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1 Introduction

We often argue that a particular mathematical concept is important if it is natural, which means
that it surfaces in many places with different origins and definitions, and robust, such that a variety
of disparate formulations of it end up being equivalent or at least closely related. Likewise, the
applicability, maturity, and importance of a body of results are greater when that field is found to
have a strong connection to another. Three areas of study intricately connected in such a useful way
are computational complexity, the proof theory of arithmetic and propositional proof complexity.

Computational complexity is the study of computation and the resources required to perform
it. A staggering number of different kinds of computation all fall into the domain of this field. It
has practical aspects, directly impacting how real computations are done by real computers, and
yet seemingly fundamental, easily explained problems remain unsolved despite a good deal of effort.
A particularly glaring example is the famous P vs NP problem, which asks if those two classes of
problems are equal. Starting from the NP-completeness results of Cook [13] the pressure mounted
with no relief, leading even to detailed, formal analysis of known proof techniques and why they are
all ineffectual at tackling such problems [30]. Many complexity classes are studied and conjectures
about separations and hierarchies abound, yet results are elusive.

A different way of studying computational complexity is indirectly through logic, and in par-
ticular, bounded arithmetic. Many connections between the fields are known: among them, that
complexity classes can be characterized as those sets or functions definable in certain theories, and
that predicates or functions from certain complexity classes can be used to define new logics in
various ways. Results about either area can have implications for the other.

Bounded arithmetic and propositional proof systems are related in several ways: due to Cook
[14] and others, there are translations from formulas of bounded arithmetic to polynomial-sized
families of propositional or quantified propositional formulas which additionally have very interest-
ing properties relating the theories and the proof systems, and also have complexity implications.
Another connection is that a theory’s ability to prove different kinds of consistency of related
propositional proof systems has a bearing on its power relative to other theories, and the relative
complexity of proofs in the proof systems.

Finally, the full circle back to computational complexity is completed with the work of Cook
and Reckhow in [10] and [16]. They show that NP=co-NP if and only if there exists a polynomially
bounded proof system, and additionally introduce many of the important definitions in the area
such as those of proof systems, polynomial simulations, and so on. These results, and others
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concerning the complexity of witnessing proofs of quantified propositional formulas, drive the study
of propositional proof complexity and the search for lower bounds on propositional proof systems.
Fine examples are the superpolynomial lower bounds for resolution, due to Haken [17] and bounded
depth Frege systems, due to Ajtai [1]. For many seemingly stronger systems, however, no such
results are known.

In this survey we will discuss the various results hinted at above. We intentionally omit from
our focus some of the weaker systems of bounded arithmetic and propositional proof systems about
which some lower bounds are known and concentrate instead on stronger systems and theories
about which good bounds or separations are only conjectured. The survey is organized as follows:
In section 2 we introduce several systems of bounded arithmetic and results concerning them and
relating them to complexity theory. In section 3 we present some relevant propositional proof
systems and their complexity-theoretic ramifications. Section 4 contains a discussion of results
relating bounded arithmetic and propositional proof systems, and finally in section 5, we mention
open problems and some possible research topics related to the results discussed.

2 Bounded Arithmetic and Complexity

The study of bounded arithmetic was initiated in 1971 by Parikh with his system I∆0, similar
to Peano Arithmetic, but with the important restriction of the induction scheme to ∆0 formulas:
those whose quantifiers are bounded, i.e. of the form Qx(x ≤ t(x) → φ(x)) for some quantifier Q
and term t(x) in the language. An important consequence of this restriction is given by Parikh’s
theorem, which states that any function which can be proved total in I∆0 can be bounded by a
term in the language:

Theorem 2.1 (Parikh, 1971). Assume that θ(a, b) is a ∆0 formula and that

I∆0 ` ∀x∃yθ(x, y).

Then there is a term t(x) such that

I∆0 ` ∀x∃y < t(x), θ(x, y).

This theorem implies that I∆0 cannot prove theorems requiring exponentiation, or even the
existence of numbers whose length is polynomial in the length of input parameters. This rules
out reasoning about any computations using more than linear time, many logical notions such as
substitution and polynomial-length sequences, and so on.

