
Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

The current topic: Python

! Introduction

• Object-oriented programming: Python

! Features, variables, numbers, strings, Booleans, while loops

! If statements, sequences, functions, modules

– Next up: Dictionaries, command-line arguments, files, classes, inheritance, 

polymorphism

• Types and values

• Syntax and semantics

• Functional programming: Scheme

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Announcements

• Lab 1 has been posted.

– Six exercises.

– We've already covered the material needed for the first three exercises.

– Today we'll also finish covering material needed for the sixth exercise.

2

Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Dictionaries

• A dictionary is a container but it is not a sequence. It is a mutable set of 

key-value pairs.

d = { 'Newton': 1642, 'Darwin': 1909 }

d['Newton']   # 1642

d['Darwin']  = 1809

d['Turing']              # KeyError

if 'Turing' in d:        # False

    print d['Turing']

else:

    d['Turing'] = 1912

# Getting a list of keys:

d.keys()   # ['Darwin', 'Turing', 'Newton']

• Similar to maps in Java and C++.

3 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Dictionaries: Using a default value

• Example:

bdays = ['May', 'Jun', 'Jun', 'Apr', 'May', 'Jun']

freq = {}

for v in bdays:

    if v in freq:

        freq[v] += 1

    else:

        freq[v] = 1

print freq   # {'Apr': 1, 'Jun': 3, 'May': 2}

# We can replace the if/else with:

freq[v] = freq.get(v, 0) + 1    

• Observe that freq.get(v, 0) returns freq[v] if this exists, and 0 

otherwise.

4



Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Dictionaries: Storing properties

• Python uses dictionaries to store properties.

• Modules have an attribute __dict__ that is a dictionary listing the 

items (functions, classes, variables) in the module.

import sys

sys.__dict__.keys()  # A list of items in sys.

5 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Python's built-in help

• Use the help() function to learn more about a module, function, class, 

or method. Some examples:

help(range)      # the range() function

import sys

help(sys)        # the sys module

L = [1, 2, 3]

help(L)          # list objects

help(list)       # same as help(L) since L is a list

help(L.append)   # the append method 

                 

#watch out:

help(L.append())   # TypeError, argument missing

6

Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Command-line arguments

• sys.argv is a list with all the command-line arguments. 

– The first command-line argument, sys.argv[0], is the name of the program. 

– Standard list operations can be used. e.g. len(sys.argv) tells you how many 

arguments there are.

– Suppose file testargs.py is as follows:

#!/u/prof/ajuma/share/bin/python2.5

import sys

print sys.argv

– Running testargs.py:

$ python2.5 testargs.py first 2 3three

['testargs.py', 'first', '2', '3three']

$ ./testargs.py 321 123 abc def

['./testargs.py', '321', '123', 'abc', 'def']

7 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Working with Files

• Open a file with the built-in function open().

– Specify a mode: 'r' means read, 'w' means write, 'a' means append.

inputFile1 = open('filename.txt', 'r')

outputFile1 = open('someOtherFile.txt', 'w')

outputFile2 = open('someExistingFile.txt', 'a')

• Reading from an open file:

– The readline() method can be used to read an open file line-by-line. It returns 

the empty string '' when end-of-file is reached.

nextLine = inputFile1.readline()

while nextLine:   # works since empty string is False

    print "The next line is:", nextLine,

    nextLine = inputFile1.readline()

– Another approach: iterate through the file just as you would through a list.

for nextLine in inputFile1

    print "The next line is:", nextLine,

8



Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Working with Files

• When you read lines from a file, you'll probably want to remove the 

newline character from the end of each line.

– Use the strip() method to remove this, and to also removing any other leading 

or trailing whitespace.

mystr = '    abcd     \n     '

cleanstr = mystr.strip()

cleanstr       # 'abcd'        

• Writing to an open file:

– Use the write() method. Note that newlines are not automatically added in, so 

you need to include them yourself if you want them.

outputFile1.write("csc326")

outputFile1.write(" same line\n")  

outputFile1.write("start of a new line")

• Use the close() method to close an open file.

outputFile1.close()

9 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Object-oriented concepts: a review

• Some definitions you've seen before:

– Class: A plan for the creation of objects.

