
Fall 2008 Prolog: More lists, math, structures

The current topic: Prolog

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Python GUI programming (Tkinter)

! Types and values

• Logic programming: Prolog

! Introduction

!Rules, unification, resolution, backtracking, lists.

– Next up: More lists, math, structures.

• Syntax and semantics

• Exceptions

1 Fall 2008 Prolog: More lists, math, structures

Announcements

• Reminder: The project is due on Monday at 10:30 am.

– Make sure you carefully follow the submission instructions.

• Lab 3 has been posted.

2

Fall 2008 Prolog: More lists, math, structures

swapFirstTwo

• We want to write a predicate swapFirstTwo(List1, List2) that

succeeds if List1 and List2 are lists of length at least 2 that are the

same except the first two elements of List1 are in reverse order in

List2. Examples:

?- swapFirstTwo([a, b], [b, a]).

Yes

?- swapFirstTwo([a, b], [b, c]).

No

?- swapFirstTwo([a, b, c], [b, a, c]).

Yes

?- swapFirstTwo([a, b, c], [b, a, d]).

No

?- swapFirstTwo([a, b, c], X).

X = [b, a, c] ;

No

3 Fall 2008 Prolog: More lists, math, structures

swapFirstTwo

• More examples:

?- swapFirstTwo([a, b | Y], X).

Y = _G161

X = [b, a|_G161] ;

No

?- swapFirstTwo([], X).

No

?- swapFirstTwo([a], X).

No

?- swapFirstTwo([a, b], X).

X = [b, a] ;

No

?- swapFirstTwo(X, Y).

X = [_G225, _G228|_G229]

Y = [_G228, _G225|_G229] ;

No

4

Fall 2008 Prolog: More lists, math, structures

swapFirstTwo

• Defining swapFirstTwo:

swapfirsttwo([X, Y | R], [Y, X | R]).

• Only one rule is needed!

5 Fall 2008 Prolog: More lists, math, structures

isPrefix

• Write a predicate isPrefix(Little, Big) that succeeds if Big is a

list beginning with all the members of Little, in order.

isPrefix([],[]).

isPrefix([],[_|_]).

isPrefix([H|T], [H|Rest]) :- isPrefix(T, Rest).

• Testing isPrefix:

?- isPrefix([1,2], [1,2,3,4]).

Yes

?- isPrefix(L, [1,2,3,4]).

L = [] ;

L = [1] ;

L = [1, 2] ;

L = [1, 2, 3] ;

L = [1, 2, 3, 4] ;

No

6

Fall 2008 Prolog: More lists, math, structures

occursIn

• Write a predicate occursIn(Little, Big) that succeeds if Little

is a sublist of Big (this means that the elements of Little appear

together, in order, within Big).

occursIn(Little, Big) :- isPrefix(Little, Big).

occursIn(Little, [_|T]) :- occursIn(Little, T).

• Testing occursIn:

?- occursIn([1,2], [1,2,3]).

Yes

?- occursIn([2,3], [1,2,3,4]).

Yes

?- occursIn([A], [1,2,3,4]).

A = 1 ;

A = 2 ;

A = 3 ;

A = 4 ;

No
7 Fall 2008 Prolog: More lists, math, structures

length(List, N)

• The built-in predicate length(List,N) succeeds if List is a list of

length N.

• Let's try to define our own version, which we'll call len instead.

• First attempt:

len([], 0).

len([_ | Rest], N) :- len(Rest, N - 1).

• Testing len:

?- len([], Val).

Val = 0 ;

No

?- len([a,b,c], Val).

No

?- len([a,b,c], 3).

No

• What's going on?

8

Fall 2008 Prolog: More lists, math, structures

Tracing len

• Let's trace a call to len:

[trace] ?- len([a,b,c], 3).

 Call: (7) len([a, b, c], 3) ? creep

 Call: (8) len([b, c], 3-1) ? creep

 Call: (9) len([c], 3-1-1) ? creep

 Call: (10) len([], 3-1-1-1) ? creep

 Fail: (10) len([], 3-1-1-1) ? creep

 Fail: (9) len([c], 3-1-1) ? creep

 Fail: (8) len([b, c], 3-1) ? creep

 Fail: (7) len([a, b, c], 3) ? creep

No

• We'll later see how to fix the problem.

9 Fall 2008 Prolog: More lists, math, structures

Math in Prolog

• Let's try to do some math in Prolog.

?- X = 14 - 2, Y = 12 - 0, X = Y.

No

?- X = 14 - 2, Y = 2, Z = 14 - Y, X = Z.

X = 14-2

Y = 2

Z = 14-2 ;

No

• Recall that = calls for unification, not assignment.

10

Fall 2008 Prolog: More lists, math, structures

For math, use 'is', not '='

• X is expression causes expression to be evaluated and then tries

to unify the result with X.

• In "X is expression", expression must be:

– an arithmetic expression

– fully instantiated

• Examples:

?- X is 10 + 17.

X = 27 ;

No

?- Y is 7, Z is 3 + 4, Y = Z.

Y = 7

Z = 7 ;

No

11 Fall 2008 Prolog: More lists, math, structures

For math, use 'is', not '='

• More examples:

?- Y is 7, X is Y+2.

Y = 7

X = 9 ;

No

?- X is Y+2, Y is 7.

ERROR: Arguments are not sufficiently instantiated

12

Fall 2008 Prolog: More lists, math, structures

Fixing len

• We can now try to fix len using is:

len([], 0).

len([_ | Rest], N) :- len(Rest, M), M is N-1.

• Testing len:

?- len([a,b,c], Val).

ERROR: Arguments are not sufficiently instantiated

?- len([a,b,c], 3).

ERROR: Arguments are not sufficiently instantiated

13 Fall 2008 Prolog: More lists, math, structures

Tracing len

• Let's figure out what's going wrong:

[trace] ?- len([a,b,c], Val).

 Call: (8) len([a, b, c], _G296) ? creep

 Call: (9) len([b, c], _L191) ? creep

 Call: (10) len([c], _L208) ? creep

 Call: (11) len([], _L225) ? creep

 Exit: (11) len([], 0) ? creep

^ Call: (11) 0 is _G360-1 ? creep

ERROR: Arguments are not sufficiently instantiated

14

Fall 2008 Prolog: More lists, math, structures

Fixing len (again)

• We need to fix the is so that the right side is always instantiated:

len([], 0).

len([_ | Rest], N) :- len(Rest, M), N is M+1.

• Testing len:

?- len([a,b,c], Val).

Val = 3 ;

No

?- len(List, 3).

List = [_G216, _G219, _G222] ;

...(Non-terminating computation – do a trace to see why)...

15 Fall 2008 Prolog: More lists, math, structures

max

• We want to write a predicate max(X, Y, Z) that succeeds if Z is the

maximum of X and Y.

max(X, X, X).

max(X, Y, X) :- X > Y.

max(X, Y, Y) :- Y > X.

• Testing max:

?- max(2, 3, N).

N = 3 ;

No

?- max(2, 2, N).

N = 2 ;

No

?- max(3,2,N).

N = 3 ;

No

16

Fall 2008 Prolog: More lists, math, structures

max

?- max(2, N, 2).

N = 2 ;

ERROR: Arguments are not sufficiently instantiated

• Observe that one correct answer is provided before the error. We'll see

later how to use cut to get Prolog to stop looking for answers after the

first one (and hence prevent the error).

17 Fall 2008 Prolog: More lists, math, structures

factorial(N, Ans)

• Write a predicate factorial(N, Ans) that succeeds if Ans is N!:

factorial(0, 1).

factorial(N, Ans) :- M is N - 1, factorial(M, A), Ans is N*A.

• Testing factorial:

?- factorial(0, F).

F = 1 ;

ERROR: Out of local stack

?- factorial(5, F).

F = 120 ;

ERROR: Out of local stack

• What causes the error? Consider what happens when the second rule is

used to answer factorial(0,F).

18

Fall 2008 Prolog: More lists, math, structures

factorial(N, Ans)

• More testing:

?- factorial(69, F).

F = 1.71122e+98

Yes

?- factorial(70, F).

F = 1.19786e+100

Yes

?- factorial(-1, F).

ERROR: Out of local stack

?- factorial(N, 6).

ERROR: Arguments are not sufficiently instantiated

19 Fall 2008 Prolog: More lists, math, structures

sumlist(List, Total)

• Write a predicate sumlist(List, Total) that succeeds if Total is

the sum of the numbers in List.

sumlist([], 0).

sumlist([H | Rest], Total) :- sumlist(Rest, S), Total is S + H.

• Testing sumlist:

?- sumlist([3, 7], X).

X = 10 ;

No

?- sumlist(X, 3).

ERROR: Arguments are not sufficiently instantiated

20

Fall 2008 Prolog: More lists, math, structures

Arithmetic predicates may not be invertible

• You may not be able to supply a variable for some of the parameters.

– For example, f(X, 3). might be OK, while f(3, X). is not.

• Every time you use "is", you must be sure the expression to the right

will be fully instantiated.

– If necessary, add a precondition to the predicate so that the user knows what is

required, including which of the predicate's variables must be instantiated.

21 Fall 2008 Prolog: More lists, math, structures

Univ

• =.. is called "univ". Use it to build queries:

check(Val1, Val2, Comp) :- Query =.. [Comp, Val1, Val2], Query.

• Query =.. [Comp, Val1, Val2] succeeds when Query is
Comp(Val1, Val2).

– That is, it unifies Query with Comp(Val1, Val2).

– Comp is the functor.

• In the above example, the last predicate "executes" Query: it looks to

see if Query succeeds after univ has built it.

• Example:

?- check([a,b,c], L, length).

L = 3 ;

No

22

Fall 2008 Prolog: More lists, math, structures

univ

• Examples:

?- check(3, 5, <).

Yes

?- check(5, 3, <).

No

?- check([a,b,c], L, length).

L = 3 ;

No

23 Fall 2008 Prolog: More lists, math, structures

Programs vs. data

check(Val1, Val2, Comp) :- Query =.. [Comp, Val1, Val2], Query.

• We're building a data structure and executing it.

– This should remind you of eval in Scheme:

(eval '(Comp Val1 Val1))

24

Fall 2008 Prolog: More lists, math, structures

Programs vs. data

• Program (query):

parent(X, edward).

• Data:

parent(victoria, edward).

• There is no structural difference between a query and data.

– But we can execute a query.

• So we can build up a query, or modify it, and then execute the result.

25 Fall 2008 Prolog: More lists, math, structures

Structures in Prolog

• An example of a structure:

mother(elizabeth, charles)

• "mother" is the functor.

– "elizabeth" and "charles" are the components.

• A predicate is a structure that you think of as code:

– mother(elizabeth, charles). states a fact that Prolog can reason with, so

it's code.

• Structures of the same form can also be used as data structures.

– Whether a particular structure is a predicate or a data structure depends on

context.

– Structures can be nested.

26

Fall 2008 Prolog: More lists, math, structures

owns

john book

programming knuth

Structure as data structure

owns(john, book(programming, knuth)).

• Think of it as a tree:

27 Fall 2008 Prolog: More lists, math, structures

Unification with structures

owns(john, book(programming, knuth)).

?- owns(john, X).

X = book(programming, knuth)

?- owns(john, X), X = book(Y, Z).

X = book(programming, knuth)

Y = programming

Z = knuth

?- owns(john, book(Y,Z)).

Y = programming

Z = knuth

?- owns(X, book(Y,Z)).

X = john

Y = programming

Z = knuth

28

Fall 2008 Prolog: More lists, math, structures

"Prolog doesn't think!"

mother(elizabeth, charles).

happy(elizabeth).

?- happy(mother(X, charles)).

No

• We don't have a structure that matches the query.

– That is, we don't have a fact stating that mother(elizabeth, charles) is

happy.

• But we can ask who is happy and is also the mother of charles:

?- happy(X), mother(X, charles).

X = elizabeth ;

No

29 Fall 2008 Prolog: More lists, math, structures

Exercises

• Write a predicate allLists(List) that succeeds if every element of

List is itself a list. For example:

?- allLists([[a], [b], []]).
Yes
?- allLists([[a], b]).
No

• Write a predicate dotProduct(X,Y,D) that succeeds if X and Y are

lists of integers, and D is the dot product of X and Y (when these lists are

viewed as vectors). Determine appropriate preconditions. Examples:

?- dotProduct([1,2,3], [4,5,6], D).
D = 32 ;
No
?- dotProduct([],[], D).
D = 0 ;
No

30

