
Otherworld - Giving Applications a
Chance to Survive OS Kernel Crashes

Alex Depoutovitch
Department of Computer Science

University of Toronto
depout@eecg.toronto.edu

Michael Stumm
Department of Electrical and Computer

Engineering
University of Toronto

stumm@eecg.toronto.edu

Abstract
The default behavior of all commodity operating systems to-
day is to restart the system when a critical error is encoun-
tered in the kernel. This terminates all running applications
with an attendant loss of ”work in progress” that is non-
persistent.

Otherworld is a mechanism that microreboots the operat-
ing system kernel when a critical error is encountered in the
kernel, and it does so without clobbering the state of the run-
ning applications. After the kernel microreboot, Otherworld
attempts to resurrect the applications that were running at
the time of failure. It does so by restoring the application
memory spaces, open files and other resources. In the default
case it then continues executing the processes from the point
at which they were interrupted by the failure. Optionally, ap-
plications can have user-level recovery procedures registered
with the kernel, in which case Otherworld passes control to
these procedures after having restored their process state.
Recovery procedures might check the integrity of applica-
tion data and restore resources Otherworld was not able to
restore.

We implemented Otherworld in Linux, but we believe
that the technique can be applied to all commodity operating
systems. In an extensive set of experiments on real-world
applications (MySQL, Apache/PHP, Joe, vi), we show that
Otherworld is capable of successfully microrebooting the
kernel and restoring the applications in over 97% of the
cases. In the default case, Otherworld adds zero overhead
to normal execution. In an enhanced mode, Otherworld can
provide extra application memory protection with overhead
of between 4% and 12%.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

Categories and Subject Descriptors D.4.5 [Operating Sys-
tems]: Reliability – Fault-tolerance

General Terms Design, Reliability

Keywords Recovery, Kernel, Microreboot, Crash Kernel

1. Introduction
Computer systems periodically experience failures,1 and this
comes at a considerable cost. According to Patterson, orga-
nizations spend from 30 to 50 percent of computer system’s
total cost of ownership on preparing for and recovering from
failures [26]. Software failures dominate hardware failures,
and Patterson argues that faults in software are an unavoid-
able fact of our life that we have to cope with. While op-
erating systems can ensure that an application failure does
not affect the execution of other applications running on the
same system, a fault inside the operating system kernel itself
may result in a failure of the entire software system stack.

As shown by Chou et al., the number of bugs in oper-
ating systems increases with each release, since each new
version tends to be more complex and tends to add more
functionality [11]. According to the same study, the aver-
age time between when a bug is introduced to when a fix is
released is 1.8 years for Linux kernels. Moreover, research
suggests that the number of transient memory and processor
failures is increasing [5]. These failures are intermittent and
cause incorrect values to be read from memory or incorrect
instruction results to be produced.

When a failure occurs inside the operating system kernel,
it may affect any part of the software system and the recov-
ery code itself may be affected by the failure. Most modern
production operating systems take the simplified approach
of simply rebooting the system when a failure is detected

1 Throughout the paper, we follow the terminology established by Avizienis
et al. [2]. A system failure or a crash occurs when the delivered service
no longer complies with the agreed description of the system’s expected
function and/or service. An error is that part of the system state that is liable
to lead to subsequent failure; an error affecting the service is an indication
that a failure occurs or has occurred. The adjudged or hypothesized cause
of an error is a fault or a bug.

Figure 1. Main and crash kernels

and, as a consequence, the entire software stack fails and all
volatile application state is lost. There have been attempts
at creating operating system kernels capable of recovering
from failures, such as Multics or MVS [1], but faults in these
systems still resulted in outages and reboots in more than
19% of the cases [28], and half of the operating system code
consisted of error recovery code [31].

The key idea behind our work is that an operating sys-
tem kernel is simply a component of a larger software sys-
tem, which is logically well isolated from other components,
such as applications, and therefore it should be possible to
reboot the kernel without terminating everything else run-
ning on the same system. Following Candea et al. [8], we
call such a reboot a kernel microreboot to distinguish it from
a full system reboot. Microrebooting a component as impor-
tant as the operating system kernel may be difficult without
support from some of the applications. But, even for such
applications, we will argue that this is possible with min-
imal and straightforward changes to application code. The
solution we propose, called “Otherworld”, does not add to
hardware costs, preserves the latest state of the application,
and can be applied to production operating systems. Our so-
lution can operate in two modes: in simple mode with no run
time overhead that does not protect from error propagation
or in memory protected mode that provides a higher level of
protection against error propagation at the cost of between
4% and 12% overhead.

