
Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

The current topic: Prolog

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Python GUI programming (Tkinter)

! Types and values

• Logic programming: Prolog

! Introduction

– Next up: Rules, unification, resolution, backtracking, lists.

• Syntax and semantics

• Exceptions

1 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Announcements

• Reminder: The deadline for Lab 2 re-mark requests is Friday.

• Reminder: The project is due on November 17th at 10:30 am.

– Make sure you carefully follow the submission instructions.

2

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Prolog syntax

• Variables are capitalized.

• Constants and predicate names begin with a lower-case letter.

• A predicate is identified by its name and the number of parameters it
takes.
– sibling(A,B) is called "sibling/2", because it has two parameters.

– You can define different predicates that have the same name but take a different
number of parameters. For example, you can define both sibling(A,B) and

sibling(A,B,P); the first one is "sibling/2" and the second one is "sibling/3" –

these are two distinct predicates that happen to share a name.

3 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Meaning of a Prolog rule

• A rule:

 isMother(X) :- parent(X, Y), female(X).

• Meaning:

 parent(x, y) ! female(x) " isMother(x)

• But you really need quantifiers:

 #x [[$y [parent(x, y) ! female(x)]] " isMother(x)]

4

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

How to think in Prolog

• In C, Java, Python, …, you program with instructions.

– What should we do next, and where should we store the value calculated?

• In Scheme, you program with functions.

– Given arguments, what's the function value?

– A function takes you from arguments to result.

• In Prolog, you program with relations.
• (A function is a mapping from a domain to a range, and each value in the domain is

associated with just one value in the range. In a relation, there may be multiple range
values for each domain value.)

– All arguments are at the same level: There is no distinction between "in" and
"out" values.

5 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Thinking and style in Prolog

• Although in a Prolog relation, there may be "no distinction between in
and out values", some predicates (rules) may have parameters that must
have values, or that are always given values. Other parameters may
sometimes be given values, and at other times receive them.

• The documentation preceding a predicate should specify what's in and
what's out:

% myRule(+Given, -Deduced, ?Other) does something ...

– This comment implies that Given must be set before myRule is called, and that

Deduced receives a value as the result of the call. Other may either receive a
value or start with an existing value.

– '+' requires the variable to be instantiated by the caller.

– '-' requires the variable to be un-instantiated.

– '?' says that either is acceptable.

6

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

How Prolog answers a query

• Unification.

• Resolution.

• Backtracking.

7 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Unification

• Unification succeeds if two expressions can be made to have "the same
structure" through variable instantiation (giving a variable a value).

– An instantiated variable will not change its value. However, it can become un-
instantiated when backtracking occurs.

• Unification examples:

– parent(X,Y) and parent(albert, edward)
These unify: X=albert, Y=edward

– parent(X,edward) and parent(albert,Y)
These unify: X=albert, Y=edward

– parent(albert,edward) and parent(victoria,Y)
These do not unify, since albert and victoria don't unify.

– parent(X, edward) and parent(Y, edward)
These unify: X=Y (or Y=X, or creating a variable Z and letting X=Z and Y=Z).

8

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Unification

• More unification examples:

– parent(X,Y) and female(X)
These do not unify, since parent and female don't unify.

– parent(albert,edward) and parent(X,Y,Z)
These do not unify, since the first expression has 2 arguments and the second
expression has 3 arguments.

• Observe that in order for two expressions to unify, they must have the
same functor and the same number of arguments (or else there's no
way for them to have the same structure).

9 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

What = does

• In Prolog, = calls for unification.

– Not assignment.

– Not equality testing.

?- parent(X,Y) = parent(albert,Z).

X = albert

Y = _G158

Z = _G158

?- parent(X,Y) = parent(A,B).

X = _G157

Y = _G158

A = _G157

B = _G158

10

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

What = does

?- parent(X,Y) = course(A,B).

No

?- parent(X,X) = parent(albert,Y).

X = albert

Y = albert

?- parent(X,Y,Z) = parent(A,B).

No

11 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Resolution

• Resolution involves combining information from separate rules.

– This is the way Prolog tries to prove that a query succeeds.

• The general idea:

– If we have rules of the form

A :- B.
C :- D.
where A, B, C, D are expressions, and if B and C unify, say to U, then we have

A :- U.
U :- D.
and hence we have

A :- D.
That is, to prove A, it suffices to prove D.

