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Introduction

• Distributional measures of semantic relatedness (MSRs)
determine word similarity based on how often word pairs
appear in the same contexts.

• Often some measure of association is used to measure
dependency between a word and a context.

• This is essentially an unsupervised process
• How can this be made into a supervised process?
• Can we use known sets of synonyms to enhance

distributional MSRs?

• We build on earlier work from:
[Kennedy and Szpakowicz(2011)].



Semantic Relatedness

• Semantic Relatedness
• “cat” & “feline” – very similar
• “cat” & “animal” – definitely related
• “cat” & “hairdryer” – very little in common
• “cat” & “math” – nothing in common really

• What is semantic relatedness used for?
• Lexicon/Thesaurus construction, summarization, word

sense disambiguation, etc.

• Common methods for measuring semantic relatedness
• Resource based measures
• Corpus based measures
• Hybrid measures



Unsupervised MSRs

• Build a word-context matrix
• Count how often each word appears in each context

• Most measures have two main parts
• Re-weight the matrix

• Association between words and contexts
• PMI, LSA, etc.

• Distance between words

• Cosine similarity

• Motivation
• Want to customize a measure for adding words to Rogets

Thesaurus



Supervised MSRs

• Hypothesis: some contexts tend to be better indicators of
synonymy than others

• Learn weights using known pairs of synonyms
• Measure association between the words in a context and

known synonyms
• Use existing resources like Rogets Thesaurus, or WordNet

as training data

• How to evaluate these measures?
• Since enhancing Roget’s Thesaurus is the goal, we use

Roget’s for evaluation.
• Identify words that are in the same Head.

• 1000 broad categories, e.g. existence, nonexistence,
beginning, end, etc.



Supervised MSRs (2)

• Training Data examples
• omnipotence, omniscience, omnipresence
• brotherhood, sisterhood
• dial, sundial, gnomon, pendulum, hourglass
• filling, stuffing, wadding, padding

• Combined System
• Combines best supervise and unsupervised MSRs.
• Parameters are determined during a tuning phase.
• Re-weights the word-context matrix twice: first using

supervised re-weighting, then using unsupervised
re-weighting



Our Experiments

• Build word-context matrix
• Use Minipar dependency parser [Lin(1998)]

• Tuning Phase:
• Evaluate six measures of association for

word-context matrix re-weighting.

• PMI, Z-score, T-score, Dice, Log Likelihood & χ2

• Evaluate two kinds of supervision

• Training at the context level and relation level

• Testing Phase:
• Evaluate each MSR on nouns, verbs and adjectives.
• Explore different sources of training data:

• WordNet and the 1911 and 1987 editions of
Roget’s Thesaurus.

• Combine best supervised and unsupervised systems into one
combined system



Building a Word-context Matrix

• Parse Wikipedia with Minipar
• fin C:i:V settle
• settle V:s:N ignorance
• settle V:mod-before:A never
• settle V:subj:N ignorance
• settle V:obj:N question
• question N:det:Det a

• “Ignorance never settles a question” Disraeli

• produces over 900 million dependency triples 〈w, r, w′〉
• 〈time, conj,motion〉
• time – 〈conj,motion〉 & motion – 〈time, conj〉

• Word w has context 〈r, w′〉 and word w′ has context 〈w, r〉
• Construct matrix from counts of words and contexts



Re-weighting the Word-context Matrix
Observed and Expected Values

y ∈ Y y /∈ Y
x ∈ X
x /∈ X

[
O0,0 O0,1

O1,0 O1,1

] ⇒ [
E0,0 E0,1

E1,0 E1,1

]
Ei,j =

∑
y Oi,y

∑
xOx,j∑

x,y Ox,y

• Calculate association with one of the following measures:

Dice =
2∗O0,0∑

j O0,j+
∑

i Oi,0
PMI = log

O0,0

E0,0

Z-score =
O0,0−E0,0√

E0,0
T -score =

O0,0−E0,0√
O0,0

χ2 =
∑

i,j

(Oi,j−Ei,j)
2

Ei,j
LL = 2

∑
i,j Oi,j log

Oi,j

Ei,j

• This notation is borrowed from [Evert(2004)].



Measuring Association Unsupervised

• O0,0 [True Positive] [x ∈ X ∧ y ∈ Y ]:
wi is found in context cj ;

• O0,1 [False Negative] [x ∈ X ∧ y /∈ Y ]:
wi is found in a context other than cj ;

• O1,0 [False Positive] [x /∈ X ∧ y ∈ Y ]:
a word other than wi is found in context cj ;

• O1,1 [True Negative] [x /∈ X ∧ y /∈ Y ]:
a word other than wi is found in a context other than cj .