Two properties of existing operating system kernels com-
plicate the process of microrebooting the kernel without af-
fecting running applications. First, the kernel resides in a
privileged layer underneath all applications, so there is no
other software component that can manage kernel reinitial-
ization without destroying all applications running above the
kernel. Secondly, the kernel itself contains data critical for
running applications, such as a physical memory page tables,
location of data paged to disk, as well as state belonging to
opened files and network connections.

To address these issues, we have designed a mechanism
called “Otherworld”. We propose having two operating sys-
tem kernels resident in physical memory. The first (main)
kernel performs all activities an operating system is respon-

sible for. The second (crash) kernel is passive and is acti-
vated only when the main kernel experiences a critical fail-
ure (Fig. 1). If the main kernel crashes (i.e., “panics”), in-
stead of rebooting, it passes control to the crash kernel. The
crash kernel is not affected by the error because it has been
passive and is protected by standard memory hardware. Af-
ter obtaining control, the crash kernel initializes itself using
only the limited region of memory reserved for this purpose
by the main kernel. All information on running applications
in the main kernel as well as the application data still exists
in memory and is accessible to the crash kernel. This allows
the crash kernel to reconstruct the state of each application
and pass control to the applications without losing data. We
refer to this reconstruction process as application resurrec-
tion.

An application can optionally register a special user-level
function, called crash procedure. This function is called
by the crash kernel notifying the application that a kernel
microreboot has occurred and that the application has been
resurrected. The crash procedure is called similarly to the
way application exception (signal) handlers are called. The
crash procedure can either save application state to persistent
storage and restart itself, or it can restore relevant parts of the
system state that are not automatically restored by the crash
kernel and instruct the crash kernel to continue application
execution from the point at which execution was interrupted
by the kernel failure.

We evaluated the viability of our mechanism with dif-
ferent classes of applications: interactive applications, a
database server, a web application server, and a checkpoint-
ing solution. We were able to successfully resurrect each
of those applications after kernel restarts caused by kernel
failures in more than 97% of the cases. For the applications
we considered, we found that writing a suitable crash proce-
dure was either not necessary or only a matter of writing few
dozen lines of code and did not require a deep understanding
of applications internals.

In the next section we discuss related work. Section 3 de-
scribes the architecture and implementation details of Other-
world. The reliability of Otherworld is discussed in Section
4. Section 5 gives examples of crash procedures for different
applications and discusses details of their implementation.
In Section 6, we experimentally evaluate our approach and
conclude in Section 7.

2. Related Work
A computer system can have several distinct sources of fail-
ure, and different techniques are used to address each of
them. Uninterruptible power supply units allow computer
systems to tolerate power outages. Continuous replication,
implemented in products like VMWare Fault Tolerance [32],
protects a computer system from hardware failures. Operat-
ing systems protect applications from faults in other applica-
tions. Orthogonally, Otherworld allows computer systems to

tolerate faults within the operating system itself. There are
other fault tolerant techniques that implement similar func-
tionality that we describe below, but Otherworld has some
advantages over each of them. Otherworld is designed to run
on conventional hardware without requiring redundant hard-
ware. It does not put any restrictions on the operating system
architecture or programming language used. It introduces no
or minimal runtime overhead (based on mode of operation).

One of the more popular techniques that allow applica-
tion data to survive operating system failures is periodic
checkpointing. However, periodic checkpointing introduces
overhead that is significant for applications that use a large
amount of frequently changing data. Laadan and Nieh show
that checkpointing a MySQL server serving one client takes
more than a second during which time the system is unre-
sponsive (even on a system with Fibre Channel hard drives)
[20]. King et al. measured that checkpointing a virtual ma-
chine with 256MB of memory taken every 10 seconds adds
15-27% to the benchmark execution time [19]. In-memory
checkpointing reduces overhead by an order of magnitude
[27] but does not protect against operating system failures
and effectively halves the amount of available physical mem-
ory. Another problem with checkpointing is that applica-
tion state restored from the checkpoint is typically outdated,
which may result in data loss. For example, transactional
changes, which a client may consider to have been commit-
ted to a database, may be rolled back as a result of restoring
data from the checkpoint.

In contrast to checkpointing that periodically captures a
snapshot, Otherworld effectively captures a snapshot at the
time of the kernel failure. It thus does not have the over-
head and data loss problems that checkpointing has. On the
other hand, checkpointing has several advantages over Oth-
erworld, such as protection against power failures and ap-
plication failures. Otherworld can also complement check-
pointing: if the user is relying on in-memory checkpointing
for protection against application faults, Otherworld can be
used to protect the in-memory checkpoints against operating
system crashes.

