
Fall 2008 Types and values

The current topic: Types and values

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Python GUI programming (Tkinter)

• Types and values

• Logic programming: Prolog 

• Syntax and semantics

• Exceptions
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Announcements

• Reminder: Term Test 2 is on Monday November 3rd in GB405, not in the 

regular lecture room.

– 50 minutes (11:10 – 12:00).

– You're allowed to have one double-sided aid sheet for the test. You must use 

standard letter-sized (that is, 8.5" x 11") paper. The aid sheet can be produced 

however you like (typed or handwritten).

– Bring your TCard.

– What's covered?

• Everything from September 29 up to and including October 24.

• Lab 2.

– An old Term Test 2 has been posted.

– The exercises at the end of each lecture are also good practice.

• Office hours next week:

– The office hour on Wednesday (November 5th) is cancelled. Instead, there will be 

an office hour on Thursday (November 6th), 1:00-2:00, in SF3207.
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Basic topics: types, values, scopes 

• Names

• Storage

• Types

• Scopes and referencing environments

• Functions as parameters

These concepts are useful in understanding most programming languages 

(and programs).

• Reference: Sebesta, chapter 5
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Names

• A name identifies a variable (or other thing)

• The identified variable has attributes:

– name

– memory address

– type

– value

– scope

– lifetime
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Memory addresses

• Usually considered unchangeable – a variable can't be moved to a 

different address.

int i, j, *p;

p = &i;

p = &j;

– The variable p isn't moving; it's stays in the same memory location but stores 

different values (its values are addresses). 

• But if you use the same variable name in different functions, the name 

means different addresses in different places.

• Some languages allow names to be redefined.

– Scheme: define, set

– Python: depends on the way we look at things

• All variables really store references, and the variables themselves can't be moved.

• But a variable can be made to refer to a different object (in a different memory 

location).
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Terminology: static vs dynamic

• Static: "during compilation"

– more generally, before the program begins to run

– "compile-time"

• Dynamic: "while the program is running"

– "run-time"

• Some things that can be either static or dynamic:

– binding

– errors

– storage allocation

• The "static" keyword in C, C++, Java is related but still different.

– "just once"

– "invisible"

– "class-related"
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Binding

• Binding attaches an attribute to a variable

• Names are a little different from other attributes: we think of names and 

what they denote as being the same.

• A name is bound to a variable statically in most of the languages we're 

used to.

• In other languages, the name-variable binding is dynamic.

– The same name can be re-bound to a different variable.

– e.g. Scheme
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Dynamic name binding

• Dynamic binding: While a program is running, you can redefine a name 

to mean a different variable.

• Can't be done in C or Java

  int i = 5;

  i = 6;

– The name denotes the same variable, though the value changes.

• C++'s reference variables provide an alternative name for the same 

variable.
int i = 0;

int& k = i

k = 6  // Now i == 6 too. 

– And they would allow dynamic name binding if you could do this:

int j = 2;

k = j&;  // trying to make k be a reference to j.

– But in fact you can't change what k refers to.
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Dynamic name binding

• Here we have dynamic name binding in pseudo-code:

  define i : int

  i = 5

  define i : string

  i = "hi"

– The same name comes to denote some different thing (where "thing" really 

means a memory location).

• Languages like Scheme and ML allow this. 
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Dynamic binding to storage

• We said binding of a variable to a memory address is "Usually 

considered unchangeable".

• But that doesn't mean that storage binding is always static.

– Stack-dynamic: e.g. local variables in functions

– Heap-dynamic: nameless "variables" (we usually think of them as blocks of 

memory rather than as variables) allocated at run-time using malloc, new, or 

implicitly allocated at run-time during object creation (e.g. in Python). 

• If variables are appearing and disappearing, then their connection to a 

memory location is dynamic.

– But while the variable exists, this connection is unchangeable (in C and similar 

languages).

int f() {

  int i; // different calls of f() have different i's

  ...

