
Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

The current topic: Python

! Introduction

• Object-oriented programming: Python

! Features, variables, numbers, strings, Booleans, while loops

! If statements, sequences, functions, modules

!Dictionaries, command-line arguments, files, classes, inheritance, polymorphism

!Exceptions, operator overloading, privacy

– Next up: Multiple inheritance, parameters and arguments, list comprehensions

• Types and values

• Syntax and semantics

• Functional programming: Scheme

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Announcements

• Lab 1 is due September 29th at 10:30 am.

– Submit each file using the submitcsc326f command, with the first argument

(the assignment number) set to 1. For example, to submit ex3.py, use:

submitcsc326f 1 ex3.py

– After submitting, use the command

submitcsc326f -l 1

(the character after the dash is a lower case L) to see a list of the files you
submitted, the size of each file, and the time each file was submitted. Your list of
files should include ex1.py, ex2.py, ex3.py, ex4.py, ex5.py, ex6.py, and

MyList.py.

2

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Multiple Inheritance

• Like C++ but unlike Java, Python allows multiple inheritance.

– This means that a class can have multiple parent classes.
class A(object): ...

class B(object): ...

class C(A, B): ...

– Issues to consider:

• Suppose A and B each define a method m(), and C does not define such a method.

Which m() gets called in the following situation?
c = C()

c.m()

• Things get even more interesting with diamond-shaped inheritance. In the current
example, object is an ancestor of C two different ways (through A and through B).

• How do we make sure that each ancestor class' constructor gets called exactly
once?

3 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Multiple Inheritance

• An example:

– Suppose we want an object that can store a bunch of data items and draw a
picture on the screen.

– Suppose we have a List class that can store a bunch of data items.

– Suppose we have a Window class that can draw a picture on the screen.

– Then we can define an LW class that has List and Window as parents.

4

object

List Window

LW

• To make things more interesting, suppose List and Window are both
children of Store.

• Suppose LW does not define its own __getitem__() or m(). Which

__getitem__() does it inherit? Which m() does it inherit?

• Answer: Python defines a method resolution order. When looking for a
method, it checks classes in the order specified by the method
resolution order.

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Multiple Inheritance

5

Store

List Window

LW

object

__getitem__()

m()

__getitem__()

m()

__getitem__()

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Multiple Inheritance

• The rules defining the method resolution order are complicated. One
general idea is that the methods of a child class have priority over those
of its parent. For example, methods in List and Window have priority
over those in Store.

– Details about the rules: http://www.python.org/download/releases/2.3/mro/

• To find out the method resolution order of a class, check its __mro__

attribute.

class Store(object): pass

class List(Store): pass

class Window(Store): pass

class LW(List, Window): pass

LW.__mro__ # (LW, List, Window, Store)

• So LW inherits List's __getitem__() and Window's m().

6

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Multiple Inheritance

• Another issue: suppose Store, List, and Window each define an
__init__() method. When writing LW's __init__() method, how

can we make sure each of its ancestor's __init__() methods is

called?

– One solution: Each class' __init__() should call the __init__() of each of

its parents.

– Problem: If we did this, Store's __init__() will get called twice when we're

constructing an LW object (once as a result of calling List's __init__() and

once as a result of calling Window's __init__()).

– Better solution: Call the ancestor's __init__() methods in the order specified

by the method resolution order.

7 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Multiple Inheritance

• The function super() can be used to determine what comes next in an

object's method resolution order.

– super(C, o) is the same object as o but looks for methods starting after class

C in o's method resolution order.

– For example, if object o is an instance of LW, then
super(List, o).__getitem__()

calls Window's __getitem__() method since Window follows List in

LW.__mro__.

• To make sure each ancestor's __init__() gets called exactly once,
add the line

super(C, self).__init__()

to the __init__() method of each class C.

– Note that the C inside the super() call should match the name of the class
within which this call is being made.

– For now, we're glossing over the issue of passing arguments to __init__().

One solution is to use keyword parameters, which we haven't covered yet.

8

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Multiple Inheritance

• Example:
class Store(object):

 def __init__(self):

 super(Store, self).__init__()

 # other stuff goes here

class List(Store):

 def __init__(self):

 super(List, self).__init__()

class Window(Store):

 def __init__(self):

 super(Window, self).__init__()

class LW(List, Window):

 def __init__(self):

 super(LW, self).__init__()

• This ensures that when an LW instance is constructed, the __init__()

methods are called in the order LW, List, Window, Store.

9 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Parameters and arguments

• Parameters appear in the definition of a function (or method).

– They are a "placeholder" for the actual values passed in a call.

