
CSC 2426: Fundamentals of Cryptography Fall 2023

Lecture 4: Goldreich-Levin & Computational Indistinguishability
Instructor: Akshayaram Srinivasan Scribe: Yug Shah

Date: October 2 2023

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Theorem 4.1 (Goldreich-Levin Theorem) If injective one-way functions (OWFs) exist, then ∃{gn, hn}n∈N
such that, hn is a hard-core predicate for gn

4.1 Proof of Goldreich-Levin Theorem (continued)

In sections 3.1.1 and 3.1.2 we discussed the proofs for the trivial case where A predicts h with probability 1
and the non-trivial case where this probability is weakened to be at-least 3

4 + ϵ(n) where ϵ(n) = 1
poly(n) .

4.1.1 General Case

Now, we move onto the general case, wherein we assume that A, given random (x, r) computes h(x, r) with
probability 1

2 + ϵ(n). (where ϵ(n) = 1
poly(n)), i.e.

Pr
(x,r)←{0,1}2k(n)

[
A(12k(n), fn(x)||r) = hn(x, r)

]
≥ 1

2
+

1

p(n)

for infinitely many n.

Similar to the non-trivial case, we define the set Goodn as:

Goodn :=
{
x ∈ {0, 1}k(n)| Pr

r←{0,1}k(n)

[
A(12k(n), fn(x)||r) = hn(x, r)

]
≥ 1

2
+

1

2p(n)

}

Claim 4.2 Pr
x←{0,1}k(n)

[x ∈ Goodn] ≥ 1
2p(n)

Proof:

1

2
+

1

p(n)
≤ Pr

x,r
[A predicts hn]

= Pr
x
[x ∈ Goodn] .Pr

r
[A predicts hn|x ∈ Goodn] + Pr

x
[x /∈ Goodn] .Pr

r
[A predicts hn|x /∈ Goodn]

≤ Pr
x
[x ∈ Goodn] + Pr

r
[A predicts hn|x /∈ Goodn]

≤ Pr
x
[x ∈ Goodn] +

1

2
+

1

2p(n)

4-1

4-2 Lecture 4: Goldreich-Levin & Computational Indistinguishability

This shows that Pr
x
[x ∈ Goodn] ≥ 1

2p(n)

Given a x ∈ Goodn, and that we have r1, r2, . . . , rm, the probability that A correctly guesses each of ri ⊕ ei
is ≥ 1

2 + 1
2p(n) .

Let’s come back to the analysis of the previous case from last lecture. Here, we are going to prove that even
if r1, . . . , rm are not completely independent, but only pairwise independent, then the same procedure of
taking the majority of the values still work.

Similar to the proof for the non-trivial case, we can again model each attempt with a random variable, Zj

with j = 1, . . . ,m, as, Zj =

{
1 , ⇐⇒ xi is correctly computed in the jth run

0 , otherwise
. This gives us Pr [Zj = 1] ≥

1
2 + 1

p(n) , and let Z =
∑m

i=1 Zi.

E [Z] =
∑

E [Zi] (since linearity holds for any random variable)

E [Z] ≥ m

(
1

2
+

1

p(n)

)

We fix E [Z] = m
(

1
2 + 1

p(n)

)
(as a larger expectation will make our case easier) and use Chebyshev’s

Inequality to find:

Pr
[
Z ≤ m

2

]
≤ Pr

[
|Z − E [Z]| ≥ m

p(n)

]
≤ Var(Z)(

m
p(n)

)2

P = Pr

[∣∣∣∣Z − (
m

2
+

m

p(n)

)∣∣∣∣ ≥ m

p(n)

]
≤ mVar(Z1)(

m
p(n)

)2 (Var(Z) =
∑

Var(Zi) when Zi’s are pairwise independent)

Also,

Var(Z1) = E
[
Z2
1

]
− [E [Z1]]

2

= p− p2 ≤ 1

4

=⇒ mVar(Z1) ≤
m

4

Substituting this value in the equation for P above, we get

P ≤ m

4
(

m2

p2(n)

)
≤ p2(n)

4m
=

1

4n
(set m = n.p2(n))

