
Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

The current topic: Scheme

! Introduction

!Object-oriented programming: Python

• Functional programming: Scheme

! Introduction

– Next up: Numeric operators, REPL, quotes, functions, conditionals

• Types and values

• Syntax and semantics

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Announcements

• Reminder: Term Test 1 is on Monday in GB405, not in the regular lecture

room.

– 50 minutes (11:10 – 12:00).

– You're allowed to have one double-sided aid sheet for the test. You must use

standard letter-sized (that is, 8.5" x 11") paper. The aid sheet can be produced

however you like (typed or handwritten).

– Bring your TCard.

– What's covered?

• Everything from the first seven lectures (that is, everything up to and including

September 26th).

• Lab 1.

– An old Term Test 1 has been posted.

– The exercises at the end of each lecture are also good practice.

– Solutions to Lab 1 are available from the directory ~ajuma/share/326/lab1 on

ECF.

2

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Review: car, cdr, and cons

• car returns the first element of a list:

> (car '((a) b (c d)))

(a)

• cdr returns the rest of a list:

> (cdr '((a) b (c d)))

(b (c d))

• cons adds an element to the front of a list:

> (cons '(a b) '((c d)))

((a b) (c d))

3 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Numeric operators

• The numeric operators +, -, *, / are used just like any function, in

parenthesized prefix form.

> (+ 5 3)

8

> (- 5 3)

2

> (* 5 3)

15

> (/ 5 3) ; returns a fraction!

5/3

4

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Numeric operators

• More examples:

> (* (+ 5 3) (/ 3 2))

12

> (+ 5 6 7 8)

26

> (- 5 3 4 2)

-4

> (/ 16 2 4)

2

> (* (+ 1 2 3) (* (+ 1 2) (- 4 2)) 2)

72

5 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Number comparisons

• Number comparisons are performed using the functions =, <, >,

<=, and >=.

> (= 4 5)

#f

> (>= 4 4)

#t

> (= (+ 2 1) (- 4 1) (/ 6 2))

#t

> (< 5 6 7) ; checks if 5 < 6 < 7

#t

6

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Type-checking functions

• The functions number?, symbol?, and list? check the type of the

given argument and return boolean values (#t or #f).

> (number? 5)

#t

> (number? 'sam)

#f

> (symbol? 'sam)

#t

> (symbol? 5)

#f

> (list? '(a b))

#t

> (list? (+ 3 4))

#f

> (list? '(+ 3 4))

#t

> (list? 7)

#f

7 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Other useful functions

• The function zero? returns true iff given the number 0.

> (zero? 0)

#t

> (zero? (- 3 3))

#t

> (zero? (* 3 1))

#f

> (zero? '(- 3 3))

zero?: expects argument of type <number>; given (- 3 3)

8

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Other useful functions

• The function null? returns true iff given an empty list.

> (null? '())

#t

> (null? '(a))

#f

> (null? (car '(a)))

#f

> (null? (cdr '(a)))

#t

9 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

The empty list, or nil

• Some Schemes treat () as equivalent to #f.

– mzscheme does not.

• The Scheme standard says you should quote (): '()

– mzscheme is more relaxed.

> ()

()

> '()

()

10

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Boolean operations: and, or, not

• Like the and and or operators in Python, the and and or operators in

Scheme are short-circuited: they evaluate only as much as needed.

– and stops at the first false condition.

– or stops at the first true condition.

> (and (zero? 0) (number? 2) (eq? 1 1))

#t

> (and (zero? 0) (number? 'x) (eq? 1 2))

#f

> (or (symbol? 'x) (symbol? 3))

#t

11 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Boolean operations: and, or, not

• As in Python, the and and or operators in Scheme return the last thing

they evaluate.

• Everything except #f is treated as "true".

> (or (symbol? 1) "no" "other")

"no"

> (or #f 3 #t)

3

> (and 3 4 "hi" #f "bye")

#f

12

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Boolean operations: and, or, not

• The not operation always returns #t or #f.

> (not (null? '(1 2)))

#t

> (not 3)

#f

• Since Scheme doesn't have a numeric "not equals" operator (like the !=

operator in C/Java/Python), we have to combine not and = in order to

evaluate "not equals".

> (not (= 3 4))

#t

> (not (= (+ 4 5) (* 3 3)))

#f

13 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

READ-EVAL-PRINT Loop (REPL)

• The Scheme interpreter runs in a Read-Evaluate-Print Loop (REPL).

• READ: Read input from user.

– e.g. The user enters a function application

• EVAL: Evaluate input: (f arg1 arg2 … argn).

1. Evaluate f to obtain a function.

2. Evaluate each argi to obtain a value.

3. Apply function to argument values.

• PRINT: Print resulting value.

– e.g. Print the result of the function application

• And then READ the next input from the user.

14

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

READ-EVAL-PRINT Loop Example

• Let's go through the REPL for the following interaction.

> (cons 'a (cons 'b '(c d)))

(a b c d)

1. Read the function application:

 (cons 'a (cons 'b '(c d)))

2. Evaluate cons to obtain a function

– cons evaluates to a built-in function

3. Evaluate 'a to obtain a itself.

15 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

READ-EVAL-PRINT Loop Example

4. Evaluate (cons 'b '(c d)):

! (a) Evaluate cons to obtain a function.

