
Fall 2008 Python: Doc Strings, Regular Expressions

The current topic: Python

! Introduction

• Object-oriented programming: Python

! Features, variables, numbers, strings, Booleans, while loops

! If statements, sequences, functions, modules

!Dictionaries, command-line arguments, files, classes, inheritance, polymorphism

!Exceptions, operator overloading, privacy

!Multiple inheritance, parameters and arguments, list comprehensions

– Next up: Regular expressions, doc strings

• Types and values

• Syntax and semantics

• Functional programming: Scheme

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Python: Doc Strings, Regular Expressions

Announcements

• Lab 1 is due Monday at 10:30 am.

– Don't wait till the last minute to figure out how to submit.

– After submitting, use the command

submitcsc326f -l 1

(the character after the dash is a lower case L) to see a list of the files you
submitted, the size of each file, and the time each file was submitted. Your list of
files should include ex1.py, ex2.py, ex3.py, ex4.py, ex5.py, ex6.py, and
MyList.py.

• Reminder: Term test 1 is on October 6th in GB405, not in the regular

lecture room.

– You're allowed to have one double-sided aid sheet for the test. You must use
standard letter-sized (that is, 8.5" x 11") paper. The aid sheet can be produced
however you like (typed or handwritten).

– Bring your TCard.

2

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions

• Formally, a regular expression denotes a language, and the set of
languages denoted by regular expressions happens to be equivalent to
the set of languages accepted by finite state automata.

– Don't worry if this definition seems confusing.

• Informally (and good enough for our purposes): A regular expression
(RE) is a pattern that can succeed or fail in matching a string.

• Simple examples (for now we assume that a match has to come at the
beginning of a string):

RE string succeeds?

a aab Yes
a bab No
ba bab Yes

3 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions

• A star means "match any number (including 0) of the preceding pattern".

RE string succeeds? match

a* aab Yes aa
a* bab Yes (empty string)
a* bbb Yes (empty string)

a*c abc No
a*c cde Yes c
(ab)*c ababc Yes ababc
(ab)*cd ababdcd No
a*b*d aaabbbd Yes aaabbbd
a*b*d bbd Yes bbd
a*ba*b* bac Yes ba

4

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions

• A plus means "match one or more of the preceding pattern".

RE string succeeds? match

a+ aab Yes aa
a+ bab No

a+c abc No
a+bc abc Yes abc
a+bc aaabc Yes aaabc
(ab)+c ababc Yes ababc
(ab)+cd ababdcd No
a+b+d aaabbbd Yes aaabbbd
a+b+d bbd No
a+(ba)+c ababac Yes ababac

5 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions

• A question mark means "match zero or one of the preceding pattern".

RE string succeeds? match

a? aab Yes a
a? bab Yes (empty string)

a?c abc No
a?bc abc Yes abc
a?bc aaabc No
(ab)?c cdef Yes c
(ab)?cd ababdcd No
a?b?d? dddd Yes d
a?b?d bbd No
a?(ba)?c acbaba Yes ac

6

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions

• A period means "match any single character".

RE string succeeds? match

... aab Yes aab
b.b bab Yes bab

ac. abc No
a.b* abc Yes ab
a?..c aaabc No
c?.e*f cdef Yes cdef
(ab)?.b ababdcd Yes abab
d..de* dddd Yes dddd

7 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions

• To specify an exact number of repetitions, use curly brackets.

– {n} means "match n of the preceding pattern".

– {m, n} means "match between m and n of the preceding pattern".

• Examples:

RE string succeeds? match

.{1,3} aab Yes aab
b{2} bab No
b{2,4} bbbac Yes bbb
a{0,3} aaabc Yes aaa
(ab){2}. ababdcd Yes ababd

8

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions

• Matching the beginning or end of a string (if we no longer assume that
matches have to come at the beginning):

– The symbol ^ matches the beginning of a string.

– The symbol $ matches the end of a string.

• Examples (where we don't assume matches have to come at the
beginning):

RE string succeeds? match

^...$ aab Yes aab
b.b ababdb Yes bab
b.b$ ababdb Yes bdb
^b.b abab No
^cdf$ abcdf No

9 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions

• Square brackets mean "match one character in this group".

