
Fall 2008 Scheme: Introduction

The current topic: Scheme

! Introduction

!Object-oriented programming: Python

! Features, variables, numbers, strings, Booleans, while loops

! If statements, sequences, functions, modules

!Dictionaries, command-line arguments, files, classes, inheritance, polymorphism

!Exceptions, operator overloading, privacy

!Multiple inheritance, parameters and arguments, list comprehensions

!Regular expressions, doc strings

• Functional programming: Scheme

– Next up: Introduction

• Types and values

• Syntax and semantics

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Scheme: Introduction

Announcements

• Reminder: Lab 1 was due at 10:30am today.

– Late penalty is 20% per day.

– Not accepted after 10:30am on Wednesday.

• Reminder: Term Test 1 is on October 6th in GB405, not in the regular

lecture room.

– You're allowed to have one double-sided aid sheet for the test. You must use

standard letter-sized (that is, 8.5" x 11") paper. The aid sheet can be produced

however you like (typed or handwritten).

– Bring your TCard.

– What's covered?

• Everything from the first seven lectures (that is, everything up to and including

September 26th).

• Lab 1.

– An old Term Test 1 has been posted.

– The exercises at the end of each lecture are also good practice.

2

Fall 2008 Scheme: Introduction

Basic functional-programming concepts

• Reference: Sebesta, chapter 15.

• Referential transparency: The value of a function application is

independent of the context in which it occurs.

– The value of f(a, b, c) depends only on the values of f, a, b and c.

– It does not depend on the global state of computation.

– That is, the point in time at which the call is made has no effect on the value that

is returned.

– This makes it easier to understand what's happening in a program.

• All variables that appear inside a function must be parameters.

– No variables can be declared or first introduced within a function body.

– A function has no access to global variables.

3 Fall 2008 Scheme: Introduction

Basic functional-programming concepts

• No assignment: The concept of assigning a new value to a variable is

not part of functional programming.

– There are no explicit assignment statements.

– Variables are bound to values only through the association of arguments to

parameters in function calls.

– Function calls have no side effects.

• They do not alter the value of their arguments, or make any other changes to the

global state.

• Conclusion: There is no need to consider global state.

4

Fall 2008 Scheme: Introduction

Control flow

• Control is through function calls and conditional expressions only.

– There are no loops of any kind.

• Recursion is used to achieve repetition.

5 Fall 2008 Scheme: Introduction

Functional programming: An example

• Recall how we computed the n-th Fibonacci number in Python:

def fib(n):

 # We'll assume n >= 1.

 prev = 1 # first Fibonacci number

 cur = 1 # second Fibonacci number

 for i in range(2, n):

 prev, cur = cur, prev+cur

 return cur

• To re-write this function using a functional programming approach, we

need to get rid of the assignment statements and the loop.

– How can we do this?

6

Fall 2008 Scheme: Introduction

Functional programming: An example

• The same function, using a functional programming approach (but still in

Python):

def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

• Observe that the functional version uses an if statement and recursion.

7 Fall 2008 Scheme: Introduction

Storage management

• All variables are function parameters, so structures that have a lifetime

beyond a function call can't be referred to.

– A structure returned by a function is never assigned to a variable, so there's no

way to explicitly free it.

– e.g. Suppose (for the sake of this discussion) that in the example on the previous

slide, fib() returned a list. How would we free the lists returned by fib(n-1)

and fib(n-2)?

• Garbage collection is needed to dispose of such structures.

8

Fall 2008 Scheme: Introduction

Functions as first-class values

• Recall that first-class "objects" are things that a language allows

programs to :

– declare

– assign values to

– return as function values

– return as the value of an expression

– pass as an argument

– store in a data structure

– create without a name

• For example, integers are first-class values in most programming

languages.

• In functional programming languages, functions are first-class values.

– Aside: Python also mostly treats functions as first-class values.

• Why "mostly"? There are some restrictions on creating unnamed functions.

9 Fall 2008 Scheme: Introduction

Functions as "values" in C

• C allows pointers to functions, like this:

double integrate(double (*f)(double x), double a, double b) {

... sum += (*f)(a + k*step); ...

}

• Function pointers are often used in tables to associate an action with an

index.

• So, C function pointers can be stored in a data structure as a value.

• But in C, unnamed functions cannot exist as values, though there can

be unnamed function pointers.

• Functions are not first-class values in C.

– And they're not first-class values in Java either, which doesn't even have function

pointers.

10

Fall 2008 Scheme: Introduction

History: LISP

• "LISt Processing"

• A functional language developed by John McCarthy in the late 1950s for

use in AI.

• Semantics (meaning) based on !-calculus.

– The !-calculus is a theoretical model of computation

• Functions operate on lists or atomic symbols.

– Programs consist of "S-expressions".

– five basic functions: cons, car, cdr, equal, atom

– one conditional construct: cond

• Programs and data are both S-expressions.

11 Fall 2008 Scheme: Introduction

Common LISP

• LISP implementations began to stray

– from the original semantics

– from each other

• Semantics were redefined in Common LISP.

• Common LISP is now the standard version of LISP.

– Designed by committee in 1980s.

• Simple syntax, but a large language.

12

Fall 2008 Scheme: Introduction

Scheme

• Created in 1975 by Gerald Sussman and Guy Steele.

• A version of LISP

– Simple syntax, small language

– Close to the initial semantics of LISP

– Provides basic list-processing tools

– Allows functions to be first-class objects

• Not the same as LISP!

13 Fall 2008 Scheme: Introduction

The Scheme we'll use

• There are many flavours of Scheme, with quite a bit of variation among

them.