Microkernel-based operating systems provide improved
fault isolation by locating some operating system compo-
nents in separate address spaces. This makes it possible to
restart individual components when they fail. For example,
Minix has a reincarnation server that can restart other op-
erating system components and drivers [17]. Designers of
the CuriOS operating system propose that operating system
components store part of their state in their client’s address
spaces and access it using the interface provided by the ker-
nel [12]. On a failure, the failed component is restarted and
obtains access to the client state stored by its previous in-
stance. The performance overhead of this approach is still
to be evaluated. The authors showed that their microkernel
design does not necessarily protect from an error in one com-
ponent propagating into other components; experiments de-

termined that in 6% of the cases, the operating system ulti-
mately crashes because of error propagation.

Rebooting the entire kernel instead of separate compo-
nents makes Otherworld applicable to existing commer-
cial operating systems (such as Linux, Windows, MacOS),
which tend to be monolithic. Another advantage of Oth-
erworld is that it is capable of operating with no runtime
overhead and guarantees that errors in the main kernel do
not propagate to the crash kernel. Minix and CuriOS are
not protected from faults inside the microkernel, reincarna-
tion server, or in any of the components it depends on, e.g.,
file system driver. Our approach provides protection against
failures in any part of the operating system, except for about
100 lines of code that transfers control from the main kernel
to the crash kernel.

Swift et al. improve the fault tolerance of existing mono-
lithic operating system kernels with the Nooks framework,
but only target device drivers faults [29, 30]. Nooks im-
proves driver isolation from the rest of the kernel using mem-
ory protection and run-time type validation of API func-
tion calls arguments, significantly improving failure detec-
tion and reducing failure propagation. However, the perfor-
mance overhead of Nooks varies from 3% to 100% depend-
ing on the workload.

Peter Chen et al. proposed Rio, a reliable file write-back
cache, whose contents is preserved across system reboots
[25]. Other research groups have also investigated ways of
preserving specially designated regions of memory across
operating system crashes and subsequent reboots [4, 7].
These regions of memory can only be used for saving appli-
cation state, so the choice of their size is a trade-off between
use of physical memory and the amount of state that can be
saved by applications. Otherworld has the advantage that it
preserves the entire application state. Moreover, the applica-
tion does not need to regularly update the protected region
with the latest, most critical data, thus avoiding run-time
overhead, estimated by Baker et al. to be around 5%[4].

The MVS operating system contained routines for recov-
ery from kernel failures [1]. The weak point of the MVS de-
sign is that the recovery routine executes in the kernel, which
may have been already damaged by the fault. MVS did not
provide a recovery routine for 34% of errors observed in the
field, and even when recovery routine was provided, the re-
covery failed in 44% of the cases [28].

Yang Chen et al. designed and implemented kernel mi-
crorebooting in TinyOS, a special-purpose sensornet operat-
ing system designed to run on microcontrollers with tens of
kilobytes of RAM [10]. To support kernel microrebooting,
they rely on programmers explicitly specifying in the pro-
gram code the state to be preserved during the reboot and
compile the program and the kernel with a specialized com-
piler. Otherworld is designed to reboot much more complex
general-purpose operating system kernels, such as Linux. It
does not require a special compiler and in many cases does

not require changes to the application source code or even
recompiling the application.

Goyal et al. developed KDump - a mechanism that en-
ables booting into a new kernel while preserving the phys-
ical memory contents of a crashed system [14]. KDump’s
new kernel is used only to create a physical memory dump
for further investigation - there is no attempt to recover ap-
plications. Our work takes this idea a step further by restor-
ing all application memory state and attempting to continue
application execution.

3. Design and Implementation
Our proposed technique of microrebooting a kernel to allow
applications to survive kernel crashes with high probability
is shown in Figures 2 - 5. The Otherworld architecture con-
sists of three parts. First, there is a modified operating sys-
tem kernel that microreboots itself without destroying run-
ning applications. Second, there is code inside the crash ker-
nel that resurrects application processes after a microreboot.
Third, for each application there is an optional crash pro-
cedure, an application-defined, user-level function called by
the crash kernel on resurrection. The system operates in five
stages:

1. At first boot, the system configures itself and loads the
crash kernel image into a region of physical memory
reserved for the crash kernel.

2. The system runs normally under the control of the main
kernel. At any time, applications may register a crash
procedure with the kernel.

3. On a kernel failure, control is passed to the crash kernel,
and the crash kernel initializes itself within the memory
reserved for it.