Pr
x
[at-least 1 xi is wrong] = n.P = n

(
1

4n

)
=

1

4

∴ Pr
x
[no xi is wrong] = 1− n.P =

3

4

In order to construct B, we first assume that it can call a black-box C, which returns correct guesses
for samples (b1 = ⟨x, r1⟩, r1), (b2 = ⟨x, r2⟩, r2), . . . , (bm = ⟨x, rm⟩, rm) where r1, . . . , rm are random and
independent, with probability 1

q(n) (The working of C is discussed in section 4.1.2)

Lecture 4: Goldreich-Levin & Computational Indistinguishability 4-3

Now, the probability of inverting x, i.e. probability that B inverts f is given by

Pr [inverting x] =
(
Pr
x
[x ∈ Goodn]

)(
Pr
x,r

[black-box gives correct guesses]

)(
Pr
x
[no xi is wrong]

)
=

(
1

2p(n)

)(
1

q(n)

)(
3

4

)
=

3

8p(n)q(n)

Here, 1
p(n)q(n) is non-negligible, hence, B inverts a OWF f with non-negligible probability, which contradicts

the one-wayness of f

4.1.2 Working of black-box C

One of the key observations from the non-trivial case was that the values of r can be fixed and reused for
different xi’s. We also do not need these r’s to be completely independent. We can use pairwise independent
sampling of these r’s to generate our guesses. As we have already seen, Chebyshev’s Inequality can be used
with pairwise independent sampling to bound the expected value. In this section, we show how to generate
pairwise independent values for r

In order to generate pairwise independent samples with probability≥ 1
m , we take log(m) samples s1, s2, . . . , slog(m)

from {0, 1}n. We define τi = 1, 2, . . . , log(m) as the set of all bits that are 1 in the bit-representation of i
(note that i ∈ [m] can be represented with logm bits). Now, we set ri = ⊕

j∈τi
sj and by linearity we get,

⟨x, ri⟩ = ⊕
j∈τi
⟨x, sj⟩

Now,

Pr [all ⟨x, ri⟩ are correct] ≥ 1

m
=

1

q(n)
for some polynomial q(n)

4.1.3 Comments/Thoughts on C

Let’s take a step back and question what we did with the black-box C. Given a short seed, of log(m) strings,
we somehow managed to expand it to longer strings such that they are pairwise independent. A natural
follow-up question would be whether it is possible to generate long, random and independent strings, given
a short string/seed?

As a direct result of Shannon’s Source Coding Theorem, a classic result in information theory, there is no
deterministic way to generate such long, random and independent strings from a short seed, for computa-
tionally unbounded adversaries. Surprisingly enough, it is possible for computationally bounded adversaries!

4.2 Computational Indistinguishability

Definition 4.3 (Distribution) X is a distribution over a sample space S if it assigns a probability ps to
the element s ∈ S such that

∑
s ps = 1

Definition 4.4 (Support of a discrete random variable) The support of a discrete random variable X
is the set Supp(X) := {x|Pr [X = x] > 0}

4-4 Lecture 4: Goldreich-Levin & Computational Indistinguishability

From the perspective of a computationally bounded tests, when can we sat that two distributions are
identically distributed?

Let X,Y be random variables defined over the same support, Supp(X) and let x ∈ Supp(X). We say that
X and Y are identically distributed when Pr [X = x] = Pr [Y = x]

Let’s carry out a thought experiment where we have a deterministic algorithm A that distinguishes between
two distributions. When we have two identically distributed random variables, X ≡ Y , we can see that the
value

Pr
x←X

[A(x) = 1]− Pr
y←Y

[A(y) = 1] = 0

This implies that no deterministic algorithm, A can distinguish between two identically distributed random
variables X and Y . This can be further formalised into the notion of computational indistinguishability

Definition 4.5 (Ensemble) A sequence {Xn}n∈N is called an ensemble if for each n ∈ N, Xn is a proba-
bility distribution over {0, 1}∗

Definition 4.6 (Computational Indistinguishability) Two ensembles, {Xn}n and {Yn}n are said to
be computationally indistinguishable i.e. {Xn}n ≈c {Yn}n if ∀ non-uniform p.p.t. A (also called the ”dis-
tinguisher”), ∣∣∣∣ Pr

t←Xn

[A(1n, t) = 1]− Pr
t←Yn

[A(1n, t) = 1]

∣∣∣∣ ≤ ϵ(n)

where ϵ(n) is negligible. The absolute difference between the two probabilities in the LHS is known as the
advantage.