The first logical theory designed to reason about all “feasible,” i.e. polynomial-time concepts,
and only those concepts, was Cook’s PV [14]. This is an equational theory which has function
symbols for every polynomial-time function, and is defined with the help of Cobham’s earlier
characterization of polynomial-time functions as the closure of a certain set of initial functions under
composition and limited recursion on notation. A fundamental property of PV is its connection to
the propositional proof system EF, which will be discussed in section 4.1. Later first-order theories
IPV and CPV [12], the former intuitionistic and the latter classical, have a more expressive language
allowing interesting properties of graph theory and combinatorics to be stated, yet are conservative
over PV, which is to say that every statement in the language of PV which is provable in IPV
or CPV is provable in PV. Kraj́ıček, Pudlák and Takeuti [24] defined a hierarchy of theories PVi

based on PV, whose lowest member, PV1, is also referred to as QPV.
Following Cook’s work on PV, to remedy the deficiency in I∆0 Paris and Wilkie tried adding

function symbols with faster growth rates such as ω1(x) := x|x|, along with appropriate defining
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axioms, to the language. The addition of ω1 in particular results in a very interesting theory
I∆0 +Ω1 with many implications for and connections to complexity theory and propositional proof
systems, and it is mainly with subtheories of this theory that we shall be concerned.

2.1 Definitions

Buss [4] introduced the theories Si2 and T i2, which we shall describe shortly. First, consider the
following hierarchy of classes of formulas, the definition of which is a slight adaptation of the
definition in [20]:

Definition 2.2 (Buss, 1986). Σb
i and Πb

i are the smallest classes of formulas satisfying the
following:

1. Σb
0 = Πb

0 are the sharply bounded formulas, whose quantifiers are all of the form (Qx <
|t|), Q ∈ {∀,∃} for some term t.

2. If φ is Σb
i or Πb

i then it is also Σb
j and Πb

j for all j > i.

3. If φ(x) is Σb
i then ∀x < t(x)φ(x) is Πb

i+1.

4. If φ(x) is Πb
i then ∃x < t(x)φ(x) is Σb

i+1.

5. If φ is Σb
i (Πb

i) then ¬φ is Πb
i (Σb

i respectively).

6. Σb
i and Πb

i are closed under ∨ and ∧.

7. Σb
i (Πb

i) is closed under existential (universal) quantification and sharply bounded quantifica-
tion.

Now with these classes in mind, Si2 and T i2 are theories over the language L2 consisting of
the language of PA with the addition of {bx2 c, |x|, x#y}, where it is intended that x#y = 2|x||y|.
Both theories contain BASIC, a set of 32 open axioms expressing properties of the symbols in the
language, and in addition T i2 has the scheme Σb

i -IND:

φ(0) ∧ ∀x(φ(x)→ φ(x+ 1))→ ∀xφ(x)

while Si2 has instead the scheme Σb
i -PIND:

φ(0) ∧ ∀x(φ(bxc)→ φ(x))→ ∀xφ(x)

in each case for every φ ∈ Σb
i . Clearly Si2 ⊆ T i2, and it can be shown that T i2 ⊆ S

i+1
2 .

The “2” subscript refers to the presence of the x#y, or smash function, in the language. Other
possibilities for this subscript include “1”, meaning that no smash function is present, or i > 2,
meaning that the function x#iy := 2|x|#i−1|y| is present.

Buss also defined second-order theories U1
2 and V 1

2 . He first gives a definition analogous to 2.2
for bounded second-order formulas, where Σ1,b

i formulas are classified by counting the alternations of
bounded second-order quantifiers and ignoring bounded first-order quantifiers. U1

2 (respectively V 1
2 )

is the theory composed of the BASIC axioms, Σ1,b
0 -Comprehension, which postulates the existence of

second-order objects equivalent to given Σ1,b
0 predicates of one variable, and Σ1,b

1 -PIND (respectively,
Σ1,b

1 -IND).
A crucial definition is that of definability:
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Definition 2.3. Let Φ be a class of formulas, T be a theory of bounded arithmetic and f : Nk → N

a function. Then f is Φ-definable in T iff there exists a formula Df (x, y) ∈ Φ such that

T ` ∀x∃yDf (x, y),

and Df (x, f(x)) is true in the standard model.

A function is strongly definable if the theory additionally proves that the y satisfying Df (x, y)
is unique.

2.2 Definability and Witnessing Theorems

In this section we list some of the important results connecting theories of bounded arithmetic and
complexity classes through definability of functions.

