Supervised Distributional Semantic Relatedness

Alistair Kennedy¹ Stan Szpakowicz^{1,2}

School of Electrical Engineering and Computer Science University of Ottawa, Ottawa, Ontario, Canada

Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland

TSD, 2012

Introduction

- Distributional measures of semantic relatedness (MSRs) determine word similarity based on how often word pairs appear in the same contexts.
- Often some measure of association is used to measure dependency between a word and a context.
- This is essentially an unsupervised process
 - How can this be made into a supervised process?
 - Can we use known sets of synonyms to enhance distributional MSRs?

うして ふゆう ふほう ふほう ふしつ

• We build on earlier work from: [Kennedy and Szpakowicz(2011)].

Semantic Relatedness

• Semantic Relatedness

- "cat" & "feline" very similar
- "cat" & "animal" definitely related
- "cat" & "hairdryer" very little in common
- "cat" & "math" nothing in common really
- What is semantic relatedness used for?
 - Lexicon/Thesaurus construction, summarization, word sense disambiguation, etc.

- Common methods for measuring semantic relatedness
 - Resource based measures
 - Corpus based measures
 - Hybrid measures

Unsupervised MSRs

- Build a word-context matrix
 - Count how often each word appears in each context
- Most measures have two main parts
 - Re-weight the matrix
 - Association between words and contexts
 - PMI, LSA, etc.
 - Distance between words
 - Cosine similarity
- Motivation
 - Want to customize a measure for adding words to *Rogets* Thesaurus

ション ふゆ マ キャット しょう くしゃ

Supervised MSRs

- Hypothesis: some contexts tend to be better indicators of synonymy than others
- Learn weights using known pairs of synonyms
 - Measure association between the words in a context and known synonyms
 - Use existing resources like *Rogets Thesaurus*, or *WordNet* as training data
- How to evaluate these measures?
 - Since enhancing *Roget's Thesaurus* is the goal, we use *Roget's* for evaluation.
 - Identify words that are in the same Head.
 - 1000 broad categories, e.g. existence, nonexistence, beginning, end, etc.

ション ふゆ マ キャット しょう くしゃ

Supervised MSRs (2)

• Training Data examples

- omnipotence, omniscience, omnipresence
- brotherhood, sisterhood
- dial, sundial, gnomon, pendulum, hourglass
- filling, stuffing, wadding, padding
- Combined System
 - Combines best supervise and unsupervised MSRs.
 - Parameters are determined during a tuning phase.
 - Re-weights the word-context matrix twice: first using supervised re-weighting, then using unsupervised re-weighting

ション ふゆ マ キャット マックシン

Our Experiments

- Build word-context matrix
 - Use *Minipar* dependency parser [Lin(1998)]
- Tuning Phase:
 - Evaluate six measures of association for *word-context* matrix re-weighting.
 - PMI, Z-score, T-score, Dice, Log Likelihood & χ^2
 - Evaluate two kinds of supervision
 - Training at the context level and relation level
- Testing Phase:
 - Evaluate each MSR on nouns, verbs and adjectives.
 - Explore different sources of training data:
 - WordNet and the 1911 and 1987 editions of Roget's Thesaurus.
 - Combine best supervised and unsupervised systems into one combined system

ション ふゆ マ キャット マックシン

Building a Word-context Matrix

• Parse Wikipedia with Minipar

- fin C:i:V settle
- settle V:s:N ignorance
- settle V:mod-before:A never
- settle V:subj:N ignorance
- settle V:obj:N question
- question N:det:Det a
- "Ignorance never settles a question" Disraeli
- produces over 900 million dependency triples $\langle w, r, w' \rangle$
 - $\langle time, conj, motion \rangle$
 - time $\langle conj, motion \rangle$ & motion $\langle time, conj \rangle$
- Word w has context $\langle r,w'\rangle$ and word w' has context $\langle w,r\rangle$

うして ふゆう ふほう ふほう ふしつ

• Construct matrix from counts of words and contexts

Re-weighting the Word-context Matrix

Observed and Expected Values

• Calculate association with one of the following measures:

$$Dice = \frac{2*O_{0,0}}{\sum_{j} O_{0,j} + \sum_{i} O_{i,0}} \qquad PMI = \log \frac{O_{0,0}}{E_{0,0}}$$

$$Z\text{-score} = \frac{O_{0,0} - E_{0,0}}{\sqrt{E_{0,0}}} \qquad T\text{-score} = \frac{O_{0,0} - E_{0,0}}{\sqrt{O_{0,0}}}$$

$$\chi^{2} = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^{2}}{E_{i,j}} \qquad LL = 2\sum_{i,j} O_{i,j} \log \frac{O_{i,j}}{E_{i,j}}$$

• This notation is borrowed from [Evert(2004)].

