
Fall 2008 Scheme: Function examples, helper functions, let, let*

The current topic: Scheme

! Introduction

!Object-oriented programming: Python

• Functional programming: Scheme

! Introduction

!Numeric operators, REPL, quotes, functions, conditionals

– Next up: Function examples, helper functions, let, let* 

• Types and values

• Syntax and semantics

• Exceptions

• Logic programming: Prolog
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Announcements

• Project has been posted on the course website.

– Due November 17th.

– Send me an email with a list of group members by October 20th.

• Lab 2 will be available soon.

– Due October 27th.

– Six exercises.

– By the end of today's class, we'll have covered the material needed for the first 

four exercises.

• Office hours next week:

– The office hour on Wednesday (October 15th) is cancelled. Instead, there will be 

an office hour on Thursday (October 16th), 1:00-2:00, in SF3207.
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Sum to n

• Given a non-negative integer n, computer the sum of all integers from 0 

to n.

> (define (sum-n n)
     (cond ((= n 0) 0)
           (else (+ n (sum-n (- n 1))))
           )

       )

  > (sum-n 6)

  21

• At each step, a counter is decremented.

– Recursion is the same in Scheme as anywhere: you need a base case, and a 

recursive step that solves a smaller version of the same problem.

3 Fall 2008 Scheme: Function examples, helper functions, let, let*

Factorial

• Given a non-negative integer n, compute n!. 

– Recall that 0! is defined to be 1.

> (define (factorial n)
     (cond ((= n 0) 1)
           (else (* n (factorial (- n 1))))
           )
     )

> (factorial 5)
120

• As in the previous example, a counter is decremented at each step.
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Length

• Given a list, compute its length. There is already a built-in length 

function that computes this. We can also define our own version of 

length:

   > (define (length x)

       (cond ((null? x) 0)

             (else (+ 1 (length (cdr x))))

             )

       )

> (length '(1 2 3))
3

• The recursion used in length is called "cdr-recursion".

– At each step, a shorter list is passed to the next function call.

5 Fall 2008 Scheme: Function examples, helper functions, let, let*

Tracing length

• Tracing (by hand) a call to length:

Call: (length '(a b c))

Trace:

      (length '(a b c))

      (+ 1 (length '(b c)))

      (+ 1 (+ 1 (length '(c))))

      (+ 1 (+ 1 (+ 1 (length ()))))

      (+ 1 (+ 1 (+ 1 0)))

      (+ 1 (+ 1 1))

      (+ 1 2)

      3
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Absolute value of all the members

• Parameter: a list of numbers.

• Result: a list containing the absolute values of the parameter's 

members.

• We'll make use of the abs-val function we defined last class.

 > (define (abs-list ls)

      (cond ((null? ls) ())

            (else (cons (abs-val (car ls))

                        (abs-list (cdr ls))))

            )

      ) 

 > (abs-list '(1 -2 -3 4 0))

 (1 2 3 4 0)

• This is another example of cdr-recursion.
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Sum of the members of a list

• Parameter: a list of numbers.

• Result: the sum of all the numbers in the list.

  > (define (sum-list ls)

      (cond ((null? ls) 0)

            (else (+ (car ls) (sum-list (cdr ls))))

            )

      )

  > (sum-list '(2 3 4))

  9

• Notice yet again the standard recursive structure:

– The base case, which stops the recursion.

– The recursive case, giving a smaller example of the same problem.

• cdr recursion, passing on a shorter list
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append

• append is a built-in function that, given two lists L1 and L2, returns a list 

formed by appending L2 to L1.

> (append '(1 2) '(3 4 5))
(1 2 3 4 5)

> (append '(1 2) '(3 (4) 5))
(1 2 3 (4) 5)

> (append '() '(1 4 5))
(1 4 5)

> (append '(1 4 5) '())
(1 4 5)

> (append '() '())
()
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append

• We can also define our own version of append.

  > (define (append list1 list2)

      (cond ((null? list1) list2)

            (else (cons (car list1)

                        (append (cdr list1) list2) ))

            )

      )
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Counting atoms

• Parameter: a (possibly nested) list.

• Result: the number of atoms in the list.

  > (define (atomcount x)

      (cond ((null? x) 0)

            ((atom? x) 1)

            (else (+ (atomcount (car x))

                     (atomcount (cdr x)) ))

            )

      )

  > (atomcount '(1 2))

  2

  > (atomcount '(1 (2 (3)) (5)))

  4

• This is called "car-cdr recursion".
– We go off in two directions at once.
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Tracing atomcount

> (atomcount '(1 (2 (3)) (5)))

|(atomcount (1 (2 (3)) (5)))

| (atomcount 1)

| 1

| (atomcount ((2 (3)) (5)))

| |(atomcount (2 (3)))

| | (atomcount 2)

| | 1

| | (atomcount ((3)))

| | |(atomcount (3))

| | | (atomcount 3)

| | | 1

| | | (atomcount ())

| | | 0

| | |1

| | |(atomcount ())

| | |0

| | 1

| |2

| |(atomcount ((5)))

| | (atomcount (5))

| | |(atomcount 5)

| | |1

| | |(atomcount ())

| | |0

| | 1

| | (atomcount ())

| | 0

| |1

| 3

|4

4
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Efficiency

• A function that, given two lists, returns -1 if both lists are empty, and 

otherwise returns the length of the longest list:

  > (define (longest-nonzero x y)

      (cond ((and (null? x) (null? y)) -1)

            ((> (length x) (length y)) (length x))

            (else (length y))

            )

      )

• Problem: Evaluating the same expression twice.

