
Some Results concerning G1 and Polynomial Local Search

Alan Skelley, January 3, 2005.

1 Introduction

We show that the problem of finding witnesses for the restricted quantifiers
(those equivalent to existential quantifiers) in a G1 proof has exactly the same
complexity as the local search class polynomial local search (PLS).

2 General Definitions and Lemmas

In this section we introduce some definitions and conventions. First we define
local search, and in particular, polynomial local search.

In general a local search problem Π has a set of instances DΠ, which are strings.
To each instance x ∈ DΠ there corresponds a set SΠ(x) of solutions, and one
standard solution s0 ∈ SΠ(x). Each solution s ∈ SΠ(x) has a cost fΠ(s, x)
and a neighborhood NΠ(s, x). The search problem is, given an instance, to
find a locally optimal solution, which is to say a solution such that none of its
neighbors has a better cost. (We may be looking for maximal or minimal cost).

The following is from Yannakakis (1997):

Definition 2.1 (Polynomial Local Search (PLS)) A local search problem
Π is in PLS if its instances DΠ and solutions SΠ(x : x ∈ DΠ) are binary
strings, there is a polynomial p such that the length of solutions SΠ(x) is bounded
by p(|x|), and there are three polynomial-time algorithms AΠ, BΠ, CΠ with the
following properties:

1. Given a string x ∈ {0, 1}∗, algorithm AΠ determines whether x is an
instance (x ∈ DΠ), and in this case it produces some solution s0 ∈ SΠ(x).

2. Given an instance x and a string s, algorithm BΠ determines whether
s ∈ SΠ(x) and if so, BΠ computes the cost fΠ(s, x) of the solution s.

3. Given an instance x and a solution s, algorithm CΠ determines whether s
is a local optimum, and if it is not, outputs a neighbor s′ ∈ NΠ(s, x) with
(strictly) better cost, i.e., fΠ(s′, x) < fΠ(s, x) for a minimization problem,
and fΠ(s′, x) > fΠ(s, x) for a maximization problem.

1



Now we define a property of quantifiers which will help us state the witnessing
problem we wish to solve.

Definition 2.2 (Quantifier Orientations) The orientation of an occurrence
of a quantifier is defined as follows:

• If φ is ∀xA(x) then the orientation of the outermost quantifier occurrence
in φ is general.

• If φ is ∃xA(x) then the orientation of the outermost quantifier occurrence
in φ is restricted.

• If φ is θ ∨ ψ or θ ∧ ψ then occurrences of quantifiers in φ have the same
orientation as they do in the corresponding subformula θ or ψ.

• If φ is ¬ψ then all occurrences of quantifiers in φ have the opposite ori-
entation of their corresponding occurrences in ψ.

• Occurrences of quantifiers in succedents of sequents are as described above,
and those in antecedents of sequents are the reverse.

The intuition is that if a sequent were converted into an equivalent formula in
prenex form, a restricted quantifier in the original sequent would become an
existential one and a general quantifier would become universal.

Definition 2.3 (G1) G1 is the subsystem of the quantified propositional system
G where all formulas in all sequents either contain only restricted or only general
quantifiers. (i.e. all formulas are Σq1 or Πq

1.)

3 Witnessing G1 proofs is no harder than PLS

The witnessing problem we wish to solve is as follows: Given a G1 proof of a
sequent S, and assignments to the free variables ~pS and generally quantified
variables ~xS (some of which may have the same name) in S (collectively the
input assignments), find assignments to the restrictedly quantified variables ~yS
in S such that S is satisfied (witnesses or output assignments). As formulated
this is a total search problem, and we shall now formulate it as a PLS problem
G1W whose instances are the input to the witnessing problem, and whose locally
optimal solutions correspond to the witnesses we seek.