– But not as much variation as among the LISPs.

• We'll use MzScheme.

– Use the command "mzscheme" to launch the MzScheme interpreter on ECF.

– Version 202 is installed on ECF. This is not the most recent version.

• DrScheme is an IDE that works with MzScheme.

– Use the command "drscheme" on ECF.

– Make sure the selected language is MzScheme.

14

Fall 2008 Scheme: Introduction

The Scheme we'll use

• DrScheme can be downloaded from

http://download.plt-scheme.org/drscheme/v202.html

– This download also includes MzScheme.

– Note that the above link is for version 202, the version we're using on ECF.

• Your assignments must run using MzScheme as installed on ECF.

15 Fall 2008 Scheme: Introduction

Scheme references

• Sebesta, Section 15.5.

• Dybvig, The Scheme Programming Language, 2003.

– This textbook can be read online at:

http://www.scheme.com/tspl3/

• "Teach Yourself Scheme in Fixnum Days", a tutorial at:

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

16

Fall 2008 Scheme: Introduction

A Scheme program

• A program consists of

– a set of function definitions

– an expression to be evaluated

• A simple example that defines function abs-val and then calls this

function (note that ">" is the interpreter's prompt):

 > (define (abs-val x)

 (if (>= x 0)

 x

 (- x)))

 > (abs-val (- 3 5))

 2

17 Fall 2008 Scheme: Introduction

The basic structure of a Scheme (or LISP) program

• A program consists of S-expressions ("symbolic expressions") written in

parenthesized prefix form.

– "Prefix form": The name of the function appears before the arguments to the

function, even for mathematical functions like +, –, *, and /.

– The general form of an S-expression in prefix-form is:

'(' <function> <arg1> <arg2> … <argn> ')'

• Examples of S-expressions in prefix-form:

 (+ 4 5) ; A simple example.

• Note that ";" denotes a comment in Scheme.

 (+ (* 3 4 5) (- 5 3))

18

Fall 2008 Scheme: Introduction

S-expressions

• To evaluate an expression:

– Evaluate the <function> to a value that is a function.

– Evaluate each <argi> to obtain its value.

– Apply the function value to these argument values.

• Evaluating our examples:

 (+ 4 5)

• 4 and 5 evaluate to themselves.

• Applying "+" to 4 and 5 results (not surprisingly) in the value 9.

 (+ (* 3 4 5) (- 5 3))

• Evaluate (* 3 4 5) to obtain the value 60.

• Evaluate (- 5 3) to obtain value 2.

• Evaluate (+ 60 2) to obtain value 62.

19 Fall 2008 Scheme: Introduction

S-expressions

• So far we've seen S-expressions that are lists (that is, enclosed in

brackets).

• Atoms are also S-expressions.

• An atom is anything that is not a non-empty list. Atoms include:

– Numbers.

– Strings.

– Symbols.

– The empty list.

– Booleans.

20

Fall 2008 Scheme: Introduction

S-expressions

• Examples:

 #t ; true

 #f ; false

 () ; the empty list

 (a b c) ; a list containing 3 symbols

 (a (b c) d) ; a nested list

 ((a b c) (d e (f)))

 (1 (b) 2)

• Observe that lists can be nested.

21 Fall 2008 Scheme: Introduction

Built-in functions

• car : Returns the first element of a list.

• cdr : Returns the rest of a list.

• (cons <element> <list>) : Returns a new list formed by adding an

element to the front of the given list.

• quote or ' : Produces constants.

• eq? : Returns true iff given two identical atoms.

• null? : Returns true iff given an empty list.

22

Fall 2008 Scheme: Introduction

car

• car returns the first element of a list.

> (car '(a b c))

a

> (car '(1 2 3 4))

1

> (car '((a) b (c d)))

(a)

> (car '((a b) c d))

(a b)

> (car '()) ; Causes an error.

23 Fall 2008 Scheme: Introduction

cdr

• cdr returns the rest of a list (that is, everything except the first element).

> (cdr '(a b c))

(b c)

> (cdr '(1 2 3 4))

(2 3 4)

> (cdr '((a) b (c d)))

(b (c d))

> (cdr '((a b) c d))

(c d)

> (cdr '(1))

()

> (cdr '()) ; Causes an error.

24

Fall 2008 Scheme: Introduction

car and cdr

• car and cdr can break up any list:

> (car (cdr (cdr '((a) b (c d)))))

(c d)

> (cdr '((a) b (c d)))

(b (c d))

> (cdr '(b (c d)))

((c d))

> (car '((c d)))

(c d)

> (caddr '((a) b (c d))) ; caddr = car cdr cdr

(c d)

25 Fall 2008 Scheme: Introduction

cons

• cons returns a new list formed by adding a given element to the front of

a given list.

> (cons 'a '())

(a)

> (cons 'd '(e))

(d e)

> (cons '(a b) '(c d))

((a b) c d)

> (cons '(a b c) '((a) b))

((a b c) (a) b)

> (cons (car '(a b c)) (cdr '(a b c)))

(a b c)

26

Fall 2008 Scheme: Introduction

Exercises

• Run mzscheme on ECF.

– Try evaluating simple expressions like those covered in this lecture.

– Experiment with car, cdr, and cons.

– Try out the built-in combinations of car and cdr, like cdddr, caddr, etc.

• How many cars and cdrs can be combined into a single built-in function in

mzscheme?

• Run drscheme on ECF.

– Set the language to MzScheme.

– Repeat the above exercises, this time in DrScheme.

27