The main results of Buss [4] are as follows: Firstly, that the strongly Σb
i -definable functions

of Si2 are exactly those computable in polynomial time with an oracle for a Σp
i−1 predicate, i.e.

functions from a functional version of the well known polynomial-time hierarchy. Furthermore, if
S1

2 proves that a predicate is in NP
⋃

co-NP, then it is in fact in P. He also shows how to relativise
Si2 by adding a free second-order variable, and that an analogous definability result connects these
theories to computations with an oracle. Secondly, he shows that S1

2(PV), which is S1
2 extended by

the language of PV and axioms defining all its function symbols, is conservative over PV. Finally,
Buss shows that that the strongly Σ1,b

1 -definable functions of U1
2 and V 1

2 are those computable in
polynomial space, and those computable in exponential time, respectively. These latter results for
second order theories are extended by Buss, Kraj́ıček and Takeuti [6] to U i2 and V i

2 , and the many
analogues between first- second-order theories are seen to be part of a pattern formalized in the
RSUV isomorphism of Takeuti [32] and Razborov [29].

Later results have added to what is known about definability in these theories. Of particular
interest is the fact from [5] that the definable functions of T 1

2 are exactly those expressible as the
composition of a PLS problem and a projection, where PLS is Papadimitriou’s NP search class of
polynomial local search problems. Chiari and Kraj́ıček have extended this result to characterize the
Σb

2 and Σb
3 definable multifunctions in T 2

2 as oracle PLS problems and suggest that a more complete
understanding of these and related definabilites will be useful for proving non-conservation results.
Another important example, which shall figure prominently in the next subsection, is the Kraj́ıček-
Pudlák-Takeuti (KPT) witnessing theorem [24]:

Theorem 2.4 (Kraj́ıček, Pudlák and Takeuti, 1991). Let i ≥ 1 and assume that φ(a, x, y) is
an ∃Πb

i -formula. Suppose
T i2 ` ∃x∀y, φ(a, x, y)

Then there are 2
p
i+1-functions f1(a), f2(a, b1), ..., fk(a, b1, ..., bk−1) with all free variables shown such

that T i2 proves

φ(a, f1(a), b1) ∨ φ(a, f2(a, b1), b2) ∨ ... ∨ φ(a, fk(a, b1, ..., bk−1), bk)

This is also true for PVi+1 in place of T i2 and for PV1 if i = 0.

2.3 Relating the Collapse of Theories with the Collapse of Complexity Classes

Since results are known characterizing fairly precisely the definable functions of many theories, it
is reasonable to expect some relation between questions of theories coinciding versus questions of
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complexity classes coinciding. This is certainly the case of the S2 = T2 hierarchy under discussion,
which will serve as a good example. Something to note at the start is a nice feature of the theories
Si2 and T i2, namely that each of them is finitely axiomatizable [23]; therefore, the S2 hierarchy
collapses iff S2 itself is finitely axiomatizable.

Now, if it were the case not only that the polynomial hierarchy collapsed, but also that this
collapse was uniform enough that S2 could prove it, then the S2 hierarchy would also collapse. This
is so intuitively because some sufficiently high level of S2 would be strong enough to prove all the
induction axioms of S2, by proving them equivalent due to the PH collapsing to induction axioms
of lower quantifier complexity. There is still however the possibility that the PH could collapse but
that the proof of that fact might not be formalizable in S2, in which case the S2 hierarchy might
still be strict. This type of relationship seems to be typical of theories and the complexity classes
of functions definable in them; for another example see Cook [15].

In the other direction, the KPT witnessing theorem stated above implies that if the S2 hierarchy
collapses then so does the PH. Buss [7] and Zambella [33] independently strengthen this result by
showing that the collapse of the PH would in fact be provable in S2.

A general pattern is that the collapse of complexity classes seems to be related most closely to the
collapse of particular fragments of related theories. In many cases, the status of other fragments of
the theories may have different or unknown implications. For example, the collapse of the universal
fragments of the theories Si2 does not obviously imply the collapse of the entire theories (and thus
of the PH). Another example is that although we know that S1

2(PV) is conservative over PV, as
is QPV, the KPT witnessing theorem just discussed tells us that if S1

2 is conservative over QPV,
then the PH collapses. Finally, it is not known how the potential equality of PSPACE and PH
may be related to the question of conservativity of U1

2 over S2, although it is plausible that some
relation may hold. Certainly there are many unsolved problems of this kind which are meritorious
of further attention.