}
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factorial(1)
n = 1

factorial(2)
n = 2

factorial(3)
n = 3

Storage on the stack

• Suppose factorial is a recursive function. In each call of factorial 

on the stack, there is a distinct variable n, and each such variable n has 

a fixed location (while it exists).
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at 4104:
17

at 12596:
-23

Storage on the heap

• A heap storage example (in C):

• Observe that the above code creates two

heap-dynamic variables (each having the

same size as an integer).

at 1196:
4104
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int *p;

// p is on the stack at location 1196

p = malloc(sizeof(int));

// now p == 4104

*p = 17

p = malloc(sizeof(int));

// now p == 12596

*p = -23;
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The lifetime of a variable

• Stack-dynamic storage is allocated on function entry, and deallocated 

on function exit.

– Storage management is always automatic, and not left to the programmer.

• Heap-dynamic storage is allocated on demand. It is freed either on 

demand or as needed:

– Freed on demand

•  If heap freeing is managed by programmers, as in C and C++.

– Freed when needed

• If heap freeing is managed by an automatic garbage collector, as in Scheme, Java, 

Python.
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Types

• "X is a strongly typed language."

– Where X might be Java, Python, …

• Strong typing may not be clearly defined, but Sebesta's description 

helps: 

– A language is strongly typed if "type errors are always detected." 

– This implies that "the types of all operands can be determined, either at compile 

time or at run time." 

– Sebesta, pg. 219.

• Strongly typed languages include:

– Python

– Java

– C#

• What about C/C++? 

– Not strongly typed, since there is no type checking when using union types.
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Static vs. Dynamic typing

• This is separate from the issue of strongly vs not-strongly typed.

• Static typing: 

– Types are declared by the programmer.

– Or types are deduced from code by the compiler. For example, in the language 

ML:

fun square (x : int) = x*x;

– Obviously fun returns an int, and you don't have to say so because the ML 

compiler can figure it out.

• Dynamic typing:

– Types are determined at run-time.

– e.g. Scheme, Python
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Types in records

(A record is a C-type struct.)

struct { int a; char b; };

struct { int x; char y; };

• Are these the same type?

– When using name type compatibility: no

• Name type compatibility: Types are only the same if they have the same name.

• Used by C++, Java, Python.

– When using structure type compatibility: yes

• Structure type compatibility: Types are the same as long as they have the same 

structure.
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Scope

• Scope: the part of a program where a variable can be referred to.

• In block-structured languages, scope generally consists of:

– The block where the variable is declared,

          plus

– blocks contained by that block.
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Blocks in C

int f(...) {

  int x;

  ... // can refer to x here

  for (...) {

    int y;

    int x; // another x; this declaration "hides" the old x

    ... // can refer to x (the new x) and y here

  }

  ... // can refer to x (the original x) here

}
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Blocks in Python

def outer():

    x = 3;

    def sub1():

        # We can't modify x but we can refer to it.

        print 'sub1: x =', x

    def sub2():

     # Or we can define another x which "hides" the old one.

        x = -5

        print 'sub2: x =', x

    sub1()

    sub2()

    print 'outer: x =', x

outer()

Output:
sub1: x = 3

sub2: x = -5

outer: x = 3
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Dynamic caller, static ancestor

• Caller: the procedure that at run time initiated the execution of the 

current procedure.

– This is dynamic, not fixed at compile-time.

• Ancestor: the procedure which encloses the code of the current 

procedure, in the text that the programmer wrote.

– This is fixed at compile-time.

– Just read the code to find out.

• In a block-structured language:

– Static scoping: what names can be used is determined by ancestry.

• Used in most languages.

– Dynamic scoping: what names can be used is determined by calling history.

• Not used very much. One example: The original LISP.
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Caller vs ancestor

procedure A:

  var x : integer;

  x := 2;

  procedure sub1:

    x := x + 1;

  end sub1;

  procedure sub2:

    var x : integer;

    x := 1;

    sub1; // Which x is changed by this call?

  end sub2;

end A;

•Using static scoping, A's x is changed. 

•Using dynamic scoping, sub2's x is changed. 
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Implementing scope

• Function calls are recorded on the stack.

– Therefore, the structure of the stack records calling history, not ancestry.

• Stack frame for a function call must include a static link to the enclosing 

scope in the program text.

– The static link records ancestry.

• The "enclosing scope" is some other function, so the static link is 

usually a pointer to a lower stack frame.