– So given a query Q, Prolog iterates through its rules (and facts) until it finds one

whose left side unifies with Q, and then it tries to prove (in order) each sub-query
given by the right side of the rule. For example, given the two rules above, if

query Q unifies with A, then Prolog will try to prove B (by, again, iterating through

its rules and facts, looking for one whose left side unifies with B).

12

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Backtracking

• Backtracking involves trying another set of possible variable
instantiations, when the previous set fails or is rejected.

– This is possibly the hardest part of Prolog for imperative programmers to
understand.

• Why does Prolog need to backtrack?

– Recall (from the previous slide) that when trying to prove a query Q, Prolog

selects the first rule R whose left side unifies with Q.

– Even if this first rule ultimately leads to failure, there may be other rules that lead
to success.

– So Prolog needs to "undo" the unification of Q with the left side of R, and then

look for the next rule whose left side unifies with Q.

• How much does backtracing "undo"?

– As little as possible.

– Just like depth-first search.

• Interactively, typing ; calls for backtracking.

13 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Tracing

• Use the "trace." command to enter tracing mode.

?- trace.

Yes

[trace] ?- parent(Person, edward).

 Call: (7) parent(_G283, edward) ? creep

 Exit: (7) parent(albert, edward) ? creep

Person = albert ;

 Redo: (7) parent(_G283, edward) ? creep

 Exit: (7) parent(victoria, edward) ? creep

Person = victoria ;

 Redo: (7) parent(_G283, edward) ? creep

 Fail: (7) parent(_G283, edward) ? creep

No

[debug] ?- nodebug.

Yes

?-

14

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

A query to trace

male(tom).

male(peter).

male(doug).

female(susan).

male(david).

parent(doug, susan).

parent(tom, william).

parent(doug, david).

parent(doug, tom).

grandfather(GP, GC) :- male(GP), parent(GP, A), parent(A, GC).

?- grandfather(X,Y).

15 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

 Exit: (8) parent(doug, susan) ? creep

 Call: (8) parent(susan, _G284) ? creep

 Fail: (8) parent(susan, _G284) ? creep

 Redo: (8) parent(doug, _G353) ? creep

 Exit: (8) parent(doug, david) ? creep

 Call: (8) parent(david, _G284) ? creep

 Fail: (8) parent(david, _G284) ? creep

 Redo: (8) parent(doug, _G353) ? creep

 Exit: (8) parent(doug, tom) ? creep

 Call: (8) parent(tom, _G284) ? creep

 Exit: (8) parent(tom, william) ? creep

 Exit: (7) grandfather(doug, william) ? creep

X = doug

Y = william

Let Prolog trace it

 [trace] ?- grandfather(X,Y).

 Call: (7) grandfather(_G283, _G284) ? creep

 Call: (8) male(_G283) ? creep

 Exit: (8) male(tom) ? creep

 Call: (8) parent(tom, _G353) ? creep

 Exit: (8) parent(tom, william) ? creep

 Call: (8) parent(william, _G284) ? creep

 Fail: (8) parent(william, _G284) ? creep

 Fail: (8) parent(tom, _G353) ? creep

 Redo: (8) male(_G283) ? creep

 Exit: (8) male(peter) ? creep

 Call: (8) parent(peter, _G353) ? creep

 Fail: (8) parent(peter, _G353) ? creep

 Redo: (8) male(_G283) ? creep

 Exit: (8) male(doug) ? creep

 Call: (8) parent(doug, _G353) ? creep

16

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

The anonymous variable

• A variable that appears only once is called a singleton variable.

isMother(X) :- female(X), parent(X, Y).

– Y's value doesn't matter; it doesn't have to match anything else in the rule.

• Singletons consume run-time resources.

• Use "_" instead -- the anonymous variable.

isaMother(X) :- female(X), parent(X, _).

– _ matches anything.

– But don't use two _'s hoping they'll match each other.

17 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Lists in Prolog

• Two ways to describe a list.

• Element by element, with commas:

[a, b, c]

[]

[a, [b, c], d, [], e]

[a, X, c, d]

• [first | rest] where "rest" must itself be a list:

[a | [b, c]] (same as [a, b, c])

[a | Rest]

18

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Why two ways?

?- [a, b, c, d] = [H | T].

H = a

T = [b, c, d]

• In Prolog, you don't need car and cdr functions to break up a list!

19 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Unifying lists

?- [X, Y, Z] = [bob, likes, bananas].

X = bob

Y = likes

Z = bananas

?- [1, 2] = [X | Y].

X = 1

Y = [2]

?- [cat] = [X | Y].

X = cat

Y = []

?- [a, b, c] = [X | Y].