4. After initialization, the crash kernel resurrects the appli-
cations and calls their crash procedures, if registered.

5. The crash kernel takes control over all remaining system
resources, morphs itself into the main kernel, and installs
a new crash kernel.

We implemented our mechanism in Linux, but our architec-
ture is generic and can be applied to other operating systems
as well. We now describe each of the stages in more detail.

3.1 Setup
Initially, the computer system is booted normally by loading
and initializing the main operating system kernel. In order
for the system to be capable of performing a microreboot,
the main kernel reserves a special region of physical memory
(e.g., 64 MB) for a crash kernel. The crash kernel image
is loaded into this region and is left there untouched and
uninitialized, protected by memory hardware. As long as
the main kernel operates without a failure, the crash kernel
image is left intact in this region of physical memory, and its
code is never executed. In our implementation under Linux,

we use the KDump mechanism to load the crash kernel
into memory and pass control to it after a failure has been
detected [14].

Any user application that wishes to be notified after a ker-
nel microreboot can register a crash procedure. The address
of this procedure is stored in the process descriptor of the
main kernel and serves as an entry point to be called if and
when the crash kernel gains control.

In order to simplify resurrection and reduce the number
of main kernel data structures that we have to retrieve and
rely on, we modified the main kernel so that the information
necessary to recreate resources that belong to the applica-
tions is easier to access. For example, in the Linux kernel,
information relating to open files is located in the file, inode,
and multiple dentry structures, but in order to recreate the
open file structure for the file, only the file location, name,
open flags and current file offset are required. We keep the
location, name, and open flags specified by the application
during the open call, in the file structure where the file off-
set is also stored. As a result, we only need to rely on one
structure to recreate the kernel open file state.

In our current implementation, we use the same kernel
source to build both the main kernel and the crash kernel.
Although we use two different disk files for the main and the
crash kernels, the only difference between these kernels is
the initial kernel memory offset. Common source code for
both kernels has advantages and disadvantages. One advan-
tage is that it is easier for the crash kernel to access the main
kernel data structures since they both use the same structure
layout. In addition, modifications to one of the kernels are
automatically applied to the other, as both kernels are built
simultaneously. On the other hand, there are no impediments
to having the crash kernel be different from the main kernel.
Although this approach is more complex to implement, it has
one important advantage. If the kernel fault that triggered a
failure is not intermittent, e.g., was caused by some partic-
ular combination of system call arguments, resurrection of
the application that triggered the fault could cause the same
fault to be triggered again, since the application will retry the
system call when run under the crash kernel. Using different
kernel versions would allow us to successfully recover from
this situation.

3.2 Response to Kernel Failure
When the main kernel experiences a critical error, instead
of rebooting, it issues non-maskable interrupts to all pro-
cessors except the one that executed the code causing the
failure. Upon receiving a non-maskable interrupt, each pro-
cessor saves the hardware context of the thread that it was
executing, then sets a global flag indicating that it has saved
its context, and brings itself to a halt. This ensures that CPU
registers are saved on the corresponding kernel stack for all
user threads by the time control is passed to the crash kernel.
Later, it will allow the crash kernel to retrieve this context
and continue thread execution similar to the way a regular

Figure 2. Failure is detected in the main kernel

Figure 3. Crash kernel retrieves information from the main
kernel

context switch occurs. The processor that was executing the
code causing the failure waits for all other processors to halt,
removes the memory protection from the crash kernel im-
age, and jumps to the initialization point of the crash kernel.
From this moment on, no main kernel code is executed, and
the crash kernel controls the system.

The crash kernel initializes itself normally with the ex-
ception that it only uses the memory region originally re-
served by the main kernel for this purpose (Fig. 2). Al-
though, the crash kernel uses only the reserved region of
memory during the resurrection, after the resurrection pro-
cess is complete, the crash kernel starts using all the physi-
cal memory installed on the system (as described in Section
3.6). In order to be able to dynamically change the amount
of physical memory available, the startup code of the crash
kernel has to allocate extra page descriptors that are not used
by the crash kernel during the resurrection process but will
be used when the resurrection process is complete. This is
the only change to the stock Linux startup code that we had
to make for the crash kernel.

In order not to corrupt any pages that were swapped
out by the main kernel, we use two swap partitions in our
system: one is used by the main kernel and the other by
the crash kernel. Initialization scripts can query the kernel
to determine if it is the main or the crash kernel. Based
on which kernel is booting, the initialization scripts choose
the appropriate partition. The crash kernel and the main

kernel share the same initialization scripts, load the same
device drivers,2 and mount the same file systems at the same
mount points. As a result, the application environment of the
crash kernel is the same as that of the main kernel, which
makes kernel reboots more transparent to applications and
simplifies the writing of crash procedures.