– [abc] matches any one of the letters a, b, c.

– [a-z] matches any lower-case letter.

– [A-Za-z] matches any letter.

– [\t\n] matches a space, tab, or newline.

• If the first character inside square brackets is the symbol ^, it means
"match one character that is not in this group".

– [^0-9a-zA-Z] matches any character that is neither a letter nor a number.

10

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions

• Special characters:

– \s matches any whitespace character

• equivalent to [\t\n\r\f\v]

• \t is a tab, \r is a carriage return, \f is a form feed, \v is a vertical tab

– \d matches any digit

• equivalent to [0-9]

– \w matches any letter, number, or underscore

• equivalent to [0-9A-Za-z_]

– \\ matches a single backslash

11 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• To use regular expressions in Python, import the re module.

• The functions re.match(), re.search(), and re.findall() look
for a match for a given regular expression in a given string.

– re.search() finds the leftmost match

– re.match() only looks for a match at the start of the string

– re.findall() returns a list of all (non-overlapping) matches in the string

• re.match() and re.search() return match objects for successful
searches, and None for unsuccessful searches.

12

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• Match objects provide details about a successful match.

• If m is a match object produced as a match for a regular expression r
and a string s:

– m.group() is the actual match –!that is, the part of string s that matches
expression r.

– m.start() and m.end() give the location of the match – that is, the match is
s[m.start():m.end()].

13 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• Examples:

import re

m1 = re.search('a*b', 'aaaabb')
m1 == None # False
m1.group() # 'aaaab'

m2 = re.search('a*b', 'cab')
m2 == None # False
m2.group() # 'ab'

m3 = re.match('a*b', 'cab')
m3 == None # True

m4 = re.search('^a*b', 'cab')
m4 == None # True

14

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• re.findall() returns a list of all non-overlapping matches.

– This list just stores matches as strings, not as match objects.

m = re.findall('ad*a', 'aaaddaadaaddda')
m # ['aa', 'adda', 'ada', 'addda']

• To get match objects for each match, use re.finditer() instead.

– This gives an iteration of match objects.

for i in re.finditer('ad*a', 'aaaddaadaaddda'):
 print i.group(),

#Output is: aa adda ada addda

15 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• Patterns use various special characters and character sequences.

– We've seen examples like \d and \w where the escape character (the backslash)

is used to get a special meaning.

– In other cases, the escape character is used to remove a special meaning from a
character.

• For example, since the symbol * has a special meaning, we use * to mean that we
actually want to match a star.

• And Python itself also uses escapes in strings.

– For example,
print '\\'
actually prints a single backslash, not two.

16

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• Suppose we want to match a backslash in a regular expression.

– To do this, we need to write \\ in the regular expression.

– Then, when writing the regular expression as a Python string, we actually need to
write \\\\, since within a Python string each backslash must be escaped.

• This becomes confusing, especially for more complex regular expressions.

• To avoid confusion, use raw strings to write regular expressions. These
are string literals preceded by the letter r. Within a raw string,
backslashes have no special meaning (unless they immediately precede
a quotation mark).

– For example,
print r'\\ \n'
actually prints '\\ \n', not a single slash followed by a newline.

17 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• The first step performed by re.search(), re.match(), and
re.findall() is to translate the regular expression it's given into an
internal data structure.

• If your regular expression is going to be used more that once, it makes
sense to compile it.

– This produces a regular expression object, which you can use any number of
times to perform matches by calling its search(), match(), and findall()
methods.

r = re.compile(r'a*b')
m1 = r.search('aab')
m1.group() # 'aab'

m2 = r.match('bdca')
m2.group() # 'b'

18

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• Regular expressions are greedy, in the sense that each component of a
regular expression will "eat up" as much of the search string as it can.

remoney = re.compile(r'(.*)(\d*\.\d\d)')
r = remoney.search('Current balance = 12345.67')

r.groups() # ('Current balance = 12345', '.67')

• Observe that when a regular expression includes parts that are enclosed
in brackets (there parts are called subpatterns), we can use the match
object's groups() method to find the parts of the match corresponding
to each subpattern.

