
Third-Order Computation and Bounded
Arithmetic

Alan Skelley?

Mathematical Institute, Academy of Sciences of the Czech Republic
Žitná 25, CZ - 115 67 Praha 1, Czech Republic

skelley@math.cas.cz

Abstract. We describe a natural generalization of ordinary computa-
tion to a third-order setting and give a function calculus with nice proper-
ties and recursion-theoretic characterizations of several large complexity
classes. We then present a number of third-order theories of bounded
arithmetic whose definable functions are the classes of the EXP-time
hierarchy in the third-order setting.

Keywords: bounded arithmetic, recursion theory, computability, compu-
tational complexity

1 Introduction

Bounded arithmetic is an important and useful way to approach problems in
computational and propositional proof complexity: strong tools from logic and
model theory can be applied, and many of the connections are intriguingly not
tight, suggesting that it could be possible to skirt around the major barriers of
complexity theory. The second-order viewpoint of Zambella and Cook associates
second-order theories of bounded arithmetic with various complexity classes by
studying the definable functions of strings, rather than numbers. This approach
simplifies presentation of the theories and their propositional translations, and
furthermore is applicable to complexity classes that previously had no corre-
sponding theories.

In previous work [12], we adapted the second-order viewpoint to PSPACE
with the third-order theory W 1

1 . In what follows, we generalize this result in
several directions: First, by expanding the notion of computation to the third-
order setting, essentially allowing a natural way to compute with very large
objects, admitting a function calculus with nice properties and obtaining useful
recursion-theoretic characterizations of large complexity classes above PSPACE.
This computational setting bridges a gap by simultaneously allowing more nat-
ural reasoning about the kind of computation captured by theories of bounded
arithmetic, while at the same time remaining a natural extension of ordinary
computation and complexity. The second direction of generalization is to a full
hierarchy of theories for the EXP-time hierarchy in this general setting. We also

? Partially supported by a Canadian NSERC postdoctoral fellowship

2

show how to apply the recursion-theoretic characterization of PSPACE to obtain
a “minimal” theory for that class.

The remainder is organized as follows: In section 2 we describe the third-order
setting: first the framework for bounded arithmetic, then for computation, and
discuss complexity and recursion theory. Section 3 presents theories of bounded
arithmetic and results about definability. We conclude with some open problems.

2 The Third-Order Setting

2.1 Bounded Arithmetic

The three sorts of third-order bounded arithmetic are intended to represent
natural numbers, finite sets of natural numbers, and finite sets of such sets.
For free and bound variables of these sorts we respectively use a, b, c, ... and
x, y, z, ...; A,B, C, ... and X, Y, Z, ...; andA,B, C, ... and X ,Y,Z, The language
L3

A := {0, 1,+, ·, | · |2,∈2,∈3,≤,=1,=2} of nonlogical symbols is the same as the
set L2

A for V 1 but with the addition of the third-order membership predicate
A ∈3 B; note the absence of smash (‘#’) and third-order equality or length. We
write A(B) for B ∈3 A and similarly for ∈2. The second sort closely represent
finite binary strings as in e.g. [5] and likewise with the third sort (with strings
rather than numbers as bit-indices), so we refer to them respectively as “strings”
and “superstrings”. We use a tilde: x̃ to denote unspecified sort.

There is a hierarchy of classes gΣB
i and gΠB

i of formulas in this language
analogous to the hierarchies ΣB

i and ΠB
i of second-order formulas: the subscript

counts alternations of third-order quantifiers (bounded string and number quan-
tifiers ignored) and the ‘g’ denotes general (not strict) quantifier syntax. Note
that there is no way to bound third-order quantifiers, but the number and string
parameters determine the number of initial bits of superstrings that are relevant
to the truth-value of a formula.

2.2 Computation

Our intent now is to capture the nature of string-based computation defined
by third-order theories of bounded arithmetic. For this reason, our primary fo-
cus is on classes of polynomially-bounded functions (from strings to strings) or
similar, as this makes operations such as composition of functions more natural
and matches ordinary complexity theory. We are consequently interested in our
classes of functions somehow maintaining an exponential-size distinction between
the three sorts, as do (standard) theories of bounded arithmetic. Furthermore,
our intent when defining third-order complexity classes is that the third-order
(superstring) arguments not count towards the resource limits of the machine.

