
Fall 2008 Types and values

The current topic: Types and values

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Python GUI programming (Tkinter)

• Types and values

• Logic programming: Prolog

• Syntax and semantics

• Exceptions

1 Fall 2008 Types and values

Announcements

• Reminder: Term Test 2 is on Monday November 3rd in GB405, not in the

regular lecture room.

– 50 minutes (11:10 – 12:00).

– You're allowed to have one double-sided aid sheet for the test. You must use

standard letter-sized (that is, 8.5" x 11") paper. The aid sheet can be produced

however you like (typed or handwritten).

– Bring your TCard.

– What's covered?

• Everything from September 29 up to and including October 24.

• Lab 2.

– An old Term Test 2 has been posted.

– The exercises at the end of each lecture are also good practice.

• Office hours next week:

– The office hour on Wednesday (November 5th) is cancelled. Instead, there will be

an office hour on Thursday (November 6th), 1:00-2:00, in SF3207.

2

Fall 2008 Types and values

Basic topics: types, values, scopes

• Names

• Storage

• Types

• Scopes and referencing environments

• Functions as parameters

These concepts are useful in understanding most programming languages

(and programs).

• Reference: Sebesta, chapter 5

3 Fall 2008 Types and values

Names

• A name identifies a variable (or other thing)

• The identified variable has attributes:

– name

– memory address

– type

– value

– scope

– lifetime

4

Fall 2008 Types and values

Memory addresses

• Usually considered unchangeable – a variable can't be moved to a

different address.

int i, j, *p;

p = &i;

p = &j;

– The variable p isn't moving; it's stays in the same memory location but stores

different values (its values are addresses).

• But if you use the same variable name in different functions, the name

means different addresses in different places.

• Some languages allow names to be redefined.

– Scheme: define, set

– Python: depends on the way we look at things

• All variables really store references, and the variables themselves can't be moved.

• But a variable can be made to refer to a different object (in a different memory

location).

5 Fall 2008 Types and values

Terminology: static vs dynamic

• Static: "during compilation"

– more generally, before the program begins to run

– "compile-time"

• Dynamic: "while the program is running"

– "run-time"

• Some things that can be either static or dynamic:

– binding

– errors

– storage allocation

• The "static" keyword in C, C++, Java is related but still different.

– "just once"

– "invisible"

– "class-related"

6

Fall 2008 Types and values

Binding

• Binding attaches an attribute to a variable

• Names are a little different from other attributes: we think of names and

what they denote as being the same.

• A name is bound to a variable statically in most of the languages we're

used to.

• In other languages, the name-variable binding is dynamic.

– The same name can be re-bound to a different variable.

– e.g. Scheme

7 Fall 2008 Types and values

Dynamic name binding

• Dynamic binding: While a program is running, you can redefine a name

to mean a different variable.

• Can't be done in C or Java

 int i = 5;

 i = 6;

– The name denotes the same variable, though the value changes.

• C++'s reference variables provide an alternative name for the same

variable.
int i = 0;

int& k = i

k = 6 // Now i == 6 too.

– And they would allow dynamic name binding if you could do this:

int j = 2;

k = j&; // trying to make k be a reference to j.

– But in fact you can't change what k refers to.

8

Fall 2008 Types and values

Dynamic name binding

• Here we have dynamic name binding in pseudo-code:

 define i : int

 i = 5

 define i : string

 i = "hi"

– The same name comes to denote some different thing (where "thing" really

means a memory location).

• Languages like Scheme and ML allow this.

9 Fall 2008 Types and values

Dynamic binding to storage

• We said binding of a variable to a memory address is "Usually

considered unchangeable".

• But that doesn't mean that storage binding is always static.

– Stack-dynamic: e.g. local variables in functions

– Heap-dynamic: nameless "variables" (we usually think of them as blocks of

memory rather than as variables) allocated at run-time using malloc, new, or

implicitly allocated at run-time during object creation (e.g. in Python).

• If variables are appearing and disappearing, then their connection to a

memory location is dynamic.

– But while the variable exists, this connection is unchangeable (in C and similar

languages).

int f() {

 int i; // different calls of f() have different i's

 ...

}

10

Fall 2008 Types and values

factorial(1)
n = 1

factorial(2)
n = 2

factorial(3)
n = 3

Storage on the stack

• Suppose factorial is a recursive function. In each call of factorial

on the stack, there is a distinct variable n, and each such variable n has

a fixed location (while it exists).