• Arguments (or actual parameters) appear in a function call and must
correspond to the parameters in the function definition.

• Python passes parameters by copying their value, just like C/Java.

– But Python variables always store references to objects.

– "Copying" the parameter just copies the reference it stores.

– This has the effect of passing the original object, not a copy of the object.

10

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Parameters

• In a Python function definition, the parameter list has four parts:

– Mandatory parameters.

• This is all we've seen so far.

– Optional parameters.

– Extra non-keyword parameters specified as a tuple *t.

– Extra keyword parameters specified as dictionary **d.

• Any of these parts may be omitted in a function definition, but the parts
that do appear must appear in the order given above.

11 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Arguments

• In a Python function call, the argument list has four parts:

– Non-keyword arguments.

• This is all we've seen so far.

– Keyword arguments.

– Non-keyword arguments given as single tuple *t.

– Keyword arguments given as a single dictionary **d.

• The parts that appear in a function call must appear in the order given
above. The function definition determines which of the above parts are
required, optional, and not allowed.

12

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Optional parameters

• To make a parameter optional, we have to provide a default value.

def incr(x, y=0):

 y += x

 return y

incr(4) # 4

incr(6, 5) # 11

incr(6) # 6

• Another example:

def f(x, y=[]):

 y.append(x)

 return y

f(23) # [23]

f(45) # [23, 45]. Only one copy of the default value!

f(1) # [23, 45, 1]

13 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Optional parameters

• The default value of an optional parameter becomes an attribute of the
function.

– Default values are stored in an attribute called func_defaults.

• This is a tuple that store default values in the order that they appear in the function
declaration.

– If the default value is a mutable object, and the function modifies this object, then
future calls to the function get the modified object, not the original.

– To keep the default value the same for every call, create a new object each time:

def f(x, y=None):

 if y == None:

 y = [] # A new object.

 y.append(x)

 return y

f(23) # [23]

f(45) # [45]

f(1) # [1]

f.func_defaults # (None,)

14

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Keyword arguments

• What happens when there are multiple optional parameters?

def g(x, y=3, z=10):

 print 'x:', x, 'y:', y, 'z:', z

How do we call g if we want to specify a value for z but use the default

for y?

g(1, , 3) # SyntaxError

• Solution: Keyword arguments.

g(1, z=2) # 'x: 1 y: 3 z: 2'

g(z=1, x=4) # 'x: 4 y: 3 z: 1'

g(y=1, 2) # SyntaxError: non-keyword arg after keyword arg

g(7, y=1, x=0) # TypeError: multiple values for x

g(4,6,z=1) # 'x: 4 y: 6 z: 1'

g(z=2, x=0, y=22) # 'x: 0 y: 22 z: 2'

g(z=2) # TypeError: no value given for x

15 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Keyword arguments

• Any parameter, whether it's optional or mandatory, can be provided
using a keyword argument in a function call.

• Keyword arguments can appear in any order, as long as all keyword
arguments appear after all non-keyword arguments.

• When a call includes a mix of non-keyword and keyword arguments:

– Python matches up the non-keyword arguments with parameters by position (the
approach that you're used to seeing).

– Then, Python matches up the keyword arguments with parameters by name.

– If any mandatory parameter isn't given a value by this process, a TypeError
occurs.

– If any mandatory or optional parameter is given more than one value by this
process, a TypeError occurs.

16

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Extra non-keyword parameters

• A function can defined to take an arbitrary number of non-keyword
parameters.

– Include a parameter name preceded by a star when defining the function.

– When the function is called, it is given the extra non-keyword arguments as a
tuple.

def f(x, y=4, *z):

 print z

f(1) # ()

f(1,3) # ()

f(1,2,3) # (3,)

f(1,2,3,4,5,6) # (3, 4, 5, 6)

f(1,3,w=4) # TypeError. w is an extra *keyword* argument

f(1,3,z=4) # TypeError. z can't be given as a keyword arg.

f(1,3,y=10) # TypeError: multiple values for y

– Observe that we can't call f with extra non-keyword arguments without first giving
a value for y (rather than relying on the default value for y).

17 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Extra keyword parameters

• A function can defined to take an arbitrary number of keyword
parameters.

– Include a parameter name preceded by a two stars when defining the function.