We can also think of it as, two ensembles are computationally indistinguishable if there is no efficient
distinguisher A that can tell them apart with a non-negligible(i.e. better than negligible) advantage.

4.2.1 Properties

This section highlights some important properties of computational indistinguishability

• Closure Under Efficient Operations:

If two distributions are indistinguishable, then the outputs of a p.p.t. algorithm run on both, also
remains indistinguishable.

Lemma 4.7 (Closure Under Efficient Operations) If {Xn}n ≈c {Yn}n and P is some p.p.t al-
gorithm, then {P (Xn)}n ≈c {P (Yn)}n

Proof:

Suppose we have some non-uniform p.p.t, A and polynomial p(n) such that for infinitely many n, we
have: ∣∣∣∣ Pr

x←P (Xn)
[A(1n, x) = 1]− Pr

x←P (Yn)
[A(1n, x) = 1]

∣∣∣∣ > 1

p(n)

This allows us to construct another non-uniform p.p.t., A′(.) = A(P (.)) such that∣∣∣∣ Pr
x←Xn

[A′(1n, x) = 1]− Pr
x←Yn

[A′(1n, x) = 1]

∣∣∣∣ > 1

p(n)

Lecture 4: Goldreich-Levin & Computational Indistinguishability 4-5

for infinitely many n.

Hence, A′ distinguishes between {Xn}n and {Yn}n which contradicts our assumption that {Xn}n ≈c

{Yn}n

• Transitivity - The Hybrid Lemma:

Computational indistinguishability is transitive over poly(n) distributions i.e.

If {X1
n}n ≈c {X2

n}n, {X2
n}n ≈c {X3

n}n, . . . {Xk−1
n }n ≈c {Xk

n}n for some k ≤ poly(n), then, {X1
n}n ≈c

{Xk
n}n

Lemma 4.8 (Hybrid Lemma) Let X1, X2, . . . Xk be a sequence of distribution ensembles such that
for for each i ∈ [1, k − 1], we have Xi ≈c X

i+1. We then have X1 ≈c X
k.

Proof:

Let us fix an nuPPT adversary A. Since Xi ≈c X
i+1, we have:

| Pr
x←Xi

n

[A(1n, x) = 1]− Pr
x←Xi+1

n

[A(1n, x) = 1]| ≤ µi(n)

where µi is a negligible function.

| Pr
x←X1

n

[A(1n, x) = 1]− Pr
x←Xk

n

[A(1n, x) = 1]| ≤
k−1∑
i=1

| Pr
x←Xi

n

[A(1n, x) = 1]− Pr
x←Xi+1

n

[A(1n, x) = 1]|

≤
k−1∑
i=1

µi(n)

≤ negl(n)

In the last inequality, we are using the fact that sum of a polynomial number of neglgible functions is
negligible.

4.3 Pseudorandom Generator(PRG)

A function G,

G := {Gn : {0, 1}k(n) → {0, 1}m(n)} m(n) > k(n)

is a Pseudorandom Generator if it satisfies the following conditions:

(Note- The difference, m(n)− k(n) is also defined as the stretch of the PRG)

1. Efficiently Computable:

∃ some polynomial time algorithm M such that M
(
x ∈ {0, 1}k(n)

)
= Gn(x)

2. Pseudorandom:

4-6 Lecture 4: Goldreich-Levin & Computational Indistinguishability

∀ non-uniform p.p.t. A,∣∣∣∣∣∣∣∣∣ Pr
x←{0,1}k(n)

[A(1n, Gn(x)) = 1]︸ ︷︷ ︸
D1:=(x←{0,1}k(n),Gn(x))

− Pr
y←{0,1}m(n)

[A(1n, y) = 1]︸ ︷︷ ︸
D2:=(y←{0,1}m(n),y)

∣∣∣∣∣∣∣∣∣ ≤ ϵ(n)

where ϵ(n) is negligible.

The second distribution can also be seen as the uniform distribution. This property also means that
a distribution is pseudorandom if it is indistinguishable from the uniform distribution. m(n)− k(n) is
called the stretch of the PRG.