3.3 Application Resurrection
After the crash kernel completes its initialization, it starts a
recovery phase in which it accesses the kernel structures of
the main kernel in order to resurrect applications (Fig. 3).
We believe that in most scenarios, the end user is interested
in resurrecting only a few important processes, e.g., the
database server, the web server, the text editor, etc. The other
processes, such as the window manager, the mouse server,
or the cron daemon, do not hold important state and can be
safely restarted without resurrection in most scenarios. This
completely eliminates the possibility of any side effects on
these processes that might have been caused by the kernel
crash failure. After the crash kernel finishes its initialization,
the interactive user is presented with a list of the processes
that were running on the system at the time of the crash. The
user can then select the processes that should be resurrected.
Alternatively, a resurrection configuration file that identifies
which processes are to be resurrected automatically can be
specified. The startup script consults this file to determine
which processes to resurrect. The latter option is intended
to be used by server systems for autonomic recovery, and
we used it during our automated fault injection experiments
(Section 6).

The first step of the resurrection is to recover process
descriptors. In Linux, the process descriptors are organized
in a linked list. The location of the first element of this list is
stored in a global variable in the kernel. The starting physical
address of the kernel is constant and configurable at kernel
compilation time and, therefore, the crash kernel is aware of
the physical address of the first element of the process list.

Next, the crash kernel retrieves the swap area descriptors
from the main kernel, stored in a fixed size array accessible
through another global variable. Each descriptor describes
one swap partition and contains a pointer to the file structure
that corresponds to a regular file or a device file that stores
the swap area. Since the symbolic name of the device is
stored in this structure, the crash kernel can reopen it.

For each process that is to be resurrected, the crash ker-
nel creates a new process. The kernel portion of the virtual
address space of the newly created process is the same as
for any other process running on the crash kernel. The user

2 Both the crash and the main kernel load the same set of drivers. Note that,
we do not modify any drivers, and drivers initialize the devices as during the
initial system boot. If a driver developer wants to use, as an optimization,
different logic to re-initialize a device after a crash occurred, it is possible
for the driver to ask the kernel if it is a crash kernel and even access the
memory of the main kernel through the functions provided by the crash
kernel.

portion of the virtual memory space of the newly created
process is created to be a copy of the user portion of virtual
address space of the process being resurrected. To do this,
the crash kernel obtains the list of memory region descriptors
of the process being resurrected from the main kernel mem-
ory. For each memory descriptor in the list, the crash kernel
creates a new memory descriptor with the same attributes.
Some of the memory regions may have been mapped to a
disk file. In this case, there is a pointer to the corresponding
file structure. These files are reopened by the crash kernel
and mapped to the corresponding memory region.

The next step is to retrieve the contents of each virtual
memory page within the memory region. For each page,
the crash kernel retrieves from the main kernel memory
the corresponding entry of the hardware page table of the
process being resurrected. If the entry references a physical
memory page, a new page is allocated in the crash kernel
and the content from the corresponding page of the main
kernel is copied into it.3 For each entry that corresponds to a
page that was swapped out to disk by the main kernel, a new
page is allocated in the crash kernel’s swap partition (which,
as we mentioned earlier, is different from the main kernel
swap partition). The contents of the newly allocated page is
copied from the corresponding page of the main kernel swap
partition. This fully restores the user-level memory space of
each target process.

After the application memory space of a process is re-
stored, the crash kernel restores the files that were open
for the process. The process descriptor structure from the
main kernel contains a pointer to a file descriptor table
(files struct), which describes all files that were open for
the process when the main kernel failed. The crash kernel
reads the name, location, open flags, and current offset from
that table and reopens the files accordingly. In order to make
the reopening of the files transparent to the application, the
crash kernel places each reopened file into the same position
within the file table as it was in the main kernel and restores
the current offsets. The last step of resurrecting a process’s
open file is the flushing of its dirty file buffers. File buffers
are organized in a tree. The root of this tree is accessible
through the file descriptor. Each leaf element of the tree con-
tains a pointer to a descriptor of a physical page with file
data. Page descriptors contain the dirty flag, which has been
set by the main kernel to indicate that the corresponding
page needs to be saved to disk, and the offset of the data rel-
ative to the start of the file. The crash kernel saves all pages
with a set dirty flag to disk.

With respect to terminals, the current Otherworld imple-
mentation can only restore the state of physical terminals. In
order to do this, the crash kernel checks the type of the ter-
minal attached to the process being resurrected, and if it is a

3 As an optimization, one can directly map the physical page instead of
copying it, which would significantly increase the speed of resurrection of
large processes.

