tuple to

the variables on the left.

14

Fall 2008 Python: If statements, sequences, functions, modules

Slicing

• Slicing allows us to extract a portion of a sequence (rather than just a

single element).

ls = [5, 6, 7, 8]

ls[1:4] # [6, 7, 8]

ls[1:3] # [6, 7]

ls[2:] # [7, 8]

ls[:2] # [5, 6]

s = "hello"

s[1:4] # "ell"

t = (5, 6, 7, 8)

t[0:2] # (5, 6)

• A slice is of the form:

<sequence>'['<start-index>':'<end-index + 1>']'

• When the start index is omitted, the slice starts at the beginning of the

sequence.

• When the end index is omitted, the slice ends at the end of the

sequence.

15 Fall 2008 Python: If statements, sequences, functions, modules

Negative and out-of-range indices

• Negative indices count backward from the end of a sequence. The last

item in a sequence has index -1.

ls = ["c", "e", "f", "d", "g"]

ls[-1] # "g"

ls[-2] # "d"

ls[1:-1] # ["e", "f", "d"]

ls[1:-2] # ["e", "f"]

• Out-of-range indices cause errors in single-element references but not

in slices.

ls = ["c", "e", "f", "d", "g"]

ls[99] # IndexError

ls[3:99] # ["d", "g"]

ls[-10:-8] # []

16

Fall 2008 Python: If statements, sequences, functions, modules

Splicing

• Splicing is assigning to a slice.

– This only works for mutable sequences, since it modifies the sequence.

• So it works for lists, but not for strings or tuples.

• The list on the right-hand side replaces the slice being assigned to.

– The list on the right-hand side does not have to be the same length as the slice

being assigned to.

ls = [5, 6, 7, 8]

ls[1:2] = [11, 12, 13]

ls # [5, 11, 12, 13, 7, 8]

ls[1:2] = 9 # TypeError

ls[1:3] = []

ls # [5, 13, 7, 8]

s = 'hello'

s[1:3] = 'abc' # TypeError, since strings are immutable.

s = s[:1] + 'abc' + s[3:] # Creating a new string works.

s # 'habclo'

17 Fall 2008 Python: If statements, sequences, functions, modules

For loops

• Look a little like for loops in C/Java, but the idea is different.

for c in ['ab', 'cd', 'ef']:

 print c*2,

#output is: abab cdcd efef

for d in 'friday':

 print d,

#output is: f r i d a y

• The general form is:

'for' <variable> 'in' <container>':'

– Which means "do the following for each member of this container".

– If the container is a sequence, the members are processed in order.

18

Fall 2008 Python: If statements, sequences, functions, modules

Counting

• The range() function makes a list of numbers.

range(3) # [0, 1, 2]

range(2, 5) # [2, 3, 4]

range(2, 10, 3) # [2, 5, 8]

range(3, 1) # []

range(3, 1, -1) # [3, 2]

s = 'python'

for i in range(len(s)):

 print i, s[i],

#output is: 0 p 1 y 2 t 3 h 4 o 5 n

19 Fall 2008 Python: If statements, sequences, functions, modules

Some little things

• In while loops and for loops, break and continue behave the same as

in C/Java.

– break exits the innermost loop

– continue moves on to the next iteration of the innermost loop

• The operator in:

– x in c: This is True if and only if the value x is in the container c.

vowels = 'aeiou'

for v in vowels:

 if v in 'spaghetti':

 print v,

#output is: a e i

20

Fall 2008 Python: If statements, sequences, functions, modules

Functions

• Defined using the keyword def.

def sumOfThree(x, y, z):

 return x+y+z

sumOfThree(3, 4, 5) # 12

sumOfThree("a", "b", "c") # "abc"

• Observe that the argument types and return type are not declared.

• Any assignments within a function are treated as assignments to local

variables (that is, unless a global statement is used).

21 Fall 2008 Python: If statements, sequences, functions, modules

Functions: Passing arguments

• Arguments are passed by copying references (not by copying objects).

def changeMyArgs(x, L):

 x = 12

 L[0] = 32

a = 0

ls = [1, 2, 3]

changeMyArgs(a, ls)

a # still 0, not 12

ls # [32, 2, 3]

22

Fall 2008 Python: If statements, sequences, functions, modules

Modules

• Any Python file can be loaded as a module using import.

import xyz #loads contents of xyz.py as module xyz

• During loading:

– The code in the module is executed.

– That is:

• Classes, functions, variables are defined.

• Executable statements are executed.

• Naming:

– Item x from module m is referred to as m.x.

23 Fall 2008 Python: If statements, sequences, functions, modules

Modules: Comparison with Java

• In Java, import m doesn't "do" anything, in the sense that it generates

no code and causes no action. It just allows you to refer to m.x as

simply x.

• In Python, import m causes nearly the same actions as running m.py,

and you still have to say m.x to refer to item x from m.

– To get short-form naming in Python, use

from m import x

which imports m (if it hasn't been imported already) and allows to refer to m.x as

simply x.

• By itself, this doesn't let you refer to anything else from m, not even using long-form

naming. But you can still do a standard import to get this, and doing so won't re-

execute m.

– To get short-form naming for everything in m, use

from m import *

but this is viewed as a somewhat dangerous practice. (Why?)

24

Fall 2008 Python: If statements, sequences, functions, modules

Modules: Who's in charge?

• A module's __name__ attribute tells you whether it's the module that

was called to start the program.

– If __name__ is '__main__', the module is being run directly.

– Otherwise, __name__ is the module's actual name, and some other module

imported it.

• This allows a module to behave differently depending on how it's being

run:

if __name__ == '_ main__':

 #do stuff

else:

 #do other stuff

25 Fall 2008 Python: If statements, sequences, functions, modules

Modules: Where does Python find them?

• There are standard locations where Python looks for modules when it

encounters an import statement.

• This list of locations is stored in sys.path. To access it:

import sys

sys.path # This is the list of locations.

• sys.path is just an ordinary list, so you can change it if you need to.

26

Fall 2008 Python: If statements, sequences, functions, modules

Exercises

• Write a function that takes an integer n as a parameter and returns a list

containing the first n Fibonacci numbers.

• Put your function in a file, and use this file as a module. Try importing

the module with and without short-form naming.

• Challenge: Try writing your function without any loops. (Hint: Use

recursion. This is a preview of functional programming.)

27