Functions in our setting will be strongly typed (each function has a fixed
signature specifying sorts of arguments and output). The domains of the three
sorts are: D1 := N; D2 := {S ⊂ N : |S| < ∞}; and D3 = {S ⊂ D2 : |S| < ∞}.
Again we shall refer to these as numbers, strings, and superstrings; these sorts

3

are the same as the intended interpretations of the three sorts of variables in
third-order bounded arithmetic and we use similar notation. Function symbols
in our calculi will similarly be named f, g, ...;F,G, ...; and F ,G, ... to indicate
the sort of the range of the function. Let E = E1 ∪ E2 ∪ E3 be the set of all
functions of fixed signature, categorized according to the sort of the output. The
0-1 valued functions (predicates) are referred to as E0 ⊂ E1.

Such functions are computed by Turing machines or other computational
models by receiving number inputs in unary, strings as usual, and superstrings
by random access. Outputs of strings or numbers are the same way, while super-
strings are either output on a write-only tape, or “by query”, as a predicate with
a distinguished string input as the characteristic function of the output bits of
the superstring-valued function. Precise definitions are in [13]. We are interested
primarily in polynomially bounded functions. In the context of third-order
computation, we mean that the polynomial bound applies to the value of a
number output or the length of a string output, and is computed using only the
number inputs and the lengths of the string inputs. If there are only superstring
inputs, then the bound is a constant, and every superstring-valued function is
polynomially bounded.

2.3 Complexity

An ordinary function or language class becomes a complexity class of third-
order functions as follows: The notation (various superscripts on the complexity
classes) is: For FC a function class, FC+ is the third-order class with superstring
output on write-only tape; for C a class of languages, C� is the class of third-
order predicates, while C◦ are the functions computed “by query” by predicates
in this class. Here we describe some specific cases of complexity classes we are
interested in:

First, FPSPACE+ is the third-order analogue of PSPACE functions. It con-
sists of those polynomially bounded functions computable by a machine in poly-
nomial space (as a function of the string and (unary) number inputs only),
where superstring outputs are written onto a write-only output tape, allowing
exponential-length superstring outputs. The machine’s queries to its superstring
inputs must also be polynomially bounded (as a function of its inputs). FEXP+

is similarly the polynomially bounded exponential-time functions with polyno-
mially bounded access to superstring inputs. In contrast to FPSPACE+, the
polynomial bound is an actual restriction as an exponential time machine could
otherwise write exponentially large strings (either as output, or as a query to
superstring inputs).

Now for the case of polynomial time, the class FP+ defined analogously
to FPSPACE+ and FEXP+ has the property that superstring outputs have
polynomial length, due to the time bound of the machines; however, the class
P◦ of polynomially-bounded functions computed by “by query” by polynomial-
time machines does not have this restriction. For this reason, FP+∪P◦ is in
some contexts a more suitable third-order analogue of P. This is also the case for
functions from levels 2

p
i of the polynomial-time hierarchy, which are computed

4

by polynomial-time machines with access to an oracle from Σp
i−1: The third-order

class (2p
i)

+ is restricted to polynomially many bits in its superstring outputs and
so (2p

i)
+ ∪ (2p

i)
◦ is a more appropriate definition.

As a final set of examples, the predicate classes P�, NP�, (Σp
i)�, NEXP� and

(Σexp
i)� are 0-1 valued functions, and are the characteristic functions of machines

from the corresponding ordinary complexity classes, modified with polynomially
bounded access to superstring inputs.

Some comments are in order concerning these classes. First, and most im-
portantly, the third-order complexity classes discussed thus far, restricted to
functions from strings to strings (or string predicates) are the usual complexity
classes. There are nevertheless some interesting observations to be made: For
example P� 6=NP�, as a predicate in the latter class can determine if a given
superstring contains a 1 (up to a bound given by a string argument), while
this predicate is clearly not in P�. The usual argument for Savitch’s theorem
goes through, at least for (unrelativized) NPSPACE�: configurations are still
described by polynomial-sized strings, including queries to superstring inputs.
We conclude that PSPACE� =NPSPACE�.