! (b) Evaluate 'b to obtain b itself

! (c) Evaluate '(c d) to obtain (c d) itself

! (d) Apply the cons function to b and (c d) to obtain

! ! (b c d)

5. Apply the cons function to a and (b c d) to obtain

 (a b c d)

6. Print the result of the application:

 (a b c d)

7. Display the prompt in order to read the next input from the user.

 >

16

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

The quote issue

(list? (a b))

undefined identifier: a

> (list? (quote (a b)))

#t

> (list? '(a b))

#t

> (hi)

undefined identifier: hi

> (quote hi)

hi

> 'hi

hi

• Observe that 'x means the same thing as (quote x).

17 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

The quote issue

• In the context of REPL, quote inhibits evaluation.

> (cons 'a (cons 'b '(c d)))

(a b c d)

> (cons 'a '(cons 'b '(c d))) ; quote before 2nd arg

(a cons 'b '(c d))

> (cons a (cons 'b '(c d))) ; no quote before 1st arg

reference to undefined identifier: a

18

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

The quote issue

• Some things evaluate to themselves. For these things, quoting has no

effect (and is unnecessary).

> (list '1 '42 '#t '#f '())

(1 42 #t #f ())

> (list 1 42 #t #f ())

(1 42 #t #f ())

• Note that the list function constructs a list that consists of the

arguments it's given.

19 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

REPL and function definition

• The basics are still the same when you're defining a function, but the

interpretation is a little different.

• READ: Read input from user.

– This time the input is a symbol definition rather than a function application.

• EVAL: Evaluate input.

– Store the function definition

• PRINT: Print resulting value.

– The symbol defined, or perhaps nothing.

• mzscheme prints nothing for a function definition.

> (define (square x) (* x x))

>

20

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Function definition syntax 1

(define (<function-name> <function-parameters>)

! <expression>)

> (define (square x)

 (* x x))

> (square 2)

4

> (define (mean x y)

 (/ (+ x y) 2))

> (mean 5 11)

8

> (mean 1 2 3)

procedure mean: expects 2 arguments, given 3: 1 2 3

21 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Function definition syntax 2

(define <function-name> <function-value>)

• The "function value" is a created using a lambda expression.

– A lambda expression evaluates to an unnamed function.

– "evaluates to an unnamed function": just like an arithmetic expression

(like (+ 5 3)) evaluates to an unnamed number.

> (define square

 (lambda (x) (* x x)))

> (define mean

 (lambda (x y) (/ (+ x y) 2)))

• In the examples above, we use define to give a name to the unnamed

functions produced by the lambda expressions.

22

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Lambda calculus

• A formal system for defining functions and their properties.

• Equivalent to Turing machines.

– That is, equivalent to any general computing machine.

• Since a lambda expression evaluates to a function, we can (if we want

to) evaluate this function immediately, without ever giving it a name.

> ((lambda (x) x) 'a)

a

> ((lambda (x) (* x x)) 2)

4

> ((lambda (x y) (+ x y)) 3 4)

7

23 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Conditional Execution: if

(if <condition> <result1> <result2>)

• Semantics:

1. Evaluate <condition>.

2. If result is true (non-#f), then evaluate and return <result1>.

3. Otherwise, evaluate and return <result2>.

> (define (abs-val x)

 (if (>= x 0) x (- x)))

> (abs-val -4)

4

> (abs-val (- (* 3 4) 4))

8

24

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Conditional Execution: cond

(cond (<condition1> <result1>)

 (<condition2> <resultt2>) …

 (<conditionN> <resultN>)

 (else <else-result>) ;optional else clause

)

• Semantics:

1. Evaluate conditions in order until one of them returns a true value.

2. Evaluate and return the corresponding result.

3. If none of the conditions return a true value, evaluate and return

<else-result>.

4. If none of the conditions return a true vale and there is no else clause,

the result of the cond expression is unspecified.

25 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Examples with cond

> (define (abs-val x)

 (cond ((>= x 0) x)

 (else (- x)))

> (define (grade n)

 (cond ((>= n 80) 'A)

 ((>= n 70) 'B)

 ((>= n 60) 'C)

 ((>= n 50) 'D)

 (else 'F)))

> (grade 75)

b

> (grade 45)

f

26

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

if vs cond

• Let's define atom?, a function that takes a parameter x and returns #t if

x is an atom, and #f otherwise. First, we use cond:

(define (atom? x)

 (cond ((symbol? x) #t)

 ((number? x) #t)

 ((char? x) #t)

 ((string? x) #t)

 ((null? x) #t)

 (else #f)

)

)

27 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

if vs cond

• Now we write atom? using if:

(define (atom? x)

 (if (symbol? x) #t

 (if (number? x) #t

 (if (char? x) #t

 (if (string? x) #t

 (if (null? x) #t #f

)

)

)

)

)

)

28

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Better atom? functions

• An atom is anything except a non-empty list.

(define (atom? x)

 (if (null? x) #t

 (if (list? x) #f #t

)

)

)

(define (atom? x)

 (cond ((null? x) #t)

 ((list? x) #f)

 (else #t)

)

)

29 Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Even better atom? functions

(define (atom? x)

 (if (list? x) (null? x) #t

)

)

(define (atom? x)

(or (null? x) (not (list? x))))

30

Fall 2008 Scheme: Numeric operators, REPL, quotes, functions, conditionals

Exercises

• Define a function f that takes two numbers x and y as input, and

returns a list containing the numbers x+y, x-y, x/y, and x*y.

• Define a function g that takes two lists L1 and L2 as input, and returns a

new list formed by adding the first two elements of L2 to the beginning

of L1.

• Define a function everyOtherSum that takes a list L of numbers as

input, and returns the sum of every second number in the list, starting

with the first number.

31

