
Fall 2008 Scheme: More higher-order functions, trees

The current topic: Scheme

! Introduction

!Object-oriented programming: Python

• Functional programming: Scheme

! Introduction

!Numeric operators, REPL, quotes, functions, conditionals

! Function examples, helper functions, let, let*

!More function examples, higher-order functions

– Next up: More higher-order functions, trees

• Types and values

• Syntax and semantics

• Exceptions

• Logic programming: Prolog

1 Fall 2008 Scheme: More higher-order functions, trees

Announcements

• Lab 2 is due on October 27th at 10:30 am.

– By the end of today's lecture, we will have covered all the material needed for the

lab.

• Project

– Send me a list of group members by today.

• Re-mark request deadlines

– Lab 1: Today

– Term test 1: Friday

2

Fall 2008 Scheme: More higher-order functions, trees

Review of map

• Recall that map takes a function f and a list L, and returns a new list in

which each element is the result of applying f to the corresponding

element in L.

– And map also can take a function f that takes more than one parameter. In that

case, map must be given multiple lists (of the same length), where the number of

lists given is equal to the number of parameters taken by f.

• Examples:

> (map not '(#t #f #t #t))
(#f #t #f #f)

> (map (lambda (X) (- X 2)) '(1 2 3))
(-1 0 1)

> (map min '(1 4) '(3 3) '(0 5) '(8 2))
(0 2)

3 Fall 2008 Scheme: More higher-order functions, trees

What's wrong here?

 > (define (atomcount s)

 (cond ((null? s) 0)

 ((atom? s) 1)

 (else (+ (map atomcount s)))))

 > (atomcount '(a b))

 +: expects argument of type <number>; given (1 1)

• Why doesn't this work?

– The call (atomcount '(a b)) results in the "else" part being evaluated.

– (map atomcount '(a b)) returns the list (1 1).

– Then, (+ (1 1)) is evaluated.

• This is an error, since + is supposed to take numbers as parameters, not a list.

• What we really want to do is evaluate (+ 1 1).

• Solution 1: Use eval.

• Solution 2: Use apply.

4

Fall 2008 Scheme: More higher-order functions, trees

Using eval to correct the problem

 > (define (atomcount s)

 (cond ((null? s) 0)

 ((atom? s) 1)

 (else

 (eval

 (cons + (map atomcount s))))

))

 > (atomcount '(a b))

 2

 > (atomcount '((1) (2 3 (4)) ((((5))))))

 5

• Observe that eval causes its argument to be evaluated.

– So cons puts the + inside the list, and the eval evaluates the list. For example:

> (eval (cons + '(1 1)))
2

5 Fall 2008 Scheme: More higher-order functions, trees

Limitations of eval

• BUT eval only works in this definition of atomcount because numbers

evaluate to themselves.

– As in the REPL, an evaluation using eval causes each argument to get

evaluated.

• More eval examples:

 > (cons + '(1 2 3))

 (#<primitive:+> 1 2 3)

 > (eval (cons + '(1 2 3)))

 6

 > (eval '(+ 1 2 3))

 6

 > (eval '(abs -3))

 3

 > (eval '(+ (* 3 4) (* 6 6)))

 48

6

Fall 2008 Scheme: More higher-order functions, trees

eval: an example where quoting is a problem

 > (append '(a) '(b))

 (a b)

 > (cons append '((a) (b)))

 (#<primitive:append> (a) (b))

 > (eval (cons append '((a) (b))))

 reference to undefined identifier: a

• Problem: eval is trying to evaluate (a), since to evaluate the

expression (append (a) (b)) it evaluates each argument.

• Fixing the problem: Use quotes to inhibit evaluation.

 > (cons append '('(a) '(b)))

 (#<primitive:append> '(a) '(b))

 > (eval (cons append '('(a) '(b))))

 (a b)

7 Fall 2008 Scheme: More higher-order functions, trees

Applying functions with apply

• apply is a built-in higher-order function.

– Parameters: a function and a list

– Result: the result of applying the given function to the parameters given by the

list.

 > (apply + '(1 2 3))

 6

 > (apply append '((a) (b)))

 (a b)

 > (apply car '((a b c)))

 a

• Observe that apply does not evaluate the elements of its list parameter,

so quotes are not needed inside the list.

8

Fall 2008 Scheme: More higher-order functions, trees

Applying functions with apply

• We can use apply to fix atomcount:

> (define (atomcount s)
 (cond ((null? s) 0)
 ((atom? s) 1)
 (else
 (apply + (map atomcount s)))))

> (atomcount '(a (b) c))
3

9 Fall 2008 Scheme: More higher-order functions, trees

reduce – another higher-order function

 > (define (reduce op ls id)

 (if (null? ls)

 id

 (op (car ls)

 (reduce op (cdr ls) id))))

• The reduce function takes a binary operation op and applies it right-

associatively to a list ls of an arbitrary number of elements.

• If the list ls is empty, reduce returns id.

• Informally, reduce "reduces" a list of elements to a single value.