4.3.1 Expanding the Stretch

We now show that if there is a PRG with a stretch of one bit, then we can construct a PRG with arbitrary
polynomial stretch.

Theorem 4.9 Let k(n) = n and suppose there exists Gn : {0, 1}n → {0, 1}n+1, then we can construct
G′ : {0, 1}n → {0, 1}p(n) for arbitrary polynomial p(n).

Proof: The idea is to use Gn recursively for p(n) times as follows:

Gn(x)→ (

n bits︷︸︸︷
x1 ,

1 bit︷︸︸︷
σ1)

Gn(x1)→ (x2, σ2)

Gn(x2)→ (x3, σ3)

...

Gn(xp(n)−1)→ (xp(n), σp(n))

We take all the σi’s and show that
(
σ1, σ2, . . . , σp(n)

)
is pseudorandom. We do this by showing that all

of these σi’s are computationally indistinguishable. The inductive nature of how these σi’s are generated
creates 3 categories as follows:

1. Hyborigin-

x ← {0, 1}n and run the run the PRG Gn(x) recursively to get values for (σ1, . . . , σp(n)). From the
2nd category, we notice that Hyb0 ≡ Hyborigin

2. Hybi-

x← {0, 1}n, xi ← {0, 1}n and sample i values for (σ1, . . . , σi)← {0, 1}i.

Now, run the PRG Gn(xi) = (xi+1, σi+1) recursively, until we generate values for
(
σi+1, . . . , σp(n)

)
to

get all the values for
(
σ1, . . . , σp(n)

)
3. Hybfinal-

Sample all the values for (σ1, . . . , σp(n))← {0, 1}p(n). From the 2nd category, we see that Hybp(n) ≡
Hybfinal

Lecture 4: Goldreich-Levin & Computational Indistinguishability 4-7

Note that Hyb0 ≈c Hyborigin and Hybp(n) ≈c Hybfinal. To show that Hyb0 ≈c Hybp(n), all we need to show
is Hybi−1 ≈c Hybi. Following is an informal outline of the proof.

For Hybi−1 : (σ1, . . . , σi−1) ← {0, 1}i−1 and xi−1 ← {0, 1}n. Run the PRG Gn(xi−1) → (xi, σi) recursively
until we get the outputs (σ1, . . . , σp(n))

For Hybi : (σ1, . . . , σi) ← {0, 1}i and xi ← {0, 1}n. Run the PRG Gn(xi) → (xi+1, σi+1) recursively until
we get the outputs (σ1, . . . , σp(n))

Between Hybi−1 and Hybi, the only difference is whether the ith bit is randomly sampled or generated by
the PRG. This difference is the same as the one between pseudorandom Gn and the uniform distribution.
We will provide a formal reduction below.

Assume for the sake of contradiction that Hybi and Hybi−1 are distinguishable. This means that there
exists an nuPPT adversary A that can distinguish between Hybi and Hybi−1 with advantage 1

p(n) for some

polynoomial p(·) (for infinitely many n).

We will now use A to construct an adversary B that can distinguish the output of the PRG from random
with non-negligible advantage. B on input 1n and a string y ∈ {0, 1}n+1 which is either uniformly random
or is the output of the PRG does the following. It parses y as (xi, σi). It samples σ1, . . . , σi−1 uniformly at
random from {0, 1}i−1. It generates σi+1, . . . , σp(n) exactly as described in Hybi−1 (which is the same as the
procedure described in Hybi). It runs A on (σ1, . . . , σp(n)) and outputs whatever A outputs. Note that if
(xi, σi) is generated as the output of a PRG on a uniformly chosen seed, then the input to A is distributed
identically to Hybi−1. Else, it’s output is distributed identically to Hybi. Since we assumed that A can
distinguish Hybi and Hybi−1 with advantage 1

p(n) , we have that B breaks the pseudorandomness of PRG

which is a contradiction.

Thus, from the definition of computational indistinguishability,

=⇒ Hybi−1 ≈c Hybi

=⇒ Hyb0 ≈c Hybp(n) i.e. Hyborigin ≈c Hybfinal (By Hybrid Lemma)

