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1 Introduction

The broad relevance and importance of bounded arithmetic and propositional proof com-
plexity are well appreciated; these subjects are two of three which are interconnected in
various and interesting ways, the third subject being computational complexity theory. This
latter area is rife with old, well-established open problems and one good way to get at them
is by studying the other two, whose problems are different yet connected, and many of which
may be tractable.

The purpose of this paper is to discuss some possible avenues of research related to
bounded arithmetic and propositional proof complexity. Some of these are specific technical
open questions related closely to recent research and are placed in their context. Others are
more vague general directions along with some discussion of what fruit may be borne by
efforts so directed. Yet others are larger issues which are not expected to be resolved but
which should be kept in mind and toward which some incremental progress may be possible.

Some necessary definitions and background will be presented first although this will
mostly be kept to a minimum.

2 Definitions and Background

2.1 Bounded Arithmetic and Complexity

The study of bounded arithmetic was initiated in 1971 by Parikh with his system I∆0,
similar to Peano Arithmetic, but with the important restriction of the induction scheme to
∆0 formulas: those whose quantifiers are bounded, i.e. of the form Qx(x ≤ t(x) → φ(x))
for some quantifier Q and term t(x) in the language. We now have many theories such as
Cook’s PV [8], the S2 and T2 hierarchies of Buss [4], and others. A key definition is that of
the syntactic quantifier complexity of a formula:
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Definition 2.1 (Buss, 1986). Σb
i and Πb

i are the smallest classes of formulas satisfying the
following:

1. Σb
0 = Πb

0 are the sharply bounded formulas, whose quantifiers are all of the form (Qx <
|t|), Q ∈ {∀,∃} for some term t.

2. If φ is Σb
i or Πb

i then it is also Σb
j and Πb

j for all j > i.

3. If φ(x) is Σb
i then ∀x < t(x)φ(x) is Πb

i+1.

4. If φ(x) is Πb
i then ∃x < t(x)φ(x) is Σb

i+1.

5. If φ is Σb
i (Πb

i) then ¬φ is Πb
i (Σb

i respectively).

6. Σb
i and Πb

i are closed under ∨ and ∧.

7. Σb
i (Πb

i) is closed under existential (universal) quantification and sharply bounded quan-
tification.

We will also refer to ΣB
i (referred to by some authors as Σ1,b

i ) and ΣBi which are, re-
spectively, over second- and third-order languages and which count the alternations of the
appropriate kind of quantifier. It shall be important whether or not the language contains
the smash function for numbers and we shall be sure to make it clear.

Now with these classes in mind, Si2 and T i2 are theories (with smash) consisting of BASIC
(defining basic properties of the language) and additionally T i2 has the scheme Σb

i -IND:

φ(0) ∧ ∀x(φ(x)→ φ(x+ 1))→ ∀xφ(x)

while Si2 has instead the scheme Σb
i -PIND:

φ(0) ∧ ∀x(φ(bxc)→ φ(x))→ ∀xφ(x)

in each case for every φ ∈ Σb
i . U

i
2 and V i

2 are similarly defined except over a second-order
language with smash and induction on the class of formulas with the appropriate number of
alternations of bounded second-order quantifiers.

A crucial definition is that of definability:

Definition 2.2. Let Φ be a class of formulas, T be a theory of bounded arithmetic and
f : Nk → N a function. Then f is Φ-definable in T iff there exists a formula Df (x, y) ∈ Φ
such that

T ` ∀x∃yDf (x, y),

and Df (x, f(x)) is true in the standard model.

A function is strongly definable if the theory additionally proves that the y satisfying
Df (x, y) is unique.
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2.2 Propositional Proof Systems

The primary motivation for studying propositional proof systems is the theorem of Cook
and Reckhow [10] that NP=co-NP iff there exists a polynomially bounded proof system for
propositional tautologies. There are, fortunately, many questions about these systems with
less severe complexity-theoretic consequences than this one.