Figure 4. Application is resurrected and its crash procedure
is called

physical terminal, its state is restored as a part of the applica-
tion resurrection process. The screen contents of the physical
terminal in Linux is stored in a kernel buffer, which can be
indirectly obtained from the process descriptor. The crash
kernel opens a new terminal and sets the terminal settings
and the screen context from the terminal that the application
used at the time of the main kernel failure.

At this point, the crash kernel is ready to start executing
the resurrected process. If the process has registered a crash
procedure, the kernel allocates a temporary stack in the user
space and calls the crash procedure. This provides the resur-
rected process the opportunity to execute recovery code with
all of the process’s global data available (Fig. 4). Depending
on the value returned by the crash procedure, the crash ker-
nel will either terminate the process or continue execution of
the process from the point at which it was interrupted by the
crash.

In the current prototype, in addition to the application
memory space, the crash kernel also resurrects all open and
memory mapped files, signal handler descriptors, shared
memory, and physical terminals. We have not yet imple-
mented the resurrection of the various IPC resources, such as
sockets, pipes, or pseudo terminals. Application crash pro-
cedures have to be added to programs that use these resource
types in order to restore them in an application-specific man-
ner or in order to at least shutdown the application gracefully
after having saved application state to persistent storage.
But, as we will show in Section 5, even our limited prototype
is applicable to a wide range of applications. While this is a
serious limitation (requiring crash procedures to reestablish
these IPC channels), we believe these resources are resur-
rectable, albeit non-trivially, and plan on working on them
next. Nearly all network protocols in Linux use sockets.
However, the data associated with each socket will differ,
depending on the protocol for which the socket was opened.
As a result, the resurrection of sockets will also have to be
protocol dependent. Most applications use TCP over IP or
UDP over IP. Because IP and UDP do not guarantee packet
delivery, it is safe to discard any payload data during resur-
rection, and only connection parameters associated with a

Crash procedure defined No crash procedure defined
All resources
were resurrected

The crash procedure will be called. It can either save data to
disk and restart the application or instruct the crash kernel to
continue the execution of the application.

The crash kernel will continue
the execution of the application.

Some resources
could not be
resurrected

The crash procedure will be called. The crash procedure can
either restore resources itself and continue execution or save
application state and restart the application.

The resurrection will fail.

Table 1. Interactions between the crash kernel and the application being resurrected.

socket needs to be resurrected, including IP address, socket
options, and datagram size. For TCP, additional connection
parameters need to be resurrected, including the current se-
quence number and window size. Moreover, all outbound
payload data as well as acknowledged inbound payload data
needs to be resurrected. We expect that the finer details of
the TCP/IP implementation, large quantity of parameters as-
sociated with a TCP/IP stack, and the requirement that res-
urrection has to be completely transparent to the remote host
will make resurrecting TCP/IP sockets non-trivial. More-
over, the resurrection time has to be smaller than a network
timeout.

We believe that resources for local IPC structures are also
resurrectable. For example, pipes are implemented as a cir-
cular buffer of memory shared between two or more pro-
cesses. All accesses to pipe data structures are serialized us-
ing a semaphore, and when the semaphore of a pipe struc-
ture is not locked, then the structure should be in a con-
sistent state. If the semaphore of a pipe structure is locked,
then the structure was being accessed when the kernel failed
and one must assume that the structure is in an inconsistent
state preventing resurrection. The amount of time shared IPC
data structures are locked depends on application usage; e.g.,
if two processes start exchanging a lot of data through the
pipe, the pipe may be in an inconsistent state for a noticeable
amount of time. As a result, we expect that the resurrection
of IPC resources resurrection may fail at a higher rate com-
pared to that of private process resources, such as process or
memory descriptors.

3.4 Crash Procedure
After resurrecting all resources, the crash kernel calls the
crash procedure if the process has registered one. Crash pro-
cedures serve several purposes. First, they are used to de-
tect potential data corruption in an application-specific way.
Since a kernel failure is an infrequent event, the application
can afford to do elaborate data consistency checks. The prob-
lem of detecting data corruption is complex and interesting
by itself, and we will leave it for future work.

Second, crash procedures are used for application-specific
resource resurrection. The more resources being resurrected
by the crash kernel, the higher the probability of encoun-
tering data corruption, where the crash kernel may not be
able to restore all of the application resources. Also, some

resource types can not be resurrected due to implementation
limitations, as was outlined in Section 3.3. The crash ker-
nel reports to the crash procedure which resource types it
could not resurrect, by providing a bitmask argument to the
crash procedure. Each bit in the bitmask corresponds to a
resource type (e.g., network sockets or pipes) that the crash
kernel did not restore due to implementation limitations or
data corruption. An advanced crash procedure can resurrect
these resources using application-specific logic, for example
reopening network connections.