X = a

Y = [b, c]

20

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Unifying lists

?- [a, b | [c]] = [X | Y].

X = a

Y = [b, c]

?- [First | [a, b]] = [z, a, b].

First = z

?- [[the | Y] | Z] = [[X, hare] | [is, here]].

Y = [hare]

Z = [is, here]

X = the

?- Y = [Y].

Y = [[[[[[[[[[...]]]]]]]]]]

21 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Writing list predicates

• You need recursion if the list length isn't fixed. The usual considerations
are relevant:

1. Choose suitable names for the predicate and the arguments.

2. Write specifications in the form "predicate succeeds if …" and think of it

that way.

3. Write the base cases first.

– Why?

4. There may be several non-trivial cases, each requiring a rule.

– You may need to carefully order the rules.

22

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Two list predicates

• Consider the following predicate:

member(X, [X | _]).

member(X, [_ | Rest]) :- member(X, Rest).

• Observe that member(X,L) means that X is an element of L.

(Prolog also has a built-in version of member/2.)

• Another list predicate:

bigger(_, []).

bigger(X, [First | Rest]) :- X > First, bigger(X, Rest).

• What does bigger/2 mean?

– bigger(X,L) means that X is bigger than every element in L.

23 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

append: many predicates in one

• Build a list:

?- append([a], [b], Y).

Y = [a, b] ;

No

• Break a list apart:

?- append(X, [b], [a, b]).

X = [a] ;

No

?- append([a], X, [a, b]).

X = [b] ;

No

24

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

append, with more than one variable

?- append(X, Y, [a, b]).

X = []

Y = [a, b] ;

X = [a]

Y = [b] ;

X = [a, b]

Y = [] ;

No

25 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

append, generating a list

?- append(X, [a], Y).

X = []

Y = [a] ;

X = [_G230]

Y = [_G230, a] ;

X = [_G230, _G236]

Y = [_G230, _G236, a] ;

X = [_G230, _G236, _G242]

Y = [_G230, _G236, _G242, a] ; … and so on …

26

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Writing myAppend

• There is a built-in append. Let's write our own version, called

myAppend.

• Things that might be useful:

myAppend(X, [], X).

myAppend([], Y, Y).

myAppend([H | R], Y, [H | New]) :- myAppend(R, Y, New).

• Is that enough? too much?

– That is, (1) does it work? (2) could we delete one or two of the rules and still have
a functioning myAppend?

27 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Writing myAppend

• Testing myAppend:

?- myAppend([a], [b], Y).
Y = [a, b] ;
No

?- myAppend(X, [b], [a,b]).
X = [a] ;
No

?- myAppend([a], X, [a,b]).
X = [b] ;
No

?- myAppend([a], [], Y).
Y = [a] ;
Y = [a] ;
Y = [a] ;

No.

28

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Writing myAppend

• More testing:

?- myAppend(X, Y, [a,b]).
X = [a, b]
Y = [] ;

X = []
Y = [a, b] ;

X = [a]
Y = [b] ;

X = [a, b]
Y = [] ;

X = [a, b]
Y = [];
No

29 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Writing myAppend

• Our myAppend works, but repeats answers. Let's try removing one of

the rules. Suppose we re-write myAppend as follows:

myAppend(X, [], X).
myAppend([H | R], Y, [H | New]) :- myAppend(R, Y, New).

• Testing the new version:

?- myAppend([a], [b], Y).
No

– Why? To prove myAppend([a], [b], Y), Prolog uses the second rule and

tries to prove myAppend([], [b], Y). But myAppend([], [b], Y) doesn't

unify with the left side of either of the two rules.

30

Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Writing myAppend

• Let's try again:

myAppend([], Y, Y).
myAppend([H | R], Y, [H | New]) :- myAppend(R, Y, New).

• Testing:

?- myAppend([a], [b], Y).
Y = [a, b] ;
No

?- myAppend([a], [], Y).
Y = [a] ;
No

?= myAppend(X, [b], [a, b]).
X = [a];
No

• This version works, and doesn't repeat answers.

31 Fall 2008 Prolog: Rules, unification, resolution, backtracking, lists

Exercises

• Using the parent, male, female, and sibling predicates as a

starting point, write the following predicates. Recall that our sibling

predicate behaves somewhat strangely (since it considers a person to
be their own sibling), and this may cause similar strange behaviour in
the predicates you define – don't worry about this for now (until we
discuss negation).

– uncle

– aunt

– nephew

– niece

– grandparent

– ancestor

32