Definition 2.3. A proof system P for a set S is a surjective polynomial-time computable
function P : Σ∗ → S for some alphabet Σ.

We are interested in proof systems both for TAUT, the set of (quantifier-free) propo-
sitional tautologies, and for TAUTi, the set of quantified propositional tautologies from
Σq
i

⋃
Πq
i , to be defined below. A P -proof of a tautology τ is a string π such that P (π) = τ .

We denote by |π| the number of symbols in π. We have the following important notion which
allows us to compare the power of proof systems:

Definition 2.4. If P and Q are proof systems, we say that P polynomially simulates (p-
simulates) Q and write P ≤p Q if there is a polynomial-time computable function g such
that for every string x, P (g(x)) = Q(x).

The proof systems we shall consider are mainly based on PK, Gentzen’s sequent-based
system, which is p-equivalent to Frege systems. Gi and G∗i are quantified versions restricted
to i alternations of quantifiers, and the latter is additionally treelike. G has no restriction
on quantifiers. We will also discuss BPLK, defined in [19] and based on Boolean Programs,
defined in [7].

Definition 2.5 (Cook-Soltys). A Boolean Program P is specified by a finite sequence
{f1, ..., fm} of function symbols, where each symbol fi has an associated arity ki, and an
associated defining equation

fi(pi) := Ai

where pi is a list p1, ..., pki of variables and Ai is a formula all of whose variables are among
pi and all of whose function symbols are among f1, ..., fi−1. In this context the definition of
a formula is:

1. 0,1, and p are formulas, for any variable p.

2. If f is a k-ary function symbol in P and B1, ..., Bk are formulas, then f(B1, ..., Bk) is
a formula.

3. If A and B are formulas, then (A ∧B), (A ∨B) and ¬A are formulas.

The semantics are as for propositional formulas, except that when evaluating an applica-
tion fi(φ) of a function symbol, the value is defined, using the defining equation, to be Ai(φ).
There is no free/bound distinction between variables in the language of Boolean programs.

Definition 2.6 (BPLK). The system BPLK is like the propositional system LK, but with
the following changes:
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1. In addition to sequents, a proof also includes a Boolean program which defines func-
tions. Whenever we refer to a BPLK-proof, we shall always explicitly write it as the
pair < π, P > of the proof (sequents) and the Boolean program defining the function
symbols occurring in the sequents.

2. Formulas in sequents are formulas in the context of Boolean programs, as defined ear-
lier.

3. If the Boolean program contains a definition of the form

f(p) := A(p),

the new LK rules f : left
A(φ),Γ −→ ∆

f(φ),Γ −→ ∆

and f : right
Γ −→ ∆, A(φ)

Γ −→ ∆, f(φ)

may be used, where φ are precisely as many formulas as p are variables.

4. (Substitution Rule) The new inference rule subst

∆(q, p) −→ Γ(q, p)

∆(φ, p) −→ Γ(φ, p)

may be used, where all occurrences of q have been substituted for.

The following is the main result of [19] and is expected since evaluating both Boolean
programs and quantified Boolean formulas is PSPACE complete:

Theorem 2.7. BPLK and G are polynomially equivalent.

Some basic results are that Gi =p G
∗
i+1 as proof systems for TAUTi when i > 0 [13, 16]

and G∗1 =p extended Frege [15]. G0 =p G
∗
0 (i.e. Frege is p-equivalent to treelike Frege) [12]

but this is unknown for i > 0.

2.3 Translations of Bounded Arithmetic into Propositional Logic

An important fact is that some classes of theorems of some bounded arithmetic theories can
be translated into families of propositional or quantified propositional tautologies. Depend-
ing on what the theory is and what class of formulas is translated, we can draw conclusions
about the lengths of proofs of these families of tautologies in various propositional proof
systems. Furthermore, by adding reflection principles, axioms stating the consistency of a
propositional proof system, to a weaker theory, we can axiomatize a stronger theory corre-
sponding to that proof system.

The first result of this form is due to Cook [8] who defines a translation from equations
of PV to families of propositional formulas with polynomial-size EF proofs. Furthermore,
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any propositional proof system whose consistency PV can prove can be p-simulated by EF.
Independently, Paris and Wilkie [18] gave a translation from bounded first-order formulas
with a relation symbol R to families of propositional tautologies, and proved that if I∆0 `
∀xθ(x) then the translations of θ(x) have polynomial-size Frege proofs. Kraj́ıček [14] extends
this translation to handle second-order formulas and shows a similar relation between V 1

1

and polynomial-sized EF proofs, and between U1
1 and quasipolynomial-sized Frege proofs.

Kraj́ıček and Pudlák [16] extended Cook’s result to show that whenever A(a) ∈ Σb
i and

Si2 ` A(a) (respectively, T i2 ` A(a)), then the translations of A(a) have polynomial-size G∗i
(respectively, Gi) proofs. Kraj́ıček and Takeuti [17] showed a similar relation between U1

2

and G.

3 Open Problems

3.1 Canonical Proof System For a Complexity Class

It is interesting to note that in some cases, the propositional proof system corresponding to
a complexity class has as lines in its proofs objects which are of exactly that complexity class
(for example, G, EF) yet in other cases, the objects are of seemingly greater computational
power (G1, G∗1). An interesting open problem is to find, for some of the latter type of
examples, a canonical propositional proof system whose lines are exactly the appropriate
complexity class. Perhaps a general technique could be devised to deal with many such
classes at once.

3.2 Subsystems of BPLK

Another set of questions which are particularly interesting concerns the possibility of finding
natural subsystems of BPLK, akin to the structure of G. In their paper [7], the authors
find a natural restriction of Boolean programs, essentially amounting to extension axioms,
for witnessing proofs in G∗1. It would be instructive to find restrictions of Boolean programs
which would naturally witness proofs in other subsystems of G. It would also be interesting
to find some kind of a hierarchy within BPLK which may or may not correspond to the
hierarchy in G.

3.3 Questions About the “Weak Fragments” of Theories and Proof
Systems

3.3.1 Relating the Collapse of Theories with the Collapse of Complexity Classes

Since results are known characterizing fairly precisely the definable functions of many theo-
ries, it is reasonable to expect some relation between questions of theories coinciding versus
questions of complexity classes coinciding. This is certainly the case of the S2 = T2 hierarchy
under discussion, which will serve as a good example. Something to note at the start is a
nice feature of the theories Si2 and T i2, namely that each of them is finitely axiomatizable
[16]; therefore, the S2 hierarchy collapses iff S2 itself is finitely axiomatizable.
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Now, if it were the case not only that the polynomial hierarchy collapsed, but also that
this collapse was uniform enough that S2 could prove it, then the S2 hierarchy would also
collapse. This is so intuitively because some sufficiently high level of S2 would be strong
enough to prove all the induction axioms of S2, by proving them equivalent – due to the PH
collapsing – to induction axioms of lower quantifier complexity. There is still however the
possibility that the PH could collapse but that the proof of that fact might not be formalizable
in S2, in which case the S2 hierarchy might still be strict. This type of relationship seems to
be typical of theories and the complexity classes of functions definable in them; for another
example see Cook [9].

In the other direction, the KPT witnessing theorem implies that if the S2 hierarchy
collapses then so does the PH. Buss [5] and Zambella [20] independently strengthen this
result by showing that the collapse of the PH would in fact be provable in S2.

A general pattern is that the collapse of complexity classes seems to be related most
closely to the collapse of particular fragments of related theories. In many cases, the status
of other fragments of the theories may have different or unknown implications. For example,
the collapse of the universal fragments of the theories Si2 does not obviously imply the collapse
of the entire theories (and thus of the PH). Another example is that although we know that
S1

2(PV) is conservative over PV, as is QPV, the KPT witnessing theorem just discussed tells
us that if S1

2 is conservative over QPV, then the PH collapses. Finally, it is not known how
the potential equality of PSPACE and PH may be related to the question of conservativity
of U1

2 over S2, although it is plausible that some relation may hold. Certainly there are many
unsolved problems of this kind which are meritorious of further attention.

As discussed above, it is plausible that the universal fragments of, for example, U1
2 and S2

might be the same without causing any complexity collapse. It would be instructive either
to collapse these fragments or to find convincing reasons why it might be impossible.

3.3.2 Collapsing weak fragments of G

A related issue is that of provability of quantifier-free tautologies in the various subsystems
of G. There does not seem to be any drastic consequence to complexity theory of showing,
for example, that G1 p-simulates G for such proofs.

3.3.3 Lower bounds for G

Conversely, proving either an unconditional lower bound or one conditional on a weaker
complexity assumption like P 6=PSPACE also would seem not to imply anything since a
related complexity collapse may not necessarily be formalizable. Of course, an unconditional
lower bound for G-proofs of TAUT would seem to be difficult to obtain but for example a
lower bound for G1 or G∗1 proofs of TAUTi may be more reasonable.

3.4 Witnessing Problem for Quantified Propositional Proofs

The witnessing problem for quantified propositional proofs is the following: Given a proof of
a quantified propositional tautology in Σq

i , and values for the free variables in the endsequent,
find values for the outermost existentially quantified variables of the endsequent satisfying it.
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For G∗1 proofs, this problem is in P, and for G1 proofs (of Σq
1 tautologies), it is complete for

PLS. It follows from [6] that the witnessing problem for Gi is complete for an oracle version
of PLS with a Σp

i−1 oracle, defined in that paper, for each i > 0. For i = 2, the authors
find an equivalent search problem they call GLS, for generalized local search. It is open to
find more natural search problems for the rest of the cases, and it is also open to find any
characterization of the witnessing problems for Gi proofs of Σq

j tautologies for 1 ≤ j < i.

3.5 Witnessing and Search Problems

Several lines of research are suggested: First, it would be interesting to characterize the
hardness of the witnessing problems for the other subsystems of G, and indeed different
kinds of definability in the subsystems of T2 and S2. Part of this work has recently been
done by Chiari and Kraj́ıček in [6] for Σb

2 and Σb
3 definability in T 2

2 but nothing general is
known yet. Secondly, there are other local search problems than PLS, some of which are
discussed in [11] and in more detail in [1]. It would be interesting either to find propositional
proof systems whose witnessing problems were exactly projections of these other local search
problem classes, or else to understand what is special about PLS.

Another open problem is to find propositional proof systems whose witnessing problem
corresponds to one of the other well-studied NP search classes. This can be done unnaturally
by adding axioms asserting the totality of these search problems to EF.

3.6 Theories for PSPACE and Above

In the attachment, we present some recent work on a third-order theory W 1
1 for PSPACE.

This theory has the advantage of being smash-free and is associated with PSPACE in the
same way that V 1 is associated with P, namely with respect to the definable functions of
strings. This approach has the benefit of making things much simpler than in the case of
Buss-style theories and this is evident in several aspects of the exposition on W 1

1 .
In the same attachement we also give a translation of theorems of W 1

1 into families of
proofs in BPLK which is much simpler than the analogous translation of U1

2 into G. The
BPLK proofs constructed are much more natural than the case for G since, for example, iter-
ating a function is just a matter of composing function symbols while for quantified Boolean
formulas, quantifier tricks must be used. Furthermore, the statement of the translation
lemma 8.4 itself is much more natural than the case for G: The lemma states that BPLK
can prove that a sequent in the W 1

1 proof can be witnessed by some PSPACE function in
the right form. The problem is that the third-order quantifiers (second-order in the case of
U1

1 ) cannot be expressed in the propositional language. In the case of G this is handled by
the cumbersome method of asserting that for any formula (to be substituted in place of the
inexpressible quantifier on the left), G can prove that some PSPACE function computes a
witness for the inexpressible quantifier on the right. In the case of BPLK, the inexpressible
quantifier is simply replaced by a “free” function symbol representing an arbitrary Boolean
function.

Some particular open questions arising from these results are:
First, prove the replacement theorem of W 1

1 with strict ΣB1 induction. We have been
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unable to carry this through without slightly stronger induction. Chris Pollett, an expert on
such matters, says that although the problem is open, it should be possible.

Second, the idea of a free function symbol suggests possibly adding quantifiers to function
symbols. If done correctly, this may lead to proof systems associated with the levels of
the nondeterministic exponential time hierarchy analogous to G and the PH. Such proof
systems would allow a more direct translation of the theorems of W 1

1 , U i
2, and indeed W i

2

once suitably defined, since now the higher-order quantifiers would be expressible in the
propositional language. The translations would be more akin to those of Si2 and T i2 into G∗i
and Gi. It would be instructive to see how various bounds on these systems would imply or
be implied by bounds on the corresponding subsystems of G.

3.7 Relativized Propositional Proof Systems

There has recently been some local interest in relativized propositional proof systems. One
reference is [2] and another is a working paper by Cook. These systems reason about propo-
sitional formulas with an oracle, the oracle being indexed by sequences of formulas whose
truth values spell out a binary string.

In the formulation of [2], the proof system is relative to a particular oracle, so that
theorems such as the following hold:

Theorem 3.1. For every oracle A, there exists an A-relativized super propositional proof
system iff NPA =co-NPA.

The authors of that paper give some conditions on complexity classes and show that for
some complexity classes, a particular collapse implies the existence of an optimal (ordinary)
proof system, and that for other kinds of classes there is an oracle relative to which the col-
lapse occurs and yet there is no optimal (relative to that oracle) propositional proof system.
An open problem to investigate in this context would be whether known oracle separations
of complexity classes imply lower bounds for particular oracle-relativized proof systems,
perhaps along the lines of recent work by Maciel and Pitassi on exploiting computational
hardness to prove lower bounds. This problem may be hard, however.

In the formulation of Cook, the oracle is an implicit free variable of exponential size.
The satisfiability problem is still in NP and the validity problem is thus in co-NP. Cook also
defines a quantified propositional calculus QPC(R) (with only propositional quantifiers) and
in this case the satisfiability problem for such formulas is NEXP-complete. There seems
to be some connection between polynomial-size proofs in G and exponential sized proofs in
QPC(R) which bears further investigation. Other open questions are to translate subtheories
of S2(R) into proofs in the appropriate relativized subsystems of G (i.e. QPC(R)) and to
try and use oracle separations of complexity classes to separate subsystems of QPC(R).

3.8 Hard Tautologies for F or EF

Finding hard tautologies for Frege or Extended Frege systems would certainly be of interest
but many authors are pessimistic about the prospects for this. See for example [3].
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3.9 Consistency Strength

Using the idea of Cook [8], [15], [17] and others define reflection principles i − RFN(P )
for each i and propositional proof system P , which states that P is sound for proofs of
Σq
i

⋃
Πq
i tautologies. We have that for every i, Si2 ` i − RFN(G∗i ), T

i
2 ` i − RFN(Gi) and

U1
2 ` i−RFN(G). Furthermore, for any proof system P such that one of the above theories,

for example Si2, proves the reflection principle j − RFN(P ) for some j, the corresponding
proof system, in this case G∗i , p-simulates P for proofs of TAUTj. In fact, every ∀Σb

j

consequence of Si2 (T i2, U1
2 ) follows from S1

2+j − RFN(G∗i ) (Gi, G). For this reason, these
reflection principles would be candidates for separating the theories. Perhaps relativized
versions of these are candidates for separating relativized proof systems as mentioned above.

3.10 Theories and Proof Systems for Other Complexity Classes

There are many complexity classes for which no corresponding theory or proof system is
known. Examples include some NP search classes, but are by no means limited to these.
Finding a corresponding theory and proof system and positioning it correctly with respect
to already known examples could potentially prove very instructive.
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