Finally, the crash procedure must determine whether it
wishes to continue executing as is (e.g., if all resources were
successfully resurrected), whether it wishes to save a portion
of its state to persistent storage and restart, or whether it
deems the restoration to be unsuccessful and gives up by
exiting.

While an application without a crash procedure often can
be resurrected, having a crash procedure that saves applica-
tion data to the persistent storage and restarts the applica-
tion, increases the probability of successful resurrection. As
shown by Chandra and Chen, application-specific recovery
is much less likely to be affected by faults within the oper-
ating system than application generic recovery [9]. In many
cases (e.g., for non-critical interactive applications) contin-
uing the execution so as to minimize inconvenience to the
user at the expense of a slightly higher risk of data corrup-
tion is acceptable. For more mission critical applications,
like databases, one may prefer to always save application
data to the persistent storage and restart the application to
eliminate all potential side-effects of the fault.

3.5 Resurrection Levels
Depending on the system resource types consumed by the
process and the application’s own preferences, different lev-
els of resurrection are available, as summarized in Table 1. If
a process did not register a crash procedure before the crash,
and the process only uses resources resurrected by the crash
kernel, then the crash kernel can continue the execution of
the process from the point where it was interrupted by the
crash. If, at the time of the crash, the process was executing
in user mode (on a processor different from the one that ex-
perienced the failure), execution of the process will continue
with the next instruction and the crash goes completely un-
noticed by the process. If the process was in the middle of

Figure 5. The crash kernel takes over the system and
morphs into the main kernel

a system call, then the crash kernel will abort the call with
a return error code that signals to the process to retry the
call. Some applications may have to be modified to handle
this error code correctly by re-executing the system call. If
no crash procedure was registered before the crash, and the
crash kernel was not able to resurrect all of the kernel re-
sources consumed by the application, the resurrection will
fail.

3.6 Morphing into a Main Kernel
After a kernel failure, it is important not only to restore
application state but to also restore the full functionality of
the system and protect the system from failures that may
occur in the future. After all target application processes
are resurrected, the physical memory that belonged to the
main kernel is no longer needed. The crash kernel thus
reclaims all of the available physical memory and adds it to
its free memory list. One region of the reclaimed memory is
reserved, and another crash kernel is loaded into this region.
As soon as this is done, the crash kernel starts playing the
role of the main kernel, and the newly loaded kernel becomes
the crash kernel. As a result, the system is running with
a fresh kernel, which is free of state corruption caused by
the fault, the applications that were running at the time of
failure were able to preserve their data and possibly continue
execution, and the system is again protected from the failures
(Fig. 5).

3.7 Kernel modifications
We have implemented Otherworld in Linux kernel version
2.6.18. The implementation required changing 400 lines of
the existing code and adding 2,300 new lines of code. Mod-
ifications to the startup code, the file management code, and
to the clone() system call were necessary. The startup code
modifications were required to be able to add memory to the
crash kernel after the resurrection process is complete and
to reserve the region in which the new crash kernel may be
loaded. File management code had to be modified in order
to simplify the restoration of open files. Both process res-
urrection and the cloning of an existing process have a lot
in common, since in both cases the copy of another process

is created. Because of this, we modified the existing clone()
call to handle both operations. Most of the new code was
added for retrieving and recreating process information from
the failed main kernel.

4. Data Corruption
The practicality of microrebooting an operating system ker-
nel depends to a large extent on the probability that the bug
that caused the kernel to crash also corrupted application
memory and/or kernel structures needed for recovery.

Most faults in the operating system kernel conform to the
fail-stop model and cause an immediate crash, leaving ap-
plication data intact [3, 15, 22, 28]. However, there are some
faults that do not result in an immediate operating system
crash, thus potentially leading to data corruption. Applica-
tion data can be corrupted (i) when kernel data structures
that describe kernel resources owned by application are cor-
rupted or (ii) when application data itself is corrupted.

In our implementation, as we will show in the evaluation
section, structures required to resurrect a process occupy less
than 0.12% percent of the total virtual address space size
even on 32-bit platforms. The code that manipulates these
structures in Linux constitutes approximately 2% of the total
Linux code size. Moreover, the error rate of the process and
memory management code relative to the code size is more
than 3 times lower than that of the other parts of the kernel
[11]. This leads us to expect the probability of corruption of
these data structures to be low. We attempt to confirm this
hypothesis later in the evaluation section.