Before we do, some motivation is in order. Consider the following (exponential-
time) way to find witnesses for the final sequent of a proof: First recursively
find appropriate witnesses for the hypotheses, then combine them to obtain a

2



witness for the final sequent. By appropriate witnesses for the hypotheses, we
mean that the assignments passed into the witnessing subproblems are chosen
so that the resulting witnesses can be easily manipulated to obtain the desired
witness. Let us examine how this is done in each case:

Lemma 3.1 To solve the witnessing problem for a sequent S and an assignment
σ in a G1 proof, it suffices to solve a witnessing problem for each hypothesis of
the sequent, and then in polynomial time (in the size of the 2 or 3 sequents
involved) we can produce a witness for S.

Proof: There is one case for each inference rule. In each case we describe the
witnessing problem(s) to solve for the hypothesis

• Initial sequents contain no quantifiers so they evaluate to true under any
assignment. They are “automatically” witnessed and have no hypotheses.

• If S is obtained by exchange or ¬-introduction from S′, then the input
assignment for S′ is obtained by reordering the input assignment to S.
The witness for S is obtained by reordering the witness for S′.

• If S is inferred by weakening, ∧ : left or ∨ : right from S′, then solve the
witnessing problem for S′ with the assignment σ restricted to only those
free variables and quantifiers occurring in S′. The resulting witness can
be augmented by an assignment of 0 to every new restricted quantifier to
obtain a witness for S.

• S is obtained from S′ by contraction, deleting a copy of A.

– If A is quantifier free then a witness for S′ with input σ is the witness
we seek.

– If A’s quantifiers are restricted, then an input assignment for S is
also an input assignment for S′. Solve the witnessing problem, and
the result will have witnesses for the quantifiers in each copy of A.
This witness contains too many assignments to be a witness for S,
since S contains one less copy of A. We choose one of the two sets
of assignments for A as follows: Pick the first of the two sets of
assignments which falsifies (resp. satisfies) the corresponding copy
of A in the antecedent (resp. succedent) of S′, and if neither works
then pick the first set.

– If A’s quantifiers are general, then an input assignment for S does not
contain enough assignments to work for S′, since S′ contains more
general quantifiers. However we may use as input assignment to S′ σ
modified to include two copies of the assignments to A. The resulting
witness for S′ is also a witness for S.

3



• If S is obtained by ∧ : right or ∨ : left, then we restrict the assignment in
the obvious way and obtain witnesses for the hypotheses. We then combine
them as follows: We retain the entire witness for the first hypothesis of S.
We add the set of assignments to the minor formula in the other hypothesis
of S (if any) to obtain a witness for S.

• If S is obtained from S′ by the introduction of a general quantifier, then
an input assignment to S contains an assignment for that quantifier. S′

contains a free variable that S does not. Obtain an input assignment for
S′ by moving the assignment to the new quantifier so that it becomes
an assignment to the old free variable. The resulting witness for S′ is a
witness for S.

• If S is obtained from S′ by the introduction of a restricted quantifier,
then S′ may contain both quantifiers and free variables which S does not.
An input assignment to S is converted into an input assignment to S′

by adding an assignment of 0 to every extra free variable and general
quantifier. A witness for S is obtained from a witness for S′ by evaluating
the subformula which was replaced by the newly quantified variable in S
and using that value as the assignment to the new variable. Also, all sets
of assignments in the witness for S′ which are not needed (because those
quantifiers do not appear in S) are discarded.

• The final case is when S is obtained using the cut rule with cut formula
A. There are 3 subcases:

– A is quantifier free. In this case, an input assignment for S also
works for each hypothesis (possibly augmented by assignments of 0
to free variables in A not occurring in S). Once witnesses for each
hypothesis are obtained, clearly one of them also witnesses S (since
the formula A must get the same value in each case). Choose the
first.

– A contains restricted quantifiers. If S′ is the hypothesis of S in which
A occurs on the right then an input assignment to S is also an input
assignment to S′. A witness to S′ under this input assignment will
either satisfy S or A. In the former case no more work is required
but in the latter case the satisfying assignment to A is added to the
input assignment to S to obtain an input assignment to the other
hypothesis, S′′, of S, in which A occurs on the left. A witness to S′′

under this assignment clearly satisfies S.