– Object: A structure built according to the plan in a class, with associated 

operations.

– Inheritance: Designing a child class by extending or specializing the plan of a 

parent class.

– Overriding: A child class replaces a method defined in a parent class with its own 

definition.

– Polymorphism: An action carried out on an object that may belong to any of 

several classes (in a hierarchy) is specialized to the actual class of the actual 

object at runtime. 

10

Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Object-oriented concepts: a review

• More definitions you've seen before:

– Instance: An object belonging to a class. Literally, an "example" (as in the phrase 

"for instance"), because any object is an example of all the objects that may be 

created using its class.

– Instance variable: A variable belonging to an object. Every object has its own 

separate copy of an instance variable.

– Class variable: A variable belonging to a class – that is, shared among all the 

instances of a class. These are also known as static variables in C++ and Java. 

• As we'll see, "class" and "static" aren't equivalent terms in Python.

• Reference: Sebesta, Chapter 12.

11 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Classes in Python

• Python has two kinds of classes, known as new-style classes and 

classic classes.

– New-style classes were introduced in Python 2.2.

– Some differences:

• Each new-style class defines a new type. On the other hand, all instances of classic 

classes are of type "instance". 

• New-style classes can use Python's built-in types (lists, tuples, etc.) as base classes.

• Classic classes aren't required to have parent classes. All new-style classes must be 

descendants of the object class (this is similar to Java).

• New-style classes handle multiple-inheritance more intelligently.

• New-style classes can include static methods and class methods.

• We'll only use new-style classes. 

• Reference: http://www.python.org/download/releases/2.2.3/descrintro/

– A write-up by Guido van Rossum, describing the differences and explaining some 

of his design decisions.

12



Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

A simple class

• A class C whose parent is object:

class C(object):

    x = 7  # class variable, not instance variable!

    y = 10 # class variable

    def m(self):

        self.y = 20  # assigns to *instance* variable

a = C()  # creates an instance of C

b = C()

a.x     # 7 

a.y     # 10 (class variable)

a.m()

a.y     # 20 (instance variable)

b.y     # 10

C.y = 75

b.y     # 75

a.y     # 20 (instance variable hides class variable)

13 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

A simple class

• Observations about class C:

– class C(object):

This says that object is the parent class. If we leave out the parent class 

altogether, we get a classic class, not a new-style class.

– def m(self):

The self parameter must be the first parameter of every instance method. When 

m is called (a.m() in our example), self is automatically set to the instance on 

which m() is being called. This is like the word this in C++/Java. Note that 

technically you can use any word you like in place of self, but it's conventional 

to use self.

– self.y = 20

Unlike C++/Java, you have to use self in order to access instance variables. 

Any assignments to self.<variable> (or, outside of a class, to 

<objectname>.<variable>) are always to instance variables and not to class 

variables. As usual in Python, instance variables are created whenever they are 

first assigned to.

14

Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

A simple class

• More observations about class C:

– a = C()

Creating an object looks like a "call" to the class. Unlike Java, there is no new 

operator to create objects.

– a.y     # 10 (class variable)

a.m()

a.y     # 20 (instance variable)

When resolving a reference (as opposed to an assignment)  to 

<objectname>.<variable> (or, within a class, to self.<variable>), Python 

first looks for an instance variable named <variable>, and if none is found, 

looks for a class variable (and then looks at class variables for parent classes, 

and so on up the inheritance tree).

15 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

A class with a constructor

• A class D with a constructor that takes one parameter, x:

class D(object):

    def __init__ (self, x):

        self.x = x

    def m(self):

        return self.x + 2

a = D(5)

a.m()     # 7

a.x       # 5

• The constructor must be called __init__(). If you don't provide a 

constructor, one is inherited from object (this doesn't do much).

– Note that names that begin and end with two underscores are special methods or 

values.

16



Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Inheritance

• Parent and Child classes:

class Parent(object):

    x = 5

    def n(self):

        return self.x + 2

class Child(Parent):

    x = 8

    def m(self):

        return self.x + 4 + self.n() 

           # self.n() is equivalent to Parent.n(self)

p = Parent()

c = Child()

p.n()   # 7

c.m()   # 22 (and not 19)

c.n()   # 10 (and not 7)

17 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Inheritance

• Methods and variables are inherited, and can be overridden. 

