
Department of Computer Science ____________________________ Name: 	 1 /4
CSC 326H1F – Fall 2008 2 /15
Test 1 ___________________ Student number: 	 3 /25
Aids allowed: one 2-sided sheet 4 /4
Time: 50 minutes

Total marks: 48
Total /48

1. [4 marks]

Recall that name mangling in Python involves using method names and instance variable
names that start with two underscores (e.g. __m()). One thing this accomplishes is preventing
naming conflicts. What is the more general purpose of name mangling? In what way is name
mangling of limited usefulness (compared to what is available in other languages)?

Name mangling is used to indicate that a particular class member (variable/method) should be
treated as if it's private. [2 marks]

Name mangling is of limited usefulness because it does not actually enforce privacy (unlike the
private keyword in C++/Java). [2 marks]

2.	 [15 marks]

For each of the following code fragments, give (all of) the output that is produced. If the code
fragment produces an error, give all the output until the point at which the error occurs, and
then clearly explain the error. When explaining an error, you are not required to provide the
actual error message.

(a) [2 marks]

 s = "computer science"
 print s[0:4]
 print s[-3:99]

 comp [1 mark]
 nce [1 mark]

(b) [2 marks]

 s = "computer science"
 s[0:8] = "engineering"
 print s

The line s[0:8] = "engineering" produces an error. [1 mark]
This line attempts to modify a string, but in Python, string objects are immutable (cannot be
modified). [1 mark]

(c) [2 marks]

 L = [5, 10, 15, 20]
 L[2:3] = ['lions', 'tigers', 'bears']
 print L[2:3]

 ['lions'] [2 marks]

(d) [3 marks]

 L = [2, 4, [8, 16]]
 N = L[2]
 L[2] = [3, 6]
 P = L[2][0]
 P = 5
 print N
 print L.pop()

 [8, 16] [1 mark]
 [3, 6] [2 marks]

Page 2 of 6

(e) [3 marks]

 def magic(x, y):
 z = 10
 x = [0]
 y[1] = z+2

 z = 20
 L = [7, 14, 21]
 M = [9, 18, 27]
 magic(L, M)
 print z
 print L
 print M

 20 [1 mark]
 [7, 14, 21] [1 mark]
 [9, 12, 27] [1 mark]

(f) [3 marks]

 def greeting(name='student'):
 name = 'Hi ' + name + '!'
 print name

 greeting()
 greeting('Thing 1')
 greeting()

 Hi student! [1 mark]
 Hi Thing 1! [1 mark]
 Hi student! [1 mark]

Page 3 of 6

3.	 [25 marks]

This question involves creating a class representing a bank. A bank has clients, each of whom
has a particular amount in their account at the bank.

(a) [5 marks]
Write a class called Bank. The constructor should take a list of the bank's clients and a list
storing the amount of money in each client's account as parameters. These two lists should
be stored as instance variables named clients and amounts. Do not create any other
methods (yet). The following code fragment illustrates how your class will be instantiated:
b = Bank(['Elmer', 'Alice', 'Sue'], [2000, 4000, 3500])

 class Bank(object): [1 mark]

 def __init__(self, C, A): [2 marks]

 self.clients = C [1 mark]

 self.amounts = A [1 mark]

(b) [5 marks]
Banks regularly deduct fees from each account. Write an instance method called
deductFee for your Bank class. This method should take an amount as a parameter, and
then reduce the amount of money in each account by this amount. For example, if b is an
instance of Bank, then the call b.deductFee(20) should subtract 20 from each account
in b. You may assume that each account has enough money to pay the fee.

 def deductFee(self, M): [1 mark]

 for i in range(len(self.amounts)): [3 marks]

 self.amounts[i] -= M [1 mark]

Page 4 of 6

(c) [3 marks]
Define an exception called NoAccounts. Your exception should not take any arguments.

 class NoAccounts(Exception): [2 marks]

 pass [1 mark]

(d) [8 marks]
Banks like to know who their wealthiest client is. Write an instance method called richest
for your Bank class. This method should return the name of the client whose account has
the most money. To simplify things, you may assume no two clients have the same amount
of money in their accounts; this means that your method always returns a single name. If
the bank has no clients, raise a NoAccounts exception. The following code fragment
illustrates how your method will be used:
b = Bank(['Elmer', 'Alice', 'Sue'], [2000, 4000, 3500])
b.richest() # 'Alice'

 c = Bank([], [])
 c.richest() # NoAccounts exception is raised

 def richest(self):

 if len(self.amounts) == 0:

 raise NoAccounts

 name = self.clients[0]

 money = self.amounts[0]

 for i in range(1, len(self.amounts)):

 if self.amounts[i] > money:

 money = self.amounts[i]

 name = self.clients[i]

 return name

Page 5 of 6

(e) [4 marks]
Write an appropriate instance method to overload the indexing operator for your Bank
class, so that if b is an instance of Bank then b[i] returns a tuple consisting of the name
of the i-th customer and the amount of money in that customer's account. For example:

b = Bank(['Elmer', 'Alice', 'Sue'], [2000, 4000, 3500])
b[1] # ('Alice', 4000)
b[0] # ('Elmer', 2000)

Your method may assume that it is always given a valid index; you are not required to raise
any exceptions.

 def __getitem__(self, i): [2 marks]

 return (self.clients[i], self.amounts[i]) [2 marks]

4.	 [4 marks]

Below is a table of regular expressions RE (in the first column) and strings S (in the second
column). In the third column, write 'Y' if the regular expression in column 1 matches the
string in column 2, or 'N' if not. If you wrote Y in the third column, then in the fourth column
write the part of S that is matched by RE.

The first line of the table is completed for you. As that example shows, RE is not required to
match the beginning of S. We are behaving like Python's re.search() function and looking
for the leftmost match.

Helpful reminders: '^' matches the beginning of S. '$' matches the end of S.
'.' matches any character. '*' means to match 0 or more of the preceding pattern.
'+' means to match 1 or more or the preceding pattern.
'[]' matches any character listed between the brackets.

RE
 S Succeeds?
(Y/N)

match

abc dabc Y abc

b.*b bcbcabcbca Y bcbcabcb [1 mark]

a[dc]+ accadcdcba Y acc [1 mark]

^.*lo$ Hello! N [1 mark]

0[0123]*1$ 100010101 Y 00010101 [1 mark]

Page 6 of 6