Measuring Association Unsupervised

- $O_{0,0}$ [True Positive] $[x \in X \land y \in Y]$: w_i is found in context c_j ;
- $O_{0,1}$ [False Negative] $[x \in X \land y \notin Y]$: w_i is found in a context other than c_j ;
- O_{1,0} [False Positive] [x ∉ X ∧ y ∈ Y]: a word other than w_i is found in context c_j;
- $O_{1,1}$ [True Negative] $[x \notin X \land y \notin Y]$: a word other than w_i is found in a context other than c_j .

(日) (日) (日) (日) (日) (日) (日) (日)

Measuring Association – Unsupervised (2)

- For each context c and word w
- E.g. $c = \langle play, obj \rangle, w = hockey$
 - TP number of times hockey appears in $\langle play, obj \rangle$
 - FN number of times hockey appears in other contexts e.g. $\langle watch, obj \rangle$
 - FP number of times other words appears in $\langle play, obj \rangle$ e.g. football
 - TN number of times other words appear in other contexts e.g. $\langle watch, obj \rangle$ & football

Measuring Association – Supervised

- O_{0,0} [True Positive] [x ∈ X ∧ y ∈ Y]:
 ⟨w_i, w_j⟩ are synonyms and both appear in c_k;
- $O_{0,1}$ [False Negative] $[x \in X \land y \notin Y]$: $\langle w_i, w_j \rangle$ are synonyms and only one appears in c_k ;
- $O_{1,0}$ [False Positive] $[x \notin X \land y \in Y]$: $\langle w_i, w_j \rangle$ are not synonyms and both appear in c_k ;
- $O_{1,1}$ [True Negative] $[x \notin X \land y \notin Y]$: $\langle w_i, w_j \rangle$ are not synonyms and only one appears in c_k .

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Measuring Association – Supervised (2)

- For each context c
- E.g. $c = \langle play, obj \rangle$
 - Found in c: soccer, football, hockey
 - Not found with c: ice_hockey, airplane
- Count true positives, false positives, etc.
 - TP: soccer & football
 - FN: hockey & ice_hockey
 - FP: soccer & hockey
 - TN: hockey & airplane

Measuring Association – Supervised (3)

- Gives a unique weight for every context
- Can be altered to give a unique weight to every syntactic relation
 - Sum scores for each context sharing a common syntactic relation
 - Re-weighting at the *context-level* or *relation-level*
- Found best results when combining supervised and unsupervised methods
 - Re-weight word-context matrix with supervised re-weighting, then again using unsupervised re-weighting

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

• Found to be best in [Kennedy and Szpakowicz(2011)].

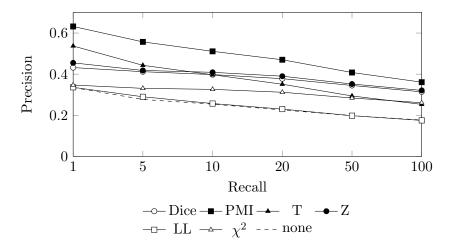
Evaluation

- Identify closest words in *Roget's Thesaurus* 1987 edition.
 - How many nearest neighbours are found in the same Head at recall points of 1, 5, 10, 20, 50 and 100.
 - e.g. neighbours of "psychology" and their similarity scores:
 - sociology (0.720), anthropology (0.707), linguistics (0.582), economics (0.572)

ション ふゆ マ キャット マックシン

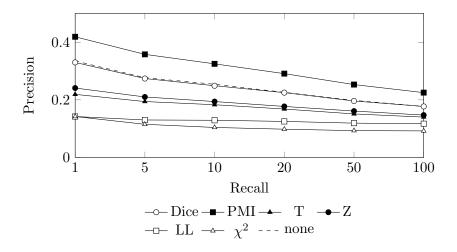
- Tuning Phase
 - Determine best parameters: measure of association and training type
 - Use these best parameters in build a combined model
- Tuning and evaluation sets consist of 1000 nouns and 600 verbs & adjectives
 - All words from these data sets are excluded from the training data.