• Parent and Child classes, where Child overrides a method:

class Parent(object):

    x = 5

    def m(self):

        return self.x + 2

class Child(Parent):

    x = 8

    def m(self):

        return self.x + 4 + Parent.m(self) 

p = Parent()

c = Child()

p.m()   # 7

c.m()   # 22 (and not 19)

18

Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Instance methods and variables

• To call an instance method m() from within a class, we have to call 

self.m(). 

• To call an instance method m() of a parent class P from within a child 

class that has overridden m(), we call P.m(self).  

• All instance methods and variables are public by default.

– Later we'll see that we can get around this, to a certain extent.

• There is only one instance variable of a given name for each object. So if 

a parent class P and a child class C both assign to self.x, they are 

assigning to the same variable.

19 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Polymorphism

• Polymorphism is the property of "having many shapes". In object-

oriented programming, it means taking on the attributes of the actual 

object instead of the apparent object.

class P(object):

    def talk(self):

        return 'Hi: ' + self.msg()

    def msg(self):

        return 'Parent'

class C(P):

    def msg(self):

        return 'Child'

c = C()

c.talk()    # 'Hi: Child' 

d = P()

d.talk()    # 'Hi: Parent'  

20



Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Polymorphism

• Observations about c.talk():

– The call self.msg() in P's talk() gets the msg() in C, because the actual 

object is a C.

• Well, the actual object is also a P, since every C is a P, but the "lowest" version of 

msg() is the one that gets used.

– On the other hand, when we call d.talk(), the actual object is an instance of P 

and not of C.

21 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Polymorphism in Java/C++

• In Java and C++, polymorphism is more visible than in Python, because 

in those languages every variable has a type.

– For example, in Java:

P o = new C();

o.talk();

At compile time, the compiler thinks the talk() call is to P's talk(), but at 

runtime C's talk() gets called.

– Polymorphism is more complicated in C++.

• Need to declare methods as virtual to get polymorphic behaviour. 

• In C++ there are both stack-allocated and heap-allocated objects. Stack allocation is 

for directly declared variables. Heap allocation is for is objects constructed at runtime 

by the new operator. (In Java, all objects are heap-allocated.) 

22

Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

The object construction process

• Every class has a static method called __new__.

– We'll discuss static methods later on.

– o = C() calls C.__new__(C), which returns a new instance of C. 

• If additional arguments are given to C(), these are also passed on to __new__.

– Next, C.__init__() is called to initialize the new instance.

• Again, any additional arguments are passed on to __init__.

• If C doesn't have an __init__() method, the parent class' __init__() is called. 

Ultimately, this can result in object's __init__() being called, and this doesn't do 

much.

– If C has a parent class P, and C has an __init__() method, then P's 

__init__() method is not called unless C's __init__() calls it explicitly:

class C(P):

    def __init__(self):

        P.__init__(self)

        # additional stuff specific to C would go here.

23 Fall 2008 Python: Dictionaries, Files, Classes, Inheritance, Polymorphism

Exercises

• Write classes A, B, and C, where C's parent is B, and B's parent is A. 

A's parent is object. Experiment with inheritance and polymorphism.

• Continuing on with our Fibonacci number example: 

– Recall that the first two numbers in the Fibonacci sequence are both 1. But it 

makes sense to consider a sequence defined the same way where the first two 

numbers are something else. (e.g. 2, 7, 9, 16, 25, 41,..., is such a sequence where 

we've chosen 2 and 7 as the first two numbers.)

– So write a class NewFibonacci whose constructor takes two numbers; the 

class uses these two numbers as the first two numbers in the sequence. 

– The class should have a method calculate(n) that returns the n-th number in 

the sequence.

– Also add a method next(). The first call to next() returns the first number in 

the sequence, the second call returns the second number, and so on. You'll 

obviously need instance variables to save state between calls. 

– Finally, add a method writeToFile(n, filename), that writes the first n 

numbers in the sequence to the file named filename, one number per line.

24