Measuring Association – Unsupervised (2)

• For each context c and word w

• E.g. c = 〈play, obj〉, w = hockey
• TP number of times hockey appears in 〈play, obj〉
• FN number of times hockey appears in other contexts e.g.
〈watch, obj〉

• FP number of times other words appears in 〈play, obj〉 e.g.
football

• TN number of times other words appear in other contexts
e.g. 〈watch, obj〉 & football



Measuring Association – Supervised

• O0,0 [True Positive] [x ∈ X ∧ y ∈ Y ]:
〈wi, wj〉 are synonyms and both appear in ck;

• O0,1 [False Negative] [x ∈ X ∧ y /∈ Y ]:
〈wi, wj〉 are synonyms and only one appears in ck;

• O1,0 [False Positive] [x /∈ X ∧ y ∈ Y ]:
〈wi, wj〉 are not synonyms and both appear in ck;

• O1,1 [True Negative] [x /∈ X ∧ y /∈ Y ]:
〈wi, wj〉 are not synonyms and only one appears in ck.



Measuring Association – Supervised (2)

• For each context c

• E.g. c = 〈play, obj〉
• Found in c: soccer, football, hockey
• Not found with c: ice hockey, airplane

• Count true positives, false positives, etc.
• TP: soccer & football
• FN: hockey & ice hockey
• FP: soccer & hockey
• TN: hockey & airplane



Measuring Association – Supervised (3)

• Gives a unique weight for every context

• Can be altered to give a unique weight to every syntactic
relation
• Sum scores for each context sharing a common syntactic

relation
• Re-weighting at the context-level or relation-level

• Found best results when combining supervised and
unsupervised methods
• Re-weight word-context matrix with supervised

re-weighting, then again using unsupervised re-weighting
• Found to be best in [Kennedy and Szpakowicz(2011)].



Evaluation

• Identify closest words in Roget’s Thesaurus 1987 edition.
• How many nearest neighbours are found in the same Head

at recall points of 1, 5, 10, 20, 50 and 100.
• e.g. neighbours of “psychology” and their similarity scores:

• sociology (0.720), anthropology (0.707), linguistics (0.582),
economics (0.572)

• Tuning Phase
• Determine best parameters: measure of association and

training type
• Use these best parameters in build a combined model

• Tuning and evaluation sets consist of 1000 nouns and 600
verbs & adjectives
• All words from these data sets are excluded from the

training data.



Tuning – Unsupervised Re-weighting
(Nouns)
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Tuning – Supervised Re-weighting
(Roget’s 1911, Nouns)
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Tuning –Supervised Training type for Nouns and Verbs
(Roget’s 1911)
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Tuning – Supervised Train for Adjective
(Roget’s 1911)
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Final Evaluation

• Results from the tuning phase:
• PMI proved to be the best measure of association
• context-level re-weighting worked best for nouns and verbs
• relation-level re-weighting worked best for adjectives

• Create combined system with these parameters

• Compare against two baselines
• Low baseline – unweighted matrix
• High baseline – unsupervised PMI-weighted matrix



Results for Nouns

Top Top Top Top Top Top
Weight 1 5 10 20 50 100
Low 0.376 0.296 0.262 0.239 0.207 0.186
High 0.645 0.579 0.537 0.490 0.423 0.374
Combined-1911 0.659 0.588 0.548 0.501 0.431 0.382
Combined-1987 0.651 0.584 0.549 0.501 0.430 0.381
Combined-WN 0.654 0.586 0.541 0.495 0.430 0.380



Results for Verbs

Top Top Top Top Top Top
Weight 1 5 10 20 50 100
Low 0.398 0.331 0.318 0.299 0.276 0.256
High 0.582 0.526 0.487 0.444 0.396 0.357
Combined-1911 0.605 0.533 0.500 0.455 0.401 0.362
Combined-1987 0.588 0.537 0.499 0.453 0.399 0.360
Combined-WN 0.587 0.531 0.495 0.451 0.395 0.356



Results for Adjectives

Top Top Top Top Top Top
Weight 1 5 10 20 50 100
Low 0.317 0.259 0.224 0.205 0.163 0.139
High 0.600 0.480 0.431 0.368 0.295 0.247
Combined-1911 0.602 0.484 0.431 0.368 0.296 0.247
Combined-1987 0.603 0.483 0.431 0.367 0.296 0.247
Combined-WN 0.595 0.483 0.430 0.368 0.296 0.247



In Summary

• Best results came by mixing supervised and unsupervised
re-weighting

• PMI would appear to be the best measure of association
for building MSRs

• Found significant Improvement on Nouns and Verbs

• For Nouns and verbs out of 12 recall points
• 1911 Roget’s significantly improves 9
• 1987 Roget’s significantly improves 8
• WordNet significantly improves 5

• No improvement for Adjectives

• Not entirely surpassing that Roget’s performs better than
WordNet as it is the source of training and testing data
• That said, not clear either that Semicolon Groups should

help train an MSR to find words in the same Head.
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