• reduce is not equivalent to apply.

10

Fall 2008 Scheme: More higher-order functions, trees

Tracing reduce with +

(reduce + '(1 2 3) 0)

|(reduce #<primitive:+> (1 2 3) 0)

| (reduce #<primitive:+> (2 3) 0)

| |(reduce #<primitive:+> (3) 0)

| | (reduce #<primitive:+> () 0)

| | 0

| |3

| 5

|6

6

• In this case, (reduce + '(1 2 3) 0) happens to have the same

value as (+ 1 2 3).

– But what's really being computed is (1 + (2 + (3 + 0))).

11 Fall 2008 Scheme: More higher-order functions, trees

Tracing reduce with /

(reduce / '(24 6 2) 1)

|(reduce #<primitive:/> (24 6 2) 1)

| (reduce #<primitive:/> (6 2) 1)

| |(reduce #<primitive:/> (2) 1)

| | (reduce #<primitive:/> () 1)

| | 1

| |2

| 3

|8

8

• Observe that (reduce / '(24 6 2) 1) does not have the same

value as (/ 24 6 2).

– (reduce / '(24 6 2) 1) is equivalent to (24 / (6 / (2 / 1))) = 8.

– (/ 24 6 2) is equivalent to ((24 / 6) / 2) = 2.

12

Fall 2008 Scheme: More higher-order functions, trees

Tracing reduce with cons

(reduce cons '(z 6 c) ())

|(reduce #<primitive:cons> (z 6 c) ())

| (reduce #<primitive:cons> (6 c) ())

| |(reduce #<primitive:cons> (c) ())

| | (reduce #<primitive:cons> () ())

| | ()

| |(c)

| (6 c)

|(z 6 c)

(z 6 c)

13 Fall 2008 Scheme: More higher-order functions, trees

reduce – another higher-order function

• Unlike some other Schemes, mzscheme has no built-in reduce.

• Warning: the reduce we defined is not the same as the reduce

available in some other Schemes, such as MIT Scheme.

– Ours is right-associative; MIT Scheme provides reduce (left-associative) and

reduce-right (right-associative).

– MIT Scheme's reduce treats lists of one element specially, returning that

element and ignoring the id parameter.

14

Fall 2008 Scheme: More higher-order functions, trees

reducing union

• Suppose we have union, which takes two lists representing sets and

returns a list representing their union. For example:

> (union '(1 3) '(2 3 4))
(1 2 3 4)
> (apply union '((1 3) (2 3 4)))
(1 2 3 4)

• Now suppose we want to compute the union of more than two lists. We

can try:

> (apply union '((1 3) (2 3) (4 5)))
procedure union: expects 2 arguments, given 3

• Solution: Use reduce.

> (reduce union '((1 3) (2 3) (4 5)) ())
(1 3 2 5 4)

15 Fall 2008 Scheme: More higher-order functions, trees

reducing intersection

• Now suppose we have intersection, which takes two lists

representing sets and returns a list representing their intersection. For

example:

> (intersection '(1 3) '(2 3 4))
(3)

• And suppose we want to compute the intersection of more than two

lists. Let's try to use reduce.

> (reduce intersection '((1 3) (2 3 4)) ())
()

• What went wrong?

– In the example above, reduce starts by computing the intersection of (2 3 4)

and (), which is ().

16

Fall 2008 Scheme: More higher-order functions, trees

reducing intersection

• Question: How can we change reduce so that it works the way we want

it to with intersection? (And so that it still works the way we want it

to with union.)

• Answer: When the list given to reduce has exactly one element, just

return that element.

– This would mean that, for example,

(reduce intersection '((2 3 4)) '())

returns (2 3 4) rather than ().

17 Fall 2008 Scheme: More higher-order functions, trees

reduce-left

• Let's write a version of reduce that:

– Has the property required by the previous slide.

• That is, when the given list has just one element, the element itself is returned.

– And is tail-recursive.

• It's easier to write a left-associative version of reduce that has these

properties.

> (define (reduce-left op ls id)

 (cond ((null? ls) id)

 ((null? (cdr ls)) (car ls))

 (else

 (reduce-left

 op

 (cons (op (car ls) (cadr ls)) (cddr ls))

 id

))))

18

Fall 2008 Scheme: More higher-order functions, trees

reduce-left

• Tracing calls to reduce-left:

Call: (reduce-left intersection '((1 2 3) (5 1 2) (7 8 1)) '())

Trace:
 (reduce-left intersection '((1 2 3) (5 1 2) (7 8 1)) '())
 (reduce-left intersection '((1 2) (7 8 1)) '())
 (reduce-left intersection '((1)) '())
 (1)

Call: (reduce-left / '(24 6 2) 27)

Trace:
 (reduce-left / '(24 6 2) 27)
 (reduce-left / '(4 2) 27)
 (reduce-left / '(2) 27)
 2

19 Fall 2008 Scheme: More higher-order functions, trees

Using map and reduce together

• Recall the function cdrLists defined in the Exercises of a previous

lecture. This function takes a list L whose elements are themselves lists,

and returns a list giving all the elements in the cdrs of these lists. For

example:

> (cdrLists '((1 2) (3 4 5) (6 7)))
(2 4 5 7)

• Using map and reduce, it's easy to write cdrLists.

