
Department of Computer Science ____________________________ Name: 	 1 /14
CSC 326H1F – Fall 2008 2 /10
Test 2 ___________________ Student number: 	 3 /10
Aids allowed: one 2-sided sheet 4 /10
Time: 50 minutes

Total marks: 44
Total /44

1.	 [14 marks]

In each part of this question, function definitions are provided, followed by one or more
expressions. For each expression, give the value that is returned. If no value is returned
because an error occurs, clearly explain the error. When explaining an error, you are not
required to provide the actual error message.

(a) [3 marks]

 (define (f x) (if (number? x) x (f (car x))))

 i) (f '(9 (8 2) 7))

 9 [1 mark]

 ii) (f '(((5 6)) 10 11 (12) 13))

 5 [2 marks]

(b) [3 marks]

 (define (g x y)
 (cond ((null? x) y)
 ((null? y) x)
 (else (cons (car x) (cons (car y) (g (cdr x) (cdr y)))))
))

 i) (g '(1 2 3) '(a b c))

 (1 a 2 b 3 c) [1 mark]

 ii) (g '(6 7 8 9 0) '(x y z))

 (6 x 7 y 8 z 9 0) [2 marks]

(c) [3 marks]

 (define (h e y)

 (map (lambda(x) (cons e x)) y))

 i) (h 'a '())

 () [1 mark]

 ii) (h 2 '((a) (c) (e)))

 ((2 a) (2 c) (2 e)) [2 marks]

(d) [3 marks]

 (define (j x y)
 (eval (cons x y)))

 i) (j + '(2 3 4))

 9 [1 mark]

 ii) (j append '((b) (c)))

 This causes an error. [1 mark]
 eval is called on (append (b) (c)), causing the evaluation of b. [1 mark]

(e) [2 marks]

 (define (k x y)
 (apply cons (list x y)))

 i) (k 'car '(1 2 3))

 (car 1 2 3) [2 marks]

Page 2 of 5

2.	 [10 marks]

(a) [4 marks]

Write a function everyOther that takes a list L, and returns a new list containing
every other element of L starting with the first — that is, returns a list containing the
1st, 3rd, 5th, … elements of L. Example:
 > (everyOther '(d e f g h i))
 (d f h)

 (define (everyOther L)

 (cond ((null? L) L)

 ((null? (cdr L)) L)

 (else (cons (car L)

 (everyOther (cddr L))))

))

(b) [6 marks]

Write a function addTwo that takes a nested list of numbers, and returns a new list
that is the same as the given list except that each number, no matter how deeply it's
nested, has been increased by 2. Examples:
 > (addTwo '(4 7 9))
 (6 9 11)
 > (addTwo '((5) (6 (7)) 8 (((10))) 1))
 ((7) (8 (9)) 10 (((12))) 3)

 (define (addTwo L)

 (cond ((null? L) L)

 ((list? (car L)) (cons (addTwo (car L))

 (addTwo (cdr L))))

 (else (cons (+ 2 (car L))

 (addTwo (cdr L))))

))

Page 3 of 5

3. [10 marks]

(a) [6 marks]

Write a function dotProduct that takes two lists of numbers as parameters, and
returns the number that is the sum of the products of the corresponding pairs of
numbers in the two lists — that is, the mathematical dot product of two vectors. For
example, the dot product of (3 4 5) and (6 2 –1) is 3*6 + 4*2 + 5*(–1) = 21. You may
assume the lists are of equal length. You must not use recursion and you must
not define any helper functions. Example:
 > (dotProduct '(2 4 4) '(6 2 -1))
 16

(define (dotProduct L M)

 (apply + (map * L M)))

(b) [4 marks]

Write a function composeN that takes a unary function F and a non-negative integer
N, and returns a function formed by composing N copies of F. When N is 0, return
the identity function. Examples:
 > ((composeN cdr 0) '(1 2 3 4))
 (1 2 3 4)
 > ((composeN cdr 1) '(1 2 3 4))
 (2 3 4)
 > ((composeN cdr 2) '(1 2 3 4))
 (3 4)

(define (composeN F N)

 (cond ((= N 0) (lambda (X) X))

 (else (let ((G (composeN F (- N 1))))

 (lambda (X) (F (G X)))))

))

Page 4 of 5

4.	 [10 marks]

Suppose we represent a BST (binary search tree) as described in class, so that each
non-null tree node is a list of three items: the data value stored in the node, the left child
node, and the right child node. Assume that all data values are numbers. You may not
use the BST helper functions defined in class (unless you first define them yourself).

(a) [4 marks]

Write a function largest that takes a BST and returns the largest data value stored
in the tree. You may assume that the given BST is not empty. (Hint: Recall that in a
BST, the largest data value is found in the "right-most" node.) Example:
 > (largest '(4 () (5 () ())))
 5

 (define (largest L)

 (cond ((null? (caddr L)) (car L))

 (else (largest (caddr L)))

))

(b) [6 marks]

An internal node is a node with at least one non-null child. Write a function
numInternals that takes a BST and returns the number of internal nodes in the
tree. You may not assume that the tree is non-empty. Example:
 > (numInternals '(4 () (5 () ())))
 1

 (define (numInternals L)

 (cond ((null? L) 0)

 ((and (null? (cadr L)) (null? (caddr L))) 0)

 (else (+ 1

 (numInternals (cadr L))

 (numInternals (caddr L))))

))

Page 5 of 5