2.4 Candidates for Separation

The standard candidate for separating a theory from one containing it would be the consistency
of the smaller theory. However, Paris and Wilkie [27] show that even S2 augmented with an
axiom stating the totality of exponentiation does not prove the consistency of the induction-free
Robinson’s Arithmetic Q. Not even BdCon(S1

2), a restricted consistency statement asserting only
that the bounded fragment of S1

2 is consistent, can be proved in S2 [28]. More natural candidates,
then, would be theorems of mathematics whose proofs require reasoning about concepts which are
not in the corresponding complexity class of definable functions of the weaker theory; however,
actually finding these seems to be difficult. The most natural candidates appear to be statements
of consistency of related propositional proof systems, which will be discussed in section 4.2.

3 Propositional Proof Systems and Complexity

In this section we discuss some of the many connections between propositional proof systems, which
we first formally define, and complexity. The first connection is visible even as the definitions are
presented; namely, that when formulated in a Gentzen sequent style, many known propositional
proof systems can be seen to be very similar, with the only difference between them being the
computational power of what can be written at each line of the proof (or alternatively, what
is allowed in the cut rule). Examples are Boolean formulas in Frege systems, single literals in
resolution, Boolean circuits in extended Frege systems. Another example is the system G, which

5



is a sequent-based system where formulas in the sequents are quantified boolean formulas (QBFs).
These formulas have propositional variables and also propositional quantifiers. In this case, then,
since evaluating QBFs is PSPACE-complete, the computational power which can be harnessed in
sequents is PSPACE. We can restrict G to Gi by restricting the number of alternations of quantifiers
allowed in the formulas, and the reasoning power is then that of Σp

i predicates.

3.1 Preliminaries

3.1.1 Propositional Proof Systems

Definition 3.1. A proof system P for a set S is a surjective polynomial-time computable function
P : Σ∗ → S for some alphabet Σ.

We are interested in proof systems both for TAUT, the set of (quantifier-free) propositional
tautologies, and for TAUTi, the set of quantified propositional tautologies from Σq

i

⋃
Πq
i , to be

defined below. A P -proof of a tautology τ is a string π such that P (π) = τ . We denote by |π| the
number of symbols in π. We have the following important notion which allows us to compare the
power of proof systems:

Definition 3.2. If P and Q are proof systems, we say that P polynomially simulates (p-simulates)
Q and write P ≤p Q if there is a polynomial-time computable function g such that for every string
x, P (g(x)) = Q(x).

Though proof systems need not be of this form, proofs in any of the systems commonly studied
are sequences of lines, where each line is a valid statement in some language. Such systems then
have a treelike subsystem, wherein each line may be used only once as a hypothesis.

3.1.2 LK and Quantified Propositional Logic

A popular proof system is Gentzen’s sequent system LK. LK is actually a proof system for predicate
logic but we shall consider only the propositional fragment. Each line of an LK-proof is a sequent,
a string of the form Γ −→ ∆, where Γ and ∆ are possibly empty finite sequences of propositional
formulas. A sequent is satisfied if and only if either one of the formulas on the left (the antecedent)
is falsified, or one of the formulas on the right (the succedent) is satisfied. Each sequent in a proof
is either an initial sequent of the form 0 −→, −→ 1 or a −→ a for an atom a, or it is derived from
previous ones (its hypotheses) via one of the following inference rules (this set is the same as in [9],
which is a slight modification of the ones in [20]):

weakening:

left
Γ −→ ∆
A,Γ −→ ∆

and right
Γ −→ ∆

Γ −→ ∆, A

exchange:

left
Γ1, A,B,Γ2 −→ ∆
Γ1, B,A,Γ2 −→ ∆

and right
Γ −→ ∆1, A,B,∆2

Γ −→ ∆1, B,A,∆2
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contraction:

left
Γ1, A,A,Γ2 −→ ∆

Γ1, A,Γ2 −→ ∆
and right

Γ −→ ∆1, A,A,∆2

Γ −→ ∆1, A,∆2

¬ : introduction:

left
Γ −→ ∆, A
¬A,Γ −→ ∆

and right
A,Γ −→ ∆

Γ −→ ∆,¬A

∧ : introduction:

left
A,B,Γ −→ ∆
A ∧B,Γ −→ ∆

and right
Γ −→ ∆, A Γ −→ ∆, B

Γ −→ ∆, A ∧B

∨ : introduction:

left
A,Γ −→ ∆ B,Γ −→ ∆

A ∨B,Γ,−→ ∆
and right

Γ −→ ∆, A,B
Γ −→ ∆, A ∨B

cut:

Γ −→ ∆, A A,Γ −→ ∆
Γ −→ ∆

This system is p-equivalent to Frege systems, defined in [16]. When we add the additional rule
that for a previously unused variable r and any formula φ, the sequents r −→ φ and φ −→ r may
be introduced, and further stipulate that these extension atoms may not appear in the endsequent
of a proof, we obtain a system equivalent to extended Frege systems, from the same paper.

Quantified propositional logic is what results when we add propositional quantifiers to our
language. The semantics of ∀xφ(x, p) is that this formula is satisfied by a particular assignment
if and only if φ(0, p) ∧ φ(1, p) is. Likewise the truth value of ∃xφ(x, p) is the same as that of
φ(0, p) ∨ φ(1, p). We can define a hierarchy of quantified Boolean semiformulas. The following is
completely analogous to Definition 2.2:

Definition 3.3. The classes Πq
i and Σq

i are defined as follows:

1. Σq
0 = Πq

0 are the quantifier-free propositional semiformulas.

2. If φ is Σq
i or Πq

i then it is also Σq
j and Πq

j for all j > i.

3. If φ(x) is Σq
i then ∀xφ(x) is Πq

i+1.

4. If φ(x) is Πq
i then ∃xφ(x) is Σq

i+1.

5. If φ is Σq
i (Πq

i ) then ¬φ is Πq
i (Σq

i respectively).

6. Σq
i and Πq

i are closed under ∨ and ∧.

7. Σq
i (Πq

i ) is closed under existential (universal) quantification.

Now, the proof system G is obtained by augmenting the set of inference rules of LK with the
following:
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∀ : introduction:

left
A(B),Γ −→ ∆
∀xA(x),Γ −→ ∆

and right
Γ −→ ∆, A(p)

Γ −→ ∆,∀xA(x)

∃ : introduction:

left
A(p),Γ −→ ∆
∃xA(x),Γ −→ ∆

and right
Γ −→ ∆, A(B)

Γ −→ ∆,∃xA(x)

where B is any formula and the atom p replaced does not occur in the conclusion of the corre-
sponding inference. Gi is G with the restriction that all formulas appearing in a proof must be Σq

i

or Πq
i . We shall consider G not only as a proof system for TAUT, but also for TAUTi.

3.1.3 Boolean Programs

Boolean programs were introduced in [11] and are a way of specifying Boolean functions. Boolean
programs are something like a generalization of the technique of using new atoms to replace part
of a Boolean formula, which idea is the basis of extended Frege systems. As is the case with that
system, and more so with the quantified propositional calculus, it appears that the use of boolean
programs allows formulas to be abbreviated significantly. The following definition is from that
paper:

Definition 3.4 (Cook-Soltys). A Boolean Program P is specified by a finite sequence {f1, ..., fm}
of function symbols, where each symbol fi has an associated arity ki, and an associated defining
equation

fi(pi) := Ai

where pi is a list p1, ..., pki of variables and Ai is a formula all of whose variables are among pi and
all of whose function symbols are among f1, ..., fi−1. In this context the definition of a formula is:

1. 0,1, and p are formulas, for any variable p.

2. If f is a k-ary function symbol in P and B1, ..., Bk are formulas, then f(B1, ..., Bk) is a
formula.

3. If A and B are formulas, then (A ∧B), (A ∨B) and ¬A are formulas.

The semantics are as for propositional formulas, except that when evaluating an application
fi(φ) of a function symbol, the value is defined, using the defining equation, to be Ai(φ).

An interesting property of Boolean programs which demonstrates their comparability to quan-
tified Boolean formulas is the following theorem from [11]:

Theorem 3.5 (Cook-Soltys). A Language L is in PSPACE iff L is computed by some uniform
polynomial-size family of Boolean programs.

3.1.4 BPLK

Definition 3.6 (BPLK). The system BPLK is like the propositional system LK, but with the
following changes:
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1. In addition to sequents, a proof also includes a Boolean program which defines functions.
Whenever we refer to a BPLK-proof, we shall always explicitly write it as the pair < π,P >
of the proof (sequents) and the Boolean program defining the function symbols occurring in
the sequents.