$\frac{\text{Tuning} - \text{Unsupervised Re-weighting}}{(\text{Nouns})}$



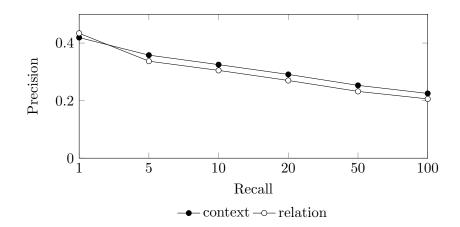
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tuning – Supervised Re-weighting (Roget's 1911, Nouns)



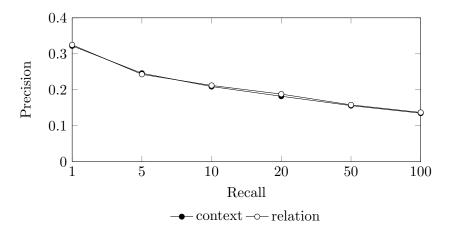
▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Tuning –Supervised Training type for Nouns and Verbs (Roget's 1911)



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Tuning – Supervised Train for Adjective (Roget's 1911)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Final Evaluation

- Results from the tuning phase:
 - PMI proved to be the best measure of association
 - context-level re-weighting worked best for nouns and verbs

- relation-level re-weighting worked best for adjectives
- Create combined system with these parameters
- Compare against two baselines
 - Low baseline unweighted matrix
 - High baseline unsupervised PMI-weighted matrix

Results for Nouns

	Top	Top	Top	Top	Top	Top
Weight	1	5	10	20	50	100
Low	0.376	0.296	0.262	0.239	0.207	0.186
High	0.645	0.579	0.537	0.490	0.423	0.374
Combined-1911	0.659	0.588	0.548	0.501	0.431	0.382
Combined-1987	0.651	0.584	0.549	0.501	0.430	0.381
Combined-WN	0.654	0.586	0.541	0.495	0.430	0.380

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Results for Verbs

	Top	Top	Top	Top	Top	Top
Weight	1	5	10	20	50	100
Low	0.398	0.331	0.318	0.299	0.276	0.256
High	0.582	0.526	0.487	0.444	0.396	0.357
Combined-1911	0.605	0.533	0.500	0.455	0.401	0.362
Combined-1987	0.588	0.537	0.499	0.453	0.399	0.360
Combined-WN	0.587	0.531	0.495	0.451	0.395	0.356

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Results for Adjectives

	Top	Top	Top	Top	Top	Top
Weight	1	5	10	20	50	100
Low	0.317	0.259	0.224	0.205	0.163	0.139
High	0.600	0.480	0.431	0.368	0.295	0.247
Combined-1911	0.602	0.484	0.431	0.368	0.296	0.247
Combined-1987	0.603	0.483	0.431	0.367	0.296	0.247
Combined-WN	0.595	0.483	0.430	0.368	0.296	0.247

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

In Summary

- Best results came by mixing supervised and unsupervised re-weighting
- PMI would appear to be the best measure of association for building MSRs
- Found significant Improvement on Nouns and Verbs
- For Nouns and verbs out of 12 recall points
 - 1911 Roget's significantly improves 9
 - 1987 Roget's significantly improves 8
 - WordNet significantly improves 5
- No improvement for Adjectives
- Not entirely surpassing that *Roget's* performs better than *WordNet* as it is the source of training and testing data
 - That said, not clear either that Semicolon Groups should help train an MSR to find words in the same Head.

Bibliography

Stefan Evert.

The statistics of word cooccurrences: word pairs and collocations.

PhD thesis, Institut für maschinelle Sprachverarbeitung, Universität Stuttgart, 2004.

 Alistair Kennedy and Stan Szpakowicz.
 A supervised method of feature weighting for measuring semantic relatedness.

In *Proceedings of Canadian AI 2011*, pages 222–233, Ottawa, Ontario, Canada, 2011. Springer.

Dekang Lin.

Dependency-based evaluation of MINIPAR. In Proceedings of the Workshop on the Evaluation of Parsing Systems, First International Conference on Language Resources and Evaluation, 1998.