Now, in order to expand our discussion to the exponential-time hierarchy,
we must first address relativizing classes of functions by adding oracles in the
form of access to a third-order function. Formally, a third-order oracle Turing
machine has a number of specified write-only query tapes, each one designated
with a sort. The machine may write values on these tapes which are polynomially
bounded, in the sense that the numbers (in unary), and lengths of strings written
are all bounded by fixed polynomials in the machine’s (non-superstring) inputs.
When the machine enters the special query state, these tapes are erased, and a
value is returned to the machine by way of a special read-only reply tape (with
random access in the case of a superstring-valued oracle).

The usual exponential-time hierarchy has definition Σexp
i = NEXPΣp

i−1 [10].
This is equal to Σi-TIME(exp), which are the languages computed by exponen-
tial time alternating Turing machines with i alternations (starting with existen-
tial). Paralleling this definition, we can define the corresponding classes of 0-1
valued functions from E0. It is important to observe that the queries made of the
Σp

i−1 oracle by the NEXP machine in the standard definition are in general of
exponential size. Our third-order oracle machines can also issue exponentially-
long queries to their oracles, but these must be in the form of superstrings, as
the string inputs to oracles are restricted to be polynomially bounded per our
definition. Consequently the complexity class of the third-order oracle we use
will be different.

We therefore define (Σexp
1)� =NEXP� and (Σexp

i)� = (NEXP�)(Σ
exp
i−1)

�
. In

other words, each higher level of the hierarchy is obtained by augmenting non-
deterministic exponential time with a third-order oracle for the previous level.
Since the queries to this oracle must be polynomially bounded (although this still
allows exponential-length superstring inputs to the oracle), it can be seen that
this relativization corresponds to unbounded access to an ordinary oracle from
the appropriate level of the quasi-polynomial-time hierarchy (considered as a

5

predicate on the superstring inputs): For example, if an NEXP machine writes
string and superstring inputs of lengths p(n) and 2p(n) respectively to a third-
order NEXP oracle, then the query can be answered in nondeterministic time
2(p(n))k

for some k, which is exponential in p(n). In terms of the length of the
superstring input, 2p(n), the quantity 2(p(n))k

is quasi-polynomial.
In the hands of an NEXP machine, however, an unbounded (ordinary) oracle

from some level of the quasi-polynomial-time hierarchy is no more powerful than
one from the same level of the polynomial-time hierarchy, as the machine could
simply make longer queries (i.e. 2(p(n))k

) of this latter oracle. Thus as predicates
purely on strings, the levels of our hierarchy correspond precisely with the levels
of the ordinary exponential-time hierarchy. Therefore:

Theorem 1. The predicates represented in the standard model by ΣB
0 -formulas

are precisely PH�; for i ≥ 1 those represented by gΣB
i - and gΠB

i -formulas (and
also the strict versions of these classes) are precisely (Σexp

i)� and (Πexp
i)�, re-

spectively.

The function classes (2exp
i)+:=(FEXP(Σexp

i−1)
�
)+ are the polynomially bounded

functions computed by exponential-time Turing machines relativized with a
third-order oracle for a predicate from (Σexp

i)�, and similarly as functions purely
of strings correspond to the usual 2

exp
i . It should be noted that (Σexp

i)� =
(Πexp

i)� seems to imply that the third-order exponential-time hierarchy collapses
to the ith level, while this is not known for the ordinary case; The difference is
that the assumption Σi = Πi in the third-order context is stronger, in that it
covers also predicates on superstrings.