• In the example above, the first subpattern (.*) matches as much as
possible while allowing the success of the second pattern. So it has
"eaten up" all digits before the decimal point, even though that's not
really what we wanted.

19 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• To solve this problem, we can use the non-greedy version of the *
operation.

– The non-greedy version is *?.

– Similarly, the non-greedy version of + is +?, and the non-greedy version of ?
is ??.

– The non-greedy versions try to match as little as possible while allowing for the
success of the pattern.

remoney = re.compile(r'(.*?)(\d*\.\d\d)')
r = remoney.search('Current balance = 12345.67')

r.groups() # ('Current balance = ', '12345.67')

20

Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• We can use the re.sub() and re.subn() functions (and the sub()
and subn() methods of regular expression objects) to replace matches
with a different string.

s = re.sub('a.a', 'hi!', 'acabcdaaaffada')
s # hi!bcdhi!ffhi!'

• We can also specify the maximum number of replacements to perform
(where replacements are performed from left to right).

s = re.sub('a.a', 'hi!', 'acabcdaaaffada', 2)
s # hi!bcdhi!ffada'

21 Fall 2008 Python: Doc Strings, Regular Expressions

Regular expressions in Python

• To find out how many replacements were performed, use re.subn().
This returns a tuple consisting of the new string and the number of
replacements made.

s,n = re.subn('a.a', 'hi!', 'acabcdaaaffada')
s # hi!bcdhi!ffhi!'
n # 3

22

Fall 2008 Python: Doc Strings, Regular Expressions

Doc strings

• Doc strings are the standard way to provide documentation in Python.

– The help() function (that we saw earlier) displays the contents of doc strings.

• Doc strings may appear as the first line of code inside:
– Modules

– Classes

– Functions

– Methods

• Doc strings are written as string literals.

– To use multi-line doc strings, we need to use the multi-line version of string
literals. These begin and end with """ (three double-quotes).

– For consistency, it's a good idea to always begin and end doc strings with """,
even if they only use a single line. This also makes it easier to add lines to the doc
string later on.

23 Fall 2008 Python: Doc Strings, Regular Expressions

Doc strings

• A simple example:

def f(x, y):
 """Returns the sum of x and y."""

 return x+y

• Note that the first line of the doc string has to have the same indentation
as the rest of the function body.

• To view the documentation:

help(f)

Output:
Help on function f in module __main__:
f(x, y)
 Returns the sum of x and y.

24

Fall 2008 Python: Doc Strings, Regular Expressions

Doc strings

• Doc strings are stored as an attribute called __doc__.

f.__doc__ # 'Returns the sum of x and y.'

• A multi-line example:

def g(x, y):
 """Returns x divided by y.

 x -- Any integer.
 y -- Any non-zero integer.
 """

 return x/y

25 Fall 2008 Python: Doc Strings, Regular Expressions

Doc strings

• Documenting a simple class using doc strings:

class A(object):
 """Represents something..."""

 def __init__(self):
 """Constructor."""
 pass

 def m(self, x):
 """Does something.

 x -- Some parameter.
 """
 pass

26

Fall 2008 Python: Doc Strings, Regular Expressions

Doc strings

• Then, the output of help(A) is:

Help on class A in module __main__:

class A(__builtin__.object)
 | Represents something...
 |
 | Methods defined here:
 |
 | __init__(self)
 | Constructor.
 |
 | m(self, x)
 | Does something.
 |
 | x -- Some parameter.
 |
 |

27 Fall 2008 Python: Doc Strings, Regular Expressions

Exercises

• Add doc strings to the NewFibonacci class from previous exercises.
Then, call help(NewFibonacci) to see your doc strings in action.

• Write a function that replaces all IP addresses in a given file with
0.0.0.0. (This is roughly the sort of thing a website like Google might
do to anonymize its logs in order to protect its users' privacy.) Use
regular expressions to find IP addresses. For the purposes of this
exercise, an IP address is a string of the form
<number>.<number>.<number>.<number>, where each <number>
has between 1 and 3 digits. The function should take the names of the
original file and the new file as parameters.

28