2. Formulas in sequents are formulas in the context of Boolean programs, as defined earlier.

3. If the Boolean program contains a definition of the form

f(p) := A(p),

the new LK rules f : left
A(φ),Γ −→ ∆
f(φ),Γ −→ ∆

and f : right
Γ −→ ∆, A(φ)
Γ −→ ∆, f(φ)

may be used, where φ are precisely as many formulas as p are variables.

4. (Substitution Rule) The new inference rule subst

∆(q, p) −→ Γ(q, p)
∆(φ, p) −→ Γ(φ, p)

may be used, where all occurrences of q have been substituted for.

The following is the main result of [31]:

Theorem 3.7. BPLK and G are polynomially equivalent.

3.2 Complexity-Related Results

The primary motivation for studying propositional proof systems is the theorem of Cook and
Reckhow [16] that NP=co-NP iff there exists a polynomially bounded proof system for propositional
tautologies. There are, fortunately, many questions about these systems with less severe complexity-
theoretic consequences than this one. One such question is how exactly the expressive power of a
line of the proof relates to the relative efficiency of the system, which will be discussed in section 4.1.
In this subsection we will discuss how other modifications to a proof system, such as the restriction
to treelike proofs or the addition of a substitution rule, affects its efficiency. We will also talk about
the witnessing problem for proofs of quantified tautologies.

3.2.1 Known Simulation Results

At the bottom of the G hierarchy of proof systems, which is already well above where the known
lower bound results apply, we have G0 which is polynomially equivalent to LK and Frege systems.
It is also p-equivalent to its treelike subsystem G∗0 (since Frege and treelike Frege are p-equivalent
[19]), something which is not known for Gi, i > 0. The next step up are Extended Frege and
Substitution Frege systems, which are p-equivalent due to Kraj́ıček and Pudlák [22]. These are also
both p-equivalent to G∗1. For i > 0, Gi p-simulates G∗i+1 for proofs of TAUTi [20]. The converse
simulation can also be shown, either directly or with the help of results such as those in section 4.1
and the conservativity of Si+1

2 over T 1
2 . Another way of stating this last result is that substitution-

Gi is p-equivalent to G∗i+1 for proofs of TAUTi for all i (including i = 0), and for i > 0, substitution
is a derived rule in Gi [23].
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3.2.2 Witnessing Problem for Quantified Propositional Proofs

The witnessing problem for quantified propositional proofs is the following: Given a proof of a
quantified propositional tautology in Σq

i , and values for the free variables in the endsequent, find
values for the outermost existentially quantified variables of the endsequent satisfying it. For G∗1
proofs, this problem is in P, and for G1 proofs (of Σq

1 tautologies), it is complete for PLS. It follows
from [8] and the results in the next section that the witnessing problem for Gi is complete for
an oracle version of PLS with a Σp

i−1 oracle, defined in that paper, for each i > 0. For i = 2,
the authors find an equivalent search problem they call GLS, for generalized local search. It is
open to find more natural search problems for the rest of the cases, and it is also open to find any
characterization of the witnessing problems for Gi proofs of Σq

j tautologies for 1 ≤ j < i. Another
open problem is to find propositional proof systems whose witnessing problem corresponds to one of
the other well-studied NP search classes. This can be done unnaturally by adding axioms asserting
the totality of these search problems to EF.

4 Bounded Arithmetic and Propositional Proof Systems

In this section we discuss some connections between systems of bounded arithmetic and proposi-
tional proof systems.

4.1 Translations into Propositional Logic

The most important such connection is that some classes of theorems of some bounded arithmetic
theories can be translated into families of propositional or quantified propositional tautologies.
Depending on what the theory is and what class of formulas is translated, we can draw conclusions
about the lengths of proofs of these families of tautologies in various propositional proof systems.
Furthermore, by adding reflection principles, axioms stating the consistency of a propositional
proof system, to a weaker theory, we can axiomatize a stronger theory corresponding to that proof
system.