2.4 Recursion Theory of Functions

First some standard functions: The number functions {x + y, x · y}, constants
0,1, etc. are as usual. The bit, string successor and concatenation functions
{bit(x, Y), s0(X), s1(X), X _ Y } are also standard, but they are operations on
binary strings, while our string-like domain D2 consists of finite sets of natural
numbers. We therefore define these functions to operate on the strings repre-
sented by the input finite sets, and to output the set representing the desired
string. {|X|, X ∈ Y, 1x} respectively give the least upper bound of the set (which
is one more than the length of the string being represented by the set), the (0-1-
valued) characteristic function of Y, and a standard string of x bits (represented
by a set of least upper bound x + 1). All of the functions described thus far are
polynomially bounded.

We now define several operations on these functions. As our focus is on string
functions as opposed to the standard recursion-theoretic viewpoint of number
functions, we shall comment in each case on how these operations compare to
standard operations on number functions.

First, the operation of composition defines a function f̃(x̃) = t by specifying
a term t consisting of variables among x̃ and other functions, constructed in such

6

a way that arities and argument types are respected. Observe that this operation
allows permutation and renaming of variables.

Define f̃ (of any sort) by limited recursion from g̃, h̃ (also of any sort) and
l by f̃(0, ...) = g̃(...), f̃(x + 1, ...) = h̃(x, f̃(x, ...), ...) and either f̃(x, ...) ≤ l(x, ...)
or |f̃(x, ...)| ≤ l(x, ...), as appropriate. This operation corresponds roughly to
limited recursion on notation for number functions, as it iterates a function (h̃)
a polynomial number of times subject to a bound on growth. Recursion is the
same operation without the bound on growth.

Define f̃ by limited doubling recursion from g̃ and l by f̃(0, ỹ, ...) =
g̃(ỹ, ...), f̃(x + 1, ỹ, ...) = f̃(x, f̃(x, ỹ, ...), ...) and either f̃(x, ỹ, ...) ≤ l(x, ...) or
|f̃(x, ỹ, ...)| ≤ l(x, ...), as appropriate. This operation corresponds roughly to
limited recursion for number functions, as it iterates a function (g̃) an exponential
number of times (by doubling the number of nestings a polynomial number of
times) subject to a bound on growth. Doubling recursion is the same operation
without the bound on growth.

Define f̃ (of any sort) by limited long recursion from g̃, h̃ (also of any
sort) and l by f̃(10, ...) = g̃(...), f̃(X + 1, ...) = h̃(x, f̃(X, ...), ...) and either
f̃(X, ...) ≤ l(X, ...) or |f̃(X, ...)| ≤ l(X, ...), as appropriate. This operation is
similar to the previous one in that it iterates a function an exponential num-
ber of times; however, it differs in that the exponentially many iterations are
performed directly by using a string as an exponential-length counter. This op-
eration presupposes a suitable string successor function X + 1.

Define F by limited 3-comprehension from g, h ∈ E1 by F(..)(X) ↔
(|X| ≤ g(..) ∧ h(X, ..) = 0).

It should be noted here that the recursion operations, as well as simple com-
position of functions, appear to be significantly more powerful when applied to
superstring-valued functions. This is because in the composition of two such
functions, the space may not be available to write down the intermediate value.
A space-bounded computation model would then have to query the “inner” func-
tion many times (to retrieve bits of its output as needed) in order to compute
the outer function. The composition of two polynomially bounded number- or
string-valued functions can be computed using the sum of the time requirements
(computing first one then the other function), while the required space does not
increase. For superstring-valued functions, on the other hand, the time required
for the composition as described seems in general to be the product of the time
required for each component, while the space required is the sum. If space is
not bounded then the intermediate results can be written in full, and thus time
and space requirements are as for the composition of number- or string-valued
functions.

At this point we can characterize several important complexity classes:

Theorem 2. 1. FP+∪P◦ is the closure of the initial functions I = {0, 1, x +
y, x · y, 1x, |X|, s0(X), s1(X), bit(x, Y), X _ Y,X ∈ Y} under composition,
limited 3-comprehension and limited recursion with the latter restricted to
E1 ∪ E2.

7

2. FPSPACE+ is the closure of I under composition, limited 3-comprehension
and limited recursion.

3. FPSPACE+ is the closure of I under composition, limited 3-comprehension
and limited doubling recursion restricted to E1 ∪ E2.