– length is called on the same argument more than once.

– We'd like to be able to reuse the result instead.

• Without an assignment statement, what can we do?
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Efficiency: helper function

• One solution: Bind values to parameters in a helper function:

  > (define (maximum x y) ;; or use the built-in max function.

       (cond ((> x y) x)

             (else y)))

  > (define (longest-nonzero x y)

       (cond ((and (null? x) (null? y)) -1)

             (else (maximum (length x) (length y)))

             ))

  > (longest-nonzero '(a b c) '(a b))

  3

• Observe that length is now called on each argument just once.

– The results can be used more than once within the helper function, since they are 

bound to the helper function's parameters.
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Efficiency: let and let*

• What if we don't want to define a helper function? How can we still 

reuse the results of a function call?

• Solution: Use a let or let* construct that binds variables to 

expression results.

• General form:

! ! (let ((var1 expr1) … (varn exprn))

                   <vars are now defined and can be used here>   )

            

       (let* ((var1 expr1) … (varn exprn))

                    <vars are defined and can be used here>  )

• This is not the same as variable assignment, since it doesn't let us 

modify the value of a variable.

– This is just a convenient way of doing what helper functions already let us do.
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Efficiency: let and let*

• What's the difference between

(let ((v1 e1) … (vn en))
    expr)

and

(let* ((v1 e1) … (vn en))

       expr)

• Both establish the variables v1,…,vn to have values e1,…,en in the 

expression expr.

– let does the binding in parallel (which means the order of binding has no effect).

– let* does the binding in sequence.

• Earlier definitions can be used in later ones.

• For example, you can use the value of v1 when defining v2 and v3.

> (let* ((x 2) (y (+ x 1))) (+ x y))

5
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let and let* examples

> (let ((x 2)) (* x x))

4

> (let ((x 4)) (let ((y (+ x 2))) (* x y)))

24

> (let ((x 4) (y (+ x 2))) (* x y))

reference to undefined identifier: x

> (let* ((x 4) (y (+ x 2))) (* x y))

24

> (let ((x 4)) (let ((x 6) (y (+ x 2))) (* x y)))

36

> (let ((x 4)) (let* ((x 6) (y (+ x 2))) (* x y)))

48
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longest-nonzero with let

 > (define (longest-nonzero x y)

      (let ((lenx (length x))

            (leny (length y))  )

        (cond ((and (= 0 lenx) (= 0 leny)) -1 )

              ((> lenx leny) lenx )

              (else leny )

              )))

• Observe that length is called on each argument just once.

• Another possible improvement:

– Note that length gets called (twice) even when x and y are both empty.

– It might be faster to perform a null? test first, and postpone the let definitions 

until after this test.
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longest-nonzero yet again

(define (longest-nonzero x y)

  (if (and (null? x) (null? y))

      -1

      (let ((lenx (length x))

            (leny (length y))  )

         (if (> lenx leny) lenx leny)

         )))
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Another inefficient example

• Let's write a function rev, to return its parameter with the elements in 

reverse order.

– Note that there is already a built-in reverse function that does this.

   > (define (rev lst)

         (cond ((null? lst) ())

               (else (append (rev (cdr lst))

                             (list (car lst))))))

   > (rev '(1 2 3))

   (3 2 1)

• It works, but there are a lot of list operations going on.
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A more efficient rev, with an accumulator

 > (define (rev lst) (rev-rec lst ()))

 > (define (rev-rec lst acc)

       (cond ((null? lst) acc)

             (else (rev-rec (cdr lst)

                            (cons (car lst) acc)))

             ))

 > (rev '(a b c d))

 (d c b a)

• Now each element of the original list only needs to be added to another 

list once, and it goes on the front, where the work is cheap.

• Observe that rev-rec's second parameter "accumulates" the result.
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Tracing rev

• Tracing a call to rev:

Call: (rev '(a b c d))

Trace:

      (rev '(a b c d))

      (rev-rec '(a b c d) ())

      (rev-rec '(b c d) '(a))

      (rev-rec '(c d) '(b a))

      (rev-rec '(d) '(c b a))

      (rev-rec () '(d c b a))

      '(d c b a)

• Note that whenever rev-rec makes a recursive call, it returns whatever 

the recursive call returns (there is no further computation). This is known 

as tail recursion. This form of recursion can be implemented very 

efficiently. Why?
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Exercises

• Write a function called swapFirstTwo that takes a list L, and swaps 

the first two elements of L. e.g:

> (swapFirstTwo '(1 2 3 4))
(2 1 3 4)

• Write a function called swapTwoInLists that takes a list L whose 

elements are themselves lists, and returns a list of all the elements in all 

the lists in L, but with the first two elements in each list swapped. e.g.

> (swapTwoInLists '((1 2 3) (4 5 6) (7 8)) )
(2 1 3 5 4 6 8 7)

• Write a function called cdrLists that takes a list L whose elements are 

themselves lists, and returns a list giving all the elements in the cdrs of 

these lists. e.g:

> (cdrLists '((1 2) (3 4 5) (6)) )
(2 4 5)
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More Exercises

• Write a function called addSums that takes a list L of numbers, and 

returns the total of all sums from 0 to each number. e.g.

> (addSums '(1 3 5)) ; this is 1 + 6 + 15
22

• Re-write addSums so that your solution uses tail recursion. You'll need 

to write an appropriate helper function.
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