The probability of undetected kernel data corruption can
be significantly reduced by several simple, but effective,
techniques. First, much of the state in the kernel is already
duplicated in order to speed-up operations. For example,
memory page information in Linux is stored in hardware
page tables and in Linux page memory structures. Protec-
tion bits of each memory page table entry are duplicated in
memory region descriptors. Kernel structure corruption can
often be detected by carefully checking data integrity using
appropriate rules. This type of analysis is only necessary af-
ter a failure and thus does not add overhead to the normal op-
eration of the system. Secondly, one could add checksums or
data duplication to the most important data structures, such
as process descriptors and memory maps. This would intro-
duce some run-time overhead but would ensure that corrup-
tion will not go undetected.

Another concern is that a kernel bug may have corrupted
the application memory space before crashing the operating
system. As was shown by Chandra and Chen, if we only
consider the memory regions that contain data important for
saving application state, the probability of application data
corruption caused by faults within the operating system ker-
nel is 1%-4% [9]. This probability can be further reduced by
protecting the user memory space using standard hardware
features. In a set of experiments, we protected the user por-

Application Crash procedure Modified lines of
code

vi Not required 0
JOE Not required 1
MySQL Required 75
Apache Required 115
BLCR Not required 0

Table 2. Modifications to the applications to support Other-
world.

tion of the memory space every time the application makes a
system call to lower the probability of kernel faults corrupt-
ing application data. We used a separate set of page tables
that maps only the kernel portion of the address space but not
the user portion, and we switched to this page set on every
system call. Any attempt by the kernel to directly access the
user portion of the address space would then result in a ker-
nel failure. The kernel is only able to read or write to the user
space through specially designated functions that switched
to the page tables that had the user portion of the address
space mapped, perform necessary operation, and switch the
page tables back. As we will show in the evaluation section,
the cost of this protection is a few percent of overhead.

While a kernel microreboot may not be able to guarantee
protection from memory corruption errors, it should be noted
that alternative techniques also cannot not provide such guar-
antees. For example, an error in the kernel may corrupt ap-
plication data before a checkpoint is taken, corrupting the
checkpoint as well [22].

5. Case Studies
In this section we describe the benefits that Otherworld can
provide for certain types of applications and estimate how
difficult it is to write crash procedures for these applica-
tions if they are needed at all. We show that even simple
crash procedures are able to restore application state of many
real-world applications and improve application fault toler-
ance. We tested Otherworld with 5 different applications:
the vi and JOE text editors, the MySQL database server, the
Apache/PHP bundle, and the BLCR checkpointing solution.
The results are summarized in Table 2.

In some cases, resurrection required a crash procedure.
We found that writing a simple crash procedure does not
require a deep understanding of application internal details.
Applications that we considered have functions that serialize
and deserialize important state to and from a file or a byte
stream. The task of writing a simple crash procedure then
includes:

1. identifying such functions,

2. adding a crash procedure that calls the serialization func-
tion to save application’s state to the persistent storage
and restarts the application,

3. modifying the application startup code to call the deseri-
alization function supplying it with the application state
that was stored during the previous step.

Internals of the functions used or the internal format of
the data they produce is not important for the purpose of
writing a crash procedure. We were able to easily identify
and use such functions in 1-2 days for Apache/PHP and
MySql without any prior knowledge of their internal design.
We describe each application we considered in the following
subsections.

5.1 Interactive Applications
For interactive applications, such as text and graphic editors
or computer games, losing state due to a kernel crash results
in all work since the last save operation being lost. While text
editors typically autosave every few minutes, many other
programs do not have this feature (e.g., graphic editors such
as Photoshop or GIMP), in part because the size of the
image being edited or game being played may be tens or
even hundreds of megabytes and saving this much data has a
significant performance impact. Moreover, we are not aware
of any text editor that saves additional application state, such
as the undo data, as a part of autosave. For such applications,
Otherworld’s ability to continue application execution after
a kernel failure offers significant advantages.

A text editor is a good example of an application that
can be resurrected without having to be modified. We tested
Otherworld with two popular text editors: vi and JOE, which
are shipped as part of many Linux distributions. JOE, in
particular, contains a lot of advanced functionality, such as
support for multiple windows, macro execution and syntax
highlighting. Vi did not require any modifications in order
to be resurrected, and no document data or application state
was lost across kernel failures during our testing. Initially,
JOE failed after resurrection because it treated any error
code returned by the console read function as a critical error
and terminated itself. Changing one line of code to reissue
failed console reads allowed JOE to be resurrected without
any other modifications, making any kernel