4. FEXP+ is the closure of I under composition, limited 3-comprehension and
limited doubling recursion.

Proof (sketch). The first point is essentially as in Cobham [4].
FPSPACE+ is contained in the closure of FP+∪P◦ by limited recursion on E3,

composition and limited 3-comprehension: First, a superstring-valued FP+∪P◦

function can compute from the input of a PSPACE Turing machine the transition
function of the machine as a table listing the next configuration for each given
configuration. Another function in FP+∪P◦ can compose such a function with
itself by reading two (polynomial-sized) entries from this table. Therefore after
applying limited recursion on these two functions we obtain a third that outputs
the 2x-step transition function and from this it is trivial to extract the value of
the original PSPACE function. Conversely, FPSPACE+ is closed under limited
recursion (as each such operation increases the space requirements of a function
by a polynomial factor) and the other operations.

For point 3, The step function of a PSPACE Turing machine (a polynomial-
time string function) can be iterated exponentially many times using limited
doubling recursion restricted to E1 ∪E2. Conversely FPSPACE+ is closed under
this restriction of limited doubling recursion as the recursion can be unwound
with only a polynomial amount of additional space. This characterization is
analogous to the one used in Dowd [8]: initial functions closed under limited
recursion. Limited recursion in the context of number functions is of exponential
length, as is limited doubling recursion in our setting. This in turn is reminiscent
of E2, the second level of the Grzegorczyk hierarchy [9], which is defined similarly
except with an initial function of linear growth rate as opposed to x#′y; this
was shown by Ritchie [11] to equal the linear space functions.

Finally, with limited doubling recursion on E3, the step function of an exp-
time Turing machine can be iterated exponentially many times. See [3] for a pre-
vious recursion-theoretic characterization of the exponential-time number func-
tions. ut

3 Third-Order Bounded Arithmetic Theories

Our main theories are W i
1 and TW i

1, intended to correspond to levels of the
exponential-time hierarchy; they are parameterized by the type of induction.
These theories are suggested by the RSUV isomorphism and are closely con-
nected to U i

2 and V i
2 , respectively, although we do not claim an actual isomor-

phism (but one may hold with the unbounded domain versions of these theories).
For i ≥ 0, W i

1 is a theory over L3
A. The axioms of W i

1 are B1-B14, L1, L2 and
SE of [Cook/Kolokolova], (strict) ∀2ΣB

i -IND and the comprehension schemes
ΣB

0 -2COMP: (∃Y ≤ t(x,X))(∀z ≤ a)[φ(x,X,X , z) ↔ Y (z)] and ΣB
0 -3COMP:

8

(∃Y)(∀Z ≤ a)[φ(x,X,X , Z) ↔ Y(Z)], where in each case φ ∈ ΣB
0 subject to the

restriction that neither Y nor Y, as appropriate, occurs free in φ.
W 1

1 defined above is slightly different than the version in CSL04 [12]; it
includes a string equality symbol and extensionality axiom, but this is a con-
servative extension. The unusual class of formulas for which we admit induction
(a bounded string quantifier followed by a strict ΣB

i -formula) is in order for a
replacement scheme to be provable; as a result of this scheme, W i

1 ultimately
admits full gΣB

i -IND; we omit the details.
Define Ŵ i

1 to be the analogous theory with the induction scheme restricted
to (strict) ΣB

i -formulas. Note that Ŵ 0
1 = W 0

1 .
TW i

1 is defined identically as above, but with the following scheme named
ΣB

i -SIND (string or set induction) in place of ∀2ΣB
i -IND:

[∀X, Y, Z((|Z| = 0 ⊃ φ(Z)) ∧ (φ(X) ∧ S(X, Y) ⊃ φ(Y)))] ⊃ ∀Zφ(Z)

for φ ∈(strict)ΣB
i , where S(X, Y) is a ΣB

0 -formula expressing that Y is the
lexicographically next finite set after X. Again, TW i

1 admits (string) induction
on the more general class of formulas due to a replacement scheme.