11 Fall 2008 Types and values

at 4104:
17

at 12596:
-23

Storage on the heap

• A heap storage example (in C):

• Observe that the above code creates two

heap-dynamic variables (each having the

same size as an integer).

at 1196:
4104

12

int *p;

// p is on the stack at location 1196

p = malloc(sizeof(int));

// now p == 4104

*p = 17

p = malloc(sizeof(int));

// now p == 12596

*p = -23;

Fall 2008 Types and values

The lifetime of a variable

• Stack-dynamic storage is allocated on function entry, and deallocated

on function exit.

– Storage management is always automatic, and not left to the programmer.

• Heap-dynamic storage is allocated on demand. It is freed either on

demand or as needed:

– Freed on demand

• If heap freeing is managed by programmers, as in C and C++.

– Freed when needed

• If heap freeing is managed by an automatic garbage collector, as in Scheme, Java,

Python.

13 Fall 2008 Types and values

Types

• "X is a strongly typed language."

– Where X might be Java, Python, …

• Strong typing may not be clearly defined, but Sebesta's description

helps:

– A language is strongly typed if "type errors are always detected."

– This implies that "the types of all operands can be determined, either at compile

time or at run time."

– Sebesta, pg. 219.

• Strongly typed languages include:

– Python

– Java

– C#

• What about C/C++?

– Not strongly typed, since there is no type checking when using union types.

14

Fall 2008 Types and values

Static vs. Dynamic typing

• This is separate from the issue of strongly vs not-strongly typed.

• Static typing:

– Types are declared by the programmer.

– Or types are deduced from code by the compiler. For example, in the language

ML:

fun square (x : int) = x*x;

– Obviously fun returns an int, and you don't have to say so because the ML

compiler can figure it out.

• Dynamic typing:

– Types are determined at run-time.

– e.g. Scheme, Python

15 Fall 2008 Types and values

Types in records

(A record is a C-type struct.)

struct { int a; char b; };

struct { int x; char y; };

• Are these the same type?

– When using name type compatibility: no

• Name type compatibility: Types are only the same if they have the same name.

• Used by C++, Java, Python.

– When using structure type compatibility: yes

• Structure type compatibility: Types are the same as long as they have the same

structure.

16

Fall 2008 Types and values

Scope

• Scope: the part of a program where a variable can be referred to.

• In block-structured languages, scope generally consists of:

– The block where the variable is declared,

 plus

– blocks contained by that block.

17 Fall 2008 Types and values

Blocks in C

int f(...) {

 int x;

 ... // can refer to x here

 for (...) {

 int y;

 int x; // another x; this declaration "hides" the old x

 ... // can refer to x (the new x) and y here

 }

 ... // can refer to x (the original x) here

}

18

Fall 2008 Types and values

Blocks in Python

def outer():

 x = 3;

 def sub1():

 # We can't modify x but we can refer to it.

 print 'sub1: x =', x

 def sub2():

 # Or we can define another x which "hides" the old one.

 x = -5

 print 'sub2: x =', x

 sub1()

 sub2()

 print 'outer: x =', x

outer()

Output:
sub1: x = 3

sub2: x = -5

outer: x = 3

19 Fall 2008 Types and values

Dynamic caller, static ancestor

• Caller: the procedure that at run time initiated the execution of the

current procedure.

– This is dynamic, not fixed at compile-time.

• Ancestor: the procedure which encloses the code of the current

procedure, in the text that the programmer wrote.

– This is fixed at compile-time.

– Just read the code to find out.

• In a block-structured language:

– Static scoping: what names can be used is determined by ancestry.

• Used in most languages.

– Dynamic scoping: what names can be used is determined by calling history.

• Not used very much. One example: The original LISP.

20

Fall 2008 Types and values

Caller vs ancestor

procedure A:

 var x : integer;

 x := 2;

 procedure sub1:

 x := x + 1;

 end sub1;

 procedure sub2:

 var x : integer;

 x := 1;

 sub1; // Which x is changed by this call?

 end sub2;

end A;

•Using static scoping, A's x is changed.

•Using dynamic scoping, sub2's x is changed.
21 Fall 2008 Types and values

Implementing scope

• Function calls are recorded on the stack.

– Therefore, the structure of the stack records calling history, not ancestry.

• Stack frame for a function call must include a static link to the enclosing

scope in the program text.

– The static link records ancestry.

• The "enclosing scope" is some other function, so the static link is

usually a pointer to a lower stack frame.