– A contains general quantifiers. Analogous to the above.

4



3.1 The PLS problem G1W

We may now formally define the PLS problem G1W as follows:

• Instances: DG1W = {< π, σ >: π =< S1, ..., Sk > is a G1 proof of a
sequent S = Sk and σ is an assignment to all the free and generally
quantified variables in S}.

• Solutions: SG1W (< π, σ >) = {< τ1, ..., τk >: k is the number of sequents
in π, and each τi is a (not necessarily correct) witness to Si}. (In fact,
we haven’t even specified under which input assigmnent the witness is
intended to work.) These solutions are shorter than π.

• Standard solution: The algorithm AG1W checks to make sure that its
input string is a pair < π, σ >, that π is a correct G1-proof and that σ
is an input assignment to the endsequent of π (i.e. is the correct length).
If all the proceeding are true then it outputs the string < ~0, ...,~0 > of
all-zero witnessing assignments to every sequent in π.

• Cost function: The algorithm BG1W on input < π, σ > and < τ1, ..., τk >
proceeds as follows:

1. counter := 0

2. current := k (k=number of sequents in π)

3. ρ := σ

4. if τk witnesses the endsequent of π under assignment σ, then exit
with return value 2k.

5. for each hypothesis Sj of Scurrent, (in the case of the cut rule, starting
from the hypothesis of Scurrent in which the cut formula’s quantifiers
are general (in the context of the sequent)), do the following:

(a) compute the correct input assignment ρ′ to Sj from ρ (and if
necessary from the correct witness to the previous hypothesis, in
the case of the cut rule)

(b) if τj witnesses Sj under ρ′ then increment counter by 2j and con-
tinue with the next iteration of this loop (i.e. the next hypothesis
of Scurrent, if any)

(c) otherwise, let ρ := ρ′, current := j and start the loop again

6. return the counter

The intuition behind this algorithm is that < τ1, ..., τk > is thought of as
the scratch space of the (exponential running time) recursive procedure
for computing a witness. The above algorithm simply descends the re-
cursion to the bottom, making note at each level how much progress has
been made: how many hypotheses of the corresponding sequent already

5



have correct witnesses computed. If all have correct witnesses then the
algorithm terminates. Otherwise, the algorithm knows which hypothesis
is the subject of the next-lower recursive call and so moves on to it.

The running total is weighted so that any progress by the recursive algo-
rithm would increase the return value of BG1W .

• Neighbor of strictly higher cost: The algorithm CG1W on input < π, σ >
and < τ1, ..., τk > proceeds as follows:

1. current := k (k=number of sequents in π)

2. ρ := σ

3. if τk witnesses the endsequent of π under assignment σ, then the
solution is a local optimum; exit.

4. for each hypothesis Sj of Scurrent, (in the case of the cut rule, starting
from the hypothesis of Scurrent in which the cut formula’s quantifiers
are general (in the context of the sequent)), do the following:

(a) compute the correct input assignment ρ′ to Sj from ρ (and if
necessary from the correct witness to the previous hypothesis, in
the case of the cut rule)

(b) if τj witnesses Sj under ρ′ then continue with the next iteration
of this loop (i.e. the next hypothesis of Scurrent, if any)

(c) otherwise, let ρ := ρ′, current := j and start the loop again

5. the loop has just exited, meaning that < τ1, ..., τk > contains wit-
nesses for each hypothesis of the current sequent, in each case under
the correct input assignment as in lemma 3.1, but not however a
correct witness for the current sequent itself. Compute τ ′current from
these and return the new solution < τ1, ..., τ

′
current, ..., τk > obtained

by substituting the correct τ ′current for the incorrect τcurrent in the
input solution

The above algorithm is very similar to the previous one, except that when
it locates the bottom of the recursion - the place where the exponential-
time recursive algorithm would hypothetically be about to do the next
computation - CG1W performs this computation and returns the new
scratch space as the neighbor solution. This new solution clearly has
higher cost as evaluated by BG1W .

6