– When the function is called, it is given the extra keyword arguments as a
dictionary.

def g(x, y=4, *z, **d):

 print z, d

g(10,20) # () {}

g(1,2,a=4,csc='326') # () {'a': 4, 'csc': '326'}

g(b=4,c='jkl',x=1) # () {'c': 'jkl', 'b': 4}

g(1,2,3,4,w='abc') # (3,4) {'w': 'abc'}

18

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

A tuple of non-keyword arguments

• In a function call, a sequence of non-keyword arguments can be given
as a single tuple by preceding the tuple with a star.

def f(x, y=4, *z):

 print y, z

t = (1,2,3)

f(*t) # 2 (3,)

f(0, *t) # 1 (2,3)

f(9, 0, *t) # 0 (1,2,3)

f(9, 8, 0, *t) # 8 (0,1,2,3)

f(y=2, *t) # TypeError. Non-keyword arguments are matched

 # before keyword arguments, so y got 2 values.

f(*(1, 2)) # 2 ()

• Note that even though the tuple of non-keyword arguments appears
after keyword arguments in the function call, all non-keyword arguments
are matched with parameters (by position) before keyword arguments
are matched.

19 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

A dictionary of keyword arguments

• In a function call, a collection of keyword arguments can be given as a
single dictionary by preceding the dictionary with two stars.

def g(x, y=4, **z):

 print y, z

d={'x':'3', 'a':1, 'b':'cde'}

g(**d) # 4 {'a': 1, 'b': 'cde'}

• Observe that the call g(**d) is equivalent to the call

g(x='3',a=1,b='cde').

• More calls:

g(w=9,**d) # 4 {'a': 1, 'b': 'cde', 'w': 9}

g(1,**d) # TypeError: multiple values for x

g(y=0,**d) # 0 {'a': 1, 'b': 'cde'}

g(1,**{'c':3, 'd':2}) # 4 {'c': 3, 'd': 2}

20

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

List comprehensions

• Idea comes from set notation.

• In math, if we have a set S, say S = {1, 2, 3, 4}, we can define a new set
by writing:
 T = {2x | x ! S}

Then T = {2, 4, 6, 8}.

• List comprehensions allow us to apply the same idea to construct lists.

– And we don't need to start with a list – we can start with anything that can be
iterated.

• A simple example:

S = [1, 2, 3, 4]

T = [2*x for x in S]

T # [2, 4, 6, 8]

21 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

List comprehensions

• We can also specify conditions on the iteration.

– Only objects satisfying the condition are used to construct the new list.

old = [90, 50, 15, 20, 40, 75]

new = [x+1 for x in old if x >= 40]

new # [91, 51, 41, 76]

• Everything we can do with list comprehensions we can also do with for
loops.

– But list comprehensions are more compact (less typing).

– List comprehensions actually execute faster than equivalent for loops.

22

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

List comprehensions

• List comprehensions can include nested iterations (like nested for
loops):

A = [4, 8, 16, 32]

B = [0, 1, 2]

C = [x/y for x in A for y in B if y > 0]

C # [4, 2, 8, 4, 16, 8, 32, 16]

• Note the order in which objects are processed – the iteration specified
first (x in A) is treated as the "outer" loop and the iteration specified

next (y in B) is treated as the "inner" loop.

23 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

List comprehensions

• List comprehensions can be useful for working with matrices
(represented as nested lists).

– Create a 3x3 matrix of 1s:

M = [[1 for i in range(3)] for j in range(3)]

M # [[1,1,1], [1,1,1], [1,1,1]]

– Multiply a matrix by a constant:

L = [[1,2,3], [4,5,6], [7,8,9]]

L = [[2*i for i in row] for row in L]

L # [[2,4,6], [8,10,12], [14,16,18]]

– Another way to do this:

L = [[1,2,3], [4,5,6], [7,8,9]]

L = [[2*L[i][j] for j in range(3)] for i in range(3)]

L # [[2,4,6], [8,10,12], [14,16,18]]

24

Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

List comprehensions

• Using objects other than lists:

– The only requirement is that the object can be iterated.

– Using a file:

List of every line that starts with 'A' in file 'in.txt'.

L = [line for line in open('in.txt', 'r') if line[0] == 'A']

– Using the MyList class from Lab 1:

m = MyList()

m.append('a')

m.append(22)

m.append(0.4)

L = [3*i for i in m]

L # ['aaa', 66, 1.2]

25 Fall 2008 Python: Multiple Inheritance, Parameters and Arguments, List Comprehensions

Exercises

• Write a function that can be called with an arbitrary number of non-
keyword arguments and returns the first argument that is divisible by 3.
(Recall that we can use the % ("mod") operator to test divisibility.)

• Write a function that can be called with an arbitrary number of keyword
arguments and returns the sum of all keyword arguments whose name
is at least 2 characters long.

• Write a function that takes two matrices (of the same size) and returns
their sum. The function should use list comprehensions to compute the
sum.

26