The first result of this form is due to Cook [14] who defines a translation from equations of PV to
families of propositional formulas with polynomial-size EF proofs. Furthermore, any propositional
proof system whose consistency PV can prove can be p-simulated by EF. Independently, Paris
and Wilkie [26] gave a translation from bounded first-order formulas with a relation symbol R to
families of propositional tautologies, and proved that if I∆0 ` ∀xθ(x) then the translations of θ(x)
have polynomial-size Frege proofs. Kraj́ıček [21] extends this translation to handle second-order
formulas and shows a similar relation between V 1

1 and polynomial-sized EF proofs, and between
U1

1 and quasipolynomial-sized Frege proofs.
Kraj́ıček and Pudlák [23] extended Cook’s result to show that whenever A(a) ∈ Σb

i and Si2 `
A(a) (respectively, T i2 ` A(a)), then the translations of A(a) have polynomial-size G∗i (respectively,
Gi) proofs. Kraj́ıček and Takeuti [25] showed a similar relation between U1

2 and G, and such a
result probably holds for BPLK as well.

It is interesting to note that in some cases, the propositional proof system corresponding to a
complexity class has as lines in its proofs objects which are of exactly that complexity class (for
example, G, EF) yet in other cases, the objects are of seemingly greater computational power (G1,
G∗1). An interesting open problem is to find, for some of the latter type of examples, a canonical
propositional proof system whose lines are exactly the appropriate complexity class.
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4.2 Consistency Strength

Using the idea of Cook [14], [22], [25] and others define reflection principles i−RFN(P ) for each i
and propositional proof system P , which states that P is sound for proofs of Σq

i

⋃
Πq
i tautologies.

We have that for every i, Si2 ` i−RFN(G∗i ), T
i
2 ` i−RFN(Gi) and U1

2 ` i−RFN(G). Furthermore,
for any proof system P such that one of the above theories, for example Si2, proves the reflection
principle j − RFN(P ) for some j, the corresponding proof system, in this case G∗i , p-simulates P
for proofs of TAUTj . In fact, every ∀Σb

j consequence of Si2 (T i2, U1
2 ) follows from S1

2+j−RFN(G∗i )
(Gi, G). For this reason, these reflection principles would be candidates for separating the theories.

5 Conclusions and Open Problems

In this section we summarize some open problems related to the results discussed above.

5.1 Universal Fragments of Theories

As discussed above, it is plausible that the universal fragments of, for example, U1
2 and S2 might

be the same without causing any complexity collapse. It would be instructive either to collapse
these fragments or to find convincing reasons why it might be impossible. A related issue is that
of provability of quantifier-free tautologies in the various subsystems of G. There does not seem to
be any drastic consequence to complexity theory of showing, for example, that G1 p-simulates G
for such proofs.

5.2 Witnessing and Search Problems

Several lines of research are suggested: First, it would be interesting to characterize the hardness
of the witnessing problems for the other subsystems of G, and indeed different kinds of definability
in the subsystems of T2 and S2. Part of this work has recently been done by Chiari and Kraj́ıček
in [8] for Σb

2 and Σb
3 definability in T 2

2 but nothing general is known yet. Secondly, there are other
local search problems than PLS, some of which are discussed in [18] and in more detail in [2]. It
would be interesting to find propositional proof systems whose witnessing problems were exactly
projections of these other local search problem classes.

5.3 Subsystems of BPLK

Another set of questions which are particularly interesting concerns the possibility of finding natural
subsystems of BPLK, akin to the structure of G. In their paper [11], the authors find a natural
restriction of Boolean programs, essentially amounting to extension axioms, for witnessing proofs in
G∗1. It would be instructive to find restrictions of Boolean programs which would naturally witness
proofs in other subsystems of G. It would also be interesting to find some kind of a hierarchy
within BPLK which may or may not correspond to the hierarchy in G.

5.4 Hard Tautologies for F or EF

Finding hard tautologies for Frege or Extended Frege systems would certainly be of interest but
many authors are pessimistic about the prospects for this. See for example [3].
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5.5 Canonical Proof Systems for Classes

As discussed earlier, some of the well known proof systems seem to be overpowered in terms of what
can be expressed on each line. Finding an equivalent canonical proof system for these examples is
an interesting problem.

5.6 Theories and Proof Systems for Other Complexity Classes

There are many complexity classes for which no corresponding theory or proof system is known.
Examples include some NP search classes, but are by no means limited to these. Finding a cor-
responding theory and proof system and positioning it correctly with respect to already known
examples could potentially prove very instructive.
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[22] Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic, 54(3):1063–
1079, 1989.
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