– Is this always the case?

22

Fall 2008 Types and values

Scope vs lifetime

• Scope is the part of the program text where you can refer to a variable.

• Lifetime is the time period of the program's execution when the variable

exists.

• A variable may exist during the execution of code that is not within its

scope:

void b() {

 ... /* x isn't visible here */

}

void a() {

 int x;

 b(); /* x exists while this call is running */

}

• Can a variable's scope include parts of the program that are active (at

run time) when the variable does not exist?

23 Fall 2008 Types and values

Referencing environment

• The referencing environment is the set of names that can be used at a

particular point in a program

• Determining the referencing environment is simple in a language with

static scope.

– The set of usable names is the set of names that are in-scope and not hidden.

– This can be found from the program text.

• Determining the referencing environment is harder in a language with

dynamic scope.

– This can only be found by understanding execution, since it's depends on the

calling history.

24

Fall 2008 Types and values

Referencing environments in C and Java

• C: two sets of names are available:

– names defined locally within a function

– names defined globally, externally to functions

• some of these invisible, through "static" declarations (in other files).

• Java: many sets of names

– names defined locally within a method

– instance variables for the current object

– class variables for the current object's class

– public instance variables for other objects

• These objects must themselves be part of the referencing environment.

– public class variables for other classes

• Java has no set of globally-defined names like C's.

25 Fall 2008 Types and values

A dynamic-scope example

• In a C-like language with dynamic scoping:

void f1() { int a, b; 1 ... }

void f2() { int b, c; 2 ... f1(); }

void main() { int c, d; 3 ... f2(); }

• Which variables are accessible at points 1, 2 and 3?

– At point 1: f1's a, f1's b, f2's c, main's d.

– At point 2: f2's b, f2's c, main's d.

– At point 3: main's c, main's d.

26

Fall 2008 Types and values

"First-class" status for a type

• A first-class type is a type with values that can be:

– created at run time

– assigned to variables

– returned from functions

– passed as an argument

– exist without a name

• You can think of values of a first-class type as "things" in your program.

– "Things" that you can work with.

• Are functions first-class?

27 Fall 2008 Types and values

A C example

double integrate(double *f(double), double a, double b)

 { ... sum += f(x); ... }

double myFun (double x)

 { return 3*x*x + 2*x + 1; }

int main(void) {...

 printf(integrate(myFun, 0.5, 12));

 ...

}

28

Fall 2008 Types and values

Are functions things in C?

• C functions can be:

– passed as parameters

– returned as function results

– assigned to variables

– but, only in the form of pointers to statically-defined functions

• They cannot be created at run time.

• They cannot exist without a name.

• That is, C doesn't have anything like a lambda expression.

29 Fall 2008 Types and values

"Functions" in Java

• Functions in Java are methods of objects or classes.

• They cannot be referred to except by calling them.

• They can be "created" at run time by instantiating an anonymous class:

 MyFile x = new MyFile(){int getFileType() { return 3;}};

– This defines (and instantiates) a nameless class that extends MyFile.

– But the code for the method exists at compile time.

• Unlike C functions, Java methods cannot be passed as parameters.

30

Fall 2008 Types and values

So, are functions first-class?

• Not in C or Java.

• Yes, in functional languages: Scheme, Lisp, ML

• Almost yes, in Python:

– Recall that lambda expressions in Python can only consist of a single expression.

• This restricts our ability to create functions at run time.

• Prolog (which we'll be looking at next) doesn't exactly have functions,

but its terms can behave like functions and can be created at run time.

31 Fall 2008 Types and values

Referencing in parameter functions

• If you pass a function as a parameter, what names can it refer to?

• Shallow binding: the names available where the function is actually

called.

• Deep binding: the names available where the function was defined.

– This is what is done in Python.

• This is not the same as the distinction between dynamic and static

binding!

• Reference: Sebesta, Section 9.6.

32

Fall 2008 Types and values

Example: shallow vs deep

• Looks like C but isn't:

 int x;

 f2() { printf(x); }

 f3() { int x = 3; f4(f2); }

 f4(void f()) { int x = 4; f(); }

 x = 1;

 f3();

• Shallow: prints ____

• Deep: prints ____

• See the next slide for answers...

33 Fall 2008 Types and values

Answers

• Shallow: 4

• Deep: 1

• And 3? That's ad-hoc binding.

– Ad-hoc binding: The names that are available are those available in the function

that passes (as opposed to receives) the parameter.

34