> (define (cdrLists L)
 (reduce append (map cdr L) '()))

20

Fall 2008 Scheme: More higher-order functions, trees

Representing trees

• How can we represent trees?

– As lists.

• Each node contains its data value followed by all its children.

• If the "child" is a "null pointer" (that is, there is no child), it is represented by the

empty list.

• Example: Binary trees. In this case, there are always two subtrees:

 4 4

 / \ |__ 2

 2 6 |__ 6

 / |__ 5

 5

 (4 (2 () ()) (6 (5 () ()) ()))

21 Fall 2008 Scheme: More higher-order functions, trees

BST (binary search tree) functions

• Getting the data value in a given node:

> (define (key node) (car node))

> (key '(4 (2 () ()) (6 (5 () ()) ())))
4

• Getting the left subtree of a given node:

> (define (left node) (cadr node))

> (left '(4 (2 () ()) (6 (5 () ()) ())))
(2 () ())

• Getting the right subtree of a given node:

> (define (right node) (caddr node))

> (right '(4 (2 () ()) (6 (5 () ()) ())))
(6 (5 () ()) ())

22

Fall 2008 Scheme: More higher-order functions, trees

Insertion into a BST (binary search tree)

• Insert element el into tree:

(define (insert el tree)

 (cond ((null? tree) (list el () ()))

 ((= el (key tree)) ; el is already the root

 tree

)

 ((< el (key tree)) ; insert into left subtree

 (list (key tree)

 (insert el (left tree))

 (right tree))

)

 (else ; insert into right subtree

 (list (key tree)

 (left tree)

 (insert el (right tree))

))))

23 Fall 2008 Scheme: More higher-order functions, trees

BST insertion examples

> (insert 5 ())

(5 () ())

> (insert 1 '(5 () ()))

(5 (1 () ()) ())

> (insert 8 '(5 (1 () ()) ()))

(5 (1 () ()) (8 () ()))

> (insert 5 '(4 (2 () ()) (6 () (8 () ()))))

(4 (2 () ()) (6 (5 () ()) (8 () ())))

> (insert 9 '(4 (2 () ()) (6 () (8 () ()))))

(4 (2 () ()) (6 () (8 () (9 () ()))))

24

Fall 2008 Scheme: More higher-order functions, trees

Building a BST from a list

• Given a list of (unsorted) numbers, we want to build a BST.

> (define (list2tree ls)

 (list2tree-help ls ()))

> (define (list2tree-help ls tree)

 (cond ((null? ls) tree)

 (else (list2tree-help (cdr ls)

 (insert (car ls) tree)))))

> (list2tree '(4 2 6 8 1 7))

(4 (2 (1 () ()) ()) (6 () (8 (7 () ()) ())))

• Observe that:

– list2tree-help uses parameter tree as an accumulator.

– list2tree-help is tail-recursive.

25 Fall 2008 Scheme: More higher-order functions, trees

Tracing list2tree

• Call: (list2tree '(4 2 6 8 1))

Trace:
 (list2tree '(4 2 6 8 1))
 (list2tree-help '(4 2 6 8 1) ())
 (list2tree-help '(2 6 8 1) '(4 () ()))
 (list2tree-help '(6 8 1) '(4 (2 () ()) ()))
 (list2tree-help '(8 1) '(4 (2 () ()) (6 () ())))
 (list2tree-help '(1) '(4 (2 () ()) (6 () (8 () ()))))
 (list2tree-help '() '(4 (2 (1 () ()) ()) (6 () (8 () ()))))
 (4 (2 (1 () ()) ()) (6 () (8 () ())))

26

Fall 2008 Scheme: More higher-order functions, trees

Exercises

• In a previous set of exercises (from Oct. 10), you wrote a function called

addSums that takes a list L of numbers, and returns the total of all sums

from 0 to each number. Rewrite addSums so that it does not use

recursion, and instead uses map and apply.

• In a previous set of exercises (from Oct. 10), you wrote a function called

swapFirstTwo that takes a list L, and swaps the first two elements of

L. Then you wrote a function called swapTwoInLists that takes a list L

whose elements are themselves lists, and returns a list of all the

elements in all the lists in L, but with the first two elements in each list

swapped. Rewrite swapTwoInLists so that it does not use recursion,

and instead uses map and reduce.

27 Fall 2008 Scheme: More higher-order functions, trees

More exercises

• Write a function called evaluateList that takes a list L of S-

expressions and returns a list where each element is the result of

evaluating the corresponding S-expression in L. Examples:
> (evaluateList '((+ 1 2) (car '(a b c)) (list 'a 'b)))
(3 a (a b))
> (evaluateList '((null? '()) (cdr '(a b c)) (/ 6 2)))
(#t (b c) 3)

28