TTW i
1 is yet another theory in this vein, with a yet stronger induction scheme

named ΣB
i -SSIND (“superstring” induction). Note that since (by design) there

is no way to bound a third-order object, the scheme refers to a term t, and
restricts its attention to the first 2t bits of the objects. It is intended that this t
be some crucial bound from φ. The scheme is:

[∀X ,Y,Z((∀X ≤ t¬Z(X)) ⊃ φ(Z)) ∧ (φ(X) ∧ S3(X ,Y, t) ⊃ φ(Y))] ⊃ ∀Zφ(Z)

for φ ∈(strict)ΣB
i , where S3(X ,Y, z) is a ΣB

0 -formula expressing that when con-
sidering only the lowest 2z bits of the superstrings, Y is lexicographically next
after X .

The scheme ΣB
0 -superstring-recursion is ∃Xφrec(S,X), where φ(Y,X) ∈ ΣB

0 ,
and φrec(x,X) ≡ ∀Y ≤ |S|(L2(Y, S) ⊃ (X (Y) ↔ φ(Y,X<Y))). L2(X, Y) ex-
presses that lexicographically, X < Y , while X<Y is a chop function (i.e.,
X<Y (Z) abbreviates the subformula L2(Z, Y) ∧ X (Z)). φ (and therefore also
φrec) may have other free variables than the displayed ones, but φ must have
distinguished string and superstring free variables Y and X . φrec then has X
free as well as a new variable S. This scheme is analogous to that from [2] and
follows the presentation from [7].

The scheme ΣB
0 -superstring-halfrecursion is ∃Xφhrc(S,X), where φ(Y,X) ∈

ΣB
0 , and φhrc(S,X) ≡ ∀Y ≤ |S|(L2(Y, S) ⊃ (X (Y) ↔ φ(Y,X<Y/2))), where

X<Y/2 is a chop function returning the first Y
2 (as a number) bits of X . φ

and φrec have the same free-variable conventions and requirements as in the
superstring recursion scheme. Then HW 0

1 is the theory W 0
1 with the addition of

the ΣB
0 -superstring-halfrecursion scheme.

3.1 Definability in the Theories

The definability of functions in the third-order setting is a generalization of
the usual definition, but the case of superstring-valued functions additionally

9

includes a mechanism for explicitly reasoning about only an initial segment of the
output. This is necessary as superstrings in the theories are formally unbounded,
while in the function calculus they are finite.

The following omnibus theorem summarizes results concerning definable func-
tions in the theories; proofs (and the formal definition of definability) are in [13]
and are fairly technical, yet generally straightforward. We comment below on
especially interesting or unusual points.

Theorem 3. 1. For i ≥ 1, the ΣB
i -definable functions of W i

1 are precisely
(FPSPACE(Σexp

i−1)
�
)+.

2. For i ≥ 1, the ΣB
i -definable functions of TW i

1 are precisely (FEXP(Σexp
i−1)

�
)+.

3. The ΣB
1 -definable functions of TTW 0

1 are precisely FEXP+.
4. The ΣB

1 -definable functions of both HW 0
1 and Ŵ 1

1 are precisely FPSPACE+.
5. W 0

1 = TW 0
1 and the definable functions of this theory are FPH+∪FPH◦, the

polytime hierarchy functions in the third-order setting.

Remarks. 1. Uniqueness of the function value is important, otherwise the
definable multi-functions are (FEXP(Σexp

i−1)
�
[wit,poly])+; analogously to [1]

for U1
2 .

2. Straightforward.
3. Functions are defined using the superstring-recursion scheme.
4. Straightforward.
5. Equality of theories is by “shortening of cuts”; the theories are conservative

extensions of the second-order polytime hierarchy theory V by a standard
argument.

ut

3.2 An Application of the Function Calculus

W 1
1 does not seem to be a “minimal” theory for PSPACE as witnessing the induc-

tion seems to be too hard. (Put another way, the ΣB
2 -definable functions of W 1

1

might not be contained in FPSPACE+, analogouslt to the situation for, say, S1
2).

An application of the recursion-theoretic characterization previously presented is
that one can specify a language LPS of FPSPACE+ function symbols with open
defining equations. There are cases for initial functions and definitions by limited
recursion, as well as minimization functions allowing elimination of quantifiers.
The resulting theory, HW 0

1 , is universal; it extends HW 0
1 as it contains functions

witnessing the halfrecursion scheme; and the extension is conservative. This last
point is proved by showing inductively that each function of LPS is definable
in HW 0

1 by a single application of the halfrecursion operation followed by a ΣB
0

projection (a subclass of ΣB
1 -definable). The upshot of all of this is that HW 0

1

is therefore in some sense a minimal theory for FPSPACE+.

4 Further Research

Some particular problems: First, does Ŵ 1
1 prove the general induction of W 1

1 ?
One approach is the method of [6], namely by KPT witnessing, with HW 0

1 as the

10

starting point. Second, what about propositional translations of these theories?
Partial progress is made in [13]. Third, are any of the theories HW 0

1 , W 1
1 or

TW 1
1 finitely axiomatizable? Finally, would the conservativity of W 1

1 over HW 0
1

have any complexity-theoretic consequences?

5 Acknowledgment

Thanks to Toniann Pitassi, Charles Rackoff, Alasdair Urquhart, Sam Buss and
Stephen Cook for improvements to the presentation and helpful comments; and
to the referees, whose detailed suggestions I have but imperfectly heeded.

References

[1] Samuel Buss, Jan Kraj́ıček, and Gaisi Takeuti. On provably total functions in
bounded arithmetic theories Ri

3, U i
2 and V i

2 . In Peter Clote and Jan Kraj́ıček,
editors, Arithmetic, proof theory and computational complexity, pages 116–61. Ox-
ford University Press, Oxford, 1993.

[2] Samuel R. Buss. Axiomatizations and conservation results for fragments of
bounded arithmetic. In CMWLC: Logic and Computation: Proceedings of a Work-
shop held at Carnegie Mellon University, pages 57–84. Contemporary Mathemat-
ics Volume 106, American Mathematical Society, 1990.

[3] Peter Clote. A safe recursion scheme for exponential time. In Sergei I. Adian
and Anil Nerode, editors, LFCS97, volume 1234 of Lecture Notes in Computer
Science, pages 44–52. Springer, 1997.

[4] Alan Cobham. The intrinsic computational difficulty of functions. In Yehoshua
Bar-Hillel, editor, Proceedings of the International Congress for Logic, Methodol-
ogy and Philosophy of Science, pages 24–30. North-Holland, 1964.

[5] S. A. Cook. CSC 2429S: Proof Complexity and Bounded Arithmetic. Course
notes, URL: ”http://www.cs.toronto.edu/∼sacook/csc2429h”, Winter 2002.

[6] Stephen Cook and Neil Thapen. The strength of replacement in weak arithmetic.
In Harald Ganzinger, editor, LICS04, pages 256–264. IEEE Computer Society,
July 2004.

[7] Stephen A. Cook. Theories for complexity classes and their propositional transla-
tions. In Jan Kraj́ıček, editor, Complexity of Computations and Proofs, volume 13
of Quaderni di Matematica, pages 175–227. Seconda Università di Napoli, 2004.

[8] Martin Dowd. Propositional Representation of Arithmetic Proofs. PhD thesis,
University of Toronto, 1979.

[9] A. Grzegorczyk. Some classes of recursive functions. Rozprawy Matematyczne,
4:1–46, 1953.

[10] Juris Hartmanis. The collapsing hierarchies. Bulletin of the EATCS, 33, Septem-
ber 1987.

[11] R. W. Ritchie. Classes of predictably computable functions. Transactions of the
American Mathematical Society, 106:139–173, 1963.

[12] Alan Skelley. A third-order bounded arithmetic theory for PSPACE. In Jerzy
Marcinkowski and Andrzej Tarlecki, editors, CSL04, volume 3210 of Lecture Notes
in Computer Science, pages 340–354. Springer, 2004.

[13] Alan Skelley. Theories and Proof Systems for PSPACE and the EXP-Time Hi-
erarchy. PhD thesis, University of Toronto, 2005. Available from ECCC in the
‘theses’ section.

