
Fall 2008 Review

The current topic: Review

! Introduction

!Object-oriented programming: Python

! Functional programming: Scheme

! Python GUI programming (Tkinter)

! Types and values

! Logic programming: Prolog

! Syntax and semantics

! Exceptions

1 Fall 2008 Review

Announcements

• Lab 3 was due today at 10:30 am.

• Aids allowed for the final exam:

– One double-sided aid sheet, produced however you like, on standard letter-sized

(8.5" x 11") paper.

• Exam period office hours:

– Monday Dec. 8th, 12:30-1:30, SF3207

– Wednesday Dec. 10th, 12:30-1:30, SF3207

– Friday Dec. 12th, 12:30-1:30, SF3207

– Monday Dec. 15th, 12:30-1:30, SF3207

– Tuesday Dec. 16th, 11:00-12:00, SF3207

• Lab 3 and Project marking:

– Marking reports will be emailed (as usual) to your ECF accounts.

– Watch the Announcements page for re-marking deadlines.

2

Fall 2008 Review

Review

• Disclaimer: This is not a comprehensive review. Topics that aren't

mentioned here may still appear on the final exam.

3 Fall 2008 Review

Object-oriented programming: Python

• Variables:

– Variables store references, not actual values.

– Built-in types include:

• Lists

• Tuples

• Dictionaries.

• Strings.

• Booleans.

• Numbers: int, float, complex, long int

• Types:

– Strongly typed: Type restrictions are enforced.

– Dynamically typed: Types are determined at runtime; there are no type

declarations for variables, parameters, return values, etc.

• Code structure:

– Indentation is meaningful.

4

Fall 2008 Review

Object-oriented programming: Python

• Containers:

– Collections of objects.

– Sequences are containers that have some kind of ordering.

– Mutable vs. immutable.

• Lists:

– Mutable sequences.

– Slicing: getting a portion of a list.

– Splicing: assigning to a slice.

• May cause the list to grow or shrink.

• Tuples:

– Immutable sequences.

• Strings:

– Immutable sequences where each element is a single character.

5 Fall 2008 Review

Object-oriented programming: Python

• Dictionaries

– Mutable.

– Not a sequence.

– Set of key-value pairs.

• Loops:

– While loops.

– For loops.

• Using the range function to make a list of numbers.

• Classes:

– Inheritance.

– Constructors.

– Instance methods and variables.

– Class variables.

– Static and class methods.

– Name mangling.

– Operator overloading.

6

Fall 2008 Review

Object-oriented programming: Python

• Exceptions:

– Raising.

– Catching.

– Defining.

• Parameters and arguments:

– Keyword vs non-keyword

– Mandatory vs optional parameters

• Regular expressions.

• List comprehensions.

e.g. T = [2*x for x in range(4)]

• Iteration:

– How this relates to __getitem__() and IndexError.

7 Fall 2008 Review

Object-oriented programming: Python

• Working with files.

• Modules:

– Importing modules.

– Getting short-form naming.

8

Fall 2008 Review

Object-oriented programming: Python

• An example:

class A:

 y = 1

 def __init__(self):

 self.y += 2

b = A()

c = A()

b.y # Value is:

c.y # Value is:

A.y # Value is:

9 Fall 2008 Review

Functional programming: Scheme

• Functions as first-class values.

• List operations:

– car

– cdr

– cons

– append

• Other operations:

– Numeric (e.g. +, –, *, /)

– Comparison (e.g. >, <, <=, >=, =)

– Type-checking (e.g. number?, symbol?, list?)

– Boolean (e.g and, or, not)

• Defining functions.

• Conditional execution: if, cond

10

Fall 2008 Review

Functional programming: Scheme

• Efficiency:

– let, let*

– helper functions

– using an accumulator

– tail recursion

• Lambda expressions.

• Higher-order functions:

– functions as parameters

– functions as return values

• Built-in higher-order functions:

– map

– eval

– apply

– reduce (not built-in in mzscheme, but built-in in some other Schemes)

11 Fall 2008 Review

Functional programming: Scheme

• Trees:

– representing trees

– working with BSTs

• Mutual recursion.

12

Fall 2008 Review

Python GUI programming: Tkinter

• The event loop.

• Creating a root window.

– And creating additional windows.

• Widgets:

– creating

– arranging

• Event-handling:

– creating callback functions

– setting the callback function for a particular event

– Canvas event objects

13 Fall 2008 Review

Types and values

• Attributes of a variable:

– static attributes vs dynamic attributes

– name

– memory address

– type

– scope

– lifetime

• Referencing environment:

– set of names that can be used at a particular point

• Referencing environment for functions passed as parameters:

– shallow binding: names that can be accessed depend on where function is called

– deep binding: names that can be accessed depend on where function is defined

14

Fall 2008 Review

Logic programming: Prolog

• Prolog statements:

– Facts.

– Rules.

– Queries.

• Answering queries:

– Unification.

– Resolution.

– Backtracking.

• Working with lists.

• Math.

• Structures:

– No structural difference between queries and data.

15 Fall 2008 Review

Logic programming: Prolog

• Trees:

– representing trees

– working with BSTs

• Cut:

– what cut does

– avoiding wrong answers

– avoiding duplicate answers

– avoiding unnecessary work

– green vs red

• Negation:

– what negation in Prolog really means

– using negation safely

16

Fall 2008 Review

Syntax and semantics

• Languages:

– syntax vs semantics

• Using BNF and EBNF to specify syntax.

• Parsing:

– following a derivation sequence to produce a parse tree

• Generating low-level code from a parse tree.

• Translation:

– lexical analysis

– parsing

– code generation

17 Fall 2008 Review

Exceptions

• What we gain by using exceptions

• Exceptions in Java:

– Structured.

– Strict.

– Checked vs unchecked exceptions.

• Program design with exceptions.

18