– Is this always the case?
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Scope vs lifetime

• Scope is the part of the program text where you can refer to a variable.

• Lifetime is the time period of the program's execution when the variable 

exists.

• A variable may exist during the execution of code that is not within its 

scope:

void b() {

  ... /* x isn't visible here */

}

void a() {

  int x;

  b(); /* x exists while this call is running */

}

• Can a variable's scope include parts of the program that are active (at 

run time) when the variable does not exist? 
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Referencing environment

• The referencing environment is the set of names that can be used at a 

particular point in a program

• Determining the referencing environment is simple in a language with 

static scope.

– The set of usable names is the set of names that are in-scope and not hidden.

– This can be found from the program text.

• Determining the referencing environment is harder in a language with 

dynamic scope.

– This can only be found by understanding execution, since it's depends on the 

calling history.
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Referencing environments in C and Java

• C: two sets of names are available:

– names defined locally within a function

– names defined globally, externally to functions

• some of these invisible, through "static" declarations (in other files).

• Java: many sets of names

– names defined locally within a method

– instance variables for the current object

– class variables for the current object's class

– public instance variables for other objects

• These objects must themselves be part of the referencing environment.

– public class variables for other classes

• Java has no set of globally-defined names like C's.
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A dynamic-scope example

• In a C-like language with dynamic scoping:

void f1() { int a, b; 1 ... }

void f2() { int b, c; 2 ... f1(); }

void main() { int c, d; 3 ... f2(); }

• Which variables are accessible at points 1, 2 and 3?

– At point 1: f1's a, f1's b, f2's c, main's d.

– At point 2: f2's b, f2's c, main's d. 

– At point 3: main's c, main's d.
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"First-class" status for a type

• A first-class type is a type with values that can be:

– created at run time

– assigned to variables

– returned from functions

– passed as an argument

– exist without a name

 

• You can think of values of a first-class type as "things" in your program.

– "Things" that you can work with.

• Are functions first-class?
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A C example

double integrate(double *f(double), double a, double b)

    { ... sum += f(x); ... }

double myFun (double x)

    { return 3*x*x + 2*x + 1; }

int main(void) {...

  printf(integrate(myFun, 0.5, 12));

  ...

}

28



Fall 2008 Types and values

Are functions things in C?

• C functions can be:

– passed as parameters

– returned as function results

– assigned to variables

– but, only in the form of pointers to statically-defined functions

• They cannot be created at run time.

• They cannot exist without a name.

• That is, C doesn't have anything like a lambda expression.

29 Fall 2008 Types and values

"Functions" in Java

• Functions in Java are methods of objects or classes.

• They cannot be referred to except by calling them.

• They can be "created" at run time by instantiating an anonymous class:

  MyFile x = new MyFile(){int getFileType() { return 3;}};

– This defines (and instantiates) a nameless class that extends MyFile.

– But the code for the method exists at compile time.

• Unlike C functions, Java methods cannot be passed as parameters.
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So, are functions first-class?

• Not in C or Java.

• Yes, in functional languages: Scheme, Lisp, ML

• Almost yes, in Python:

– Recall that lambda expressions in Python can only consist of a single expression.

• This restricts our ability to create functions at run time.

• Prolog (which we'll be looking at next) doesn't exactly have functions, 

but its terms can behave like functions and can be created at run time.
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Referencing in parameter functions

• If you pass a function as a parameter, what names can it refer to?

• Shallow binding: the names available where the function is actually 

called.

• Deep binding: the names available where the function was defined.

– This is what is done in Python.

• This is not the same as the distinction between dynamic and static 

binding!

• Reference: Sebesta, Section 9.6.
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Example: shallow vs deep

• Looks like C but isn't:

 int x;

 f2( ) { printf(x); }

 f3( ) { int x = 3; f4(f2); }

 f4(void f( )) { int x = 4; f( ); }

 x = 1;

 f3( );

• Shallow: prints ____

• Deep: prints ____

• See the next slide for answers...
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Answers

• Shallow: 4

• Deep: 1

• And 3? That's ad-hoc binding.

– Ad-hoc binding: The names that are available are those available in the function 

that passes (as opposed to receives) the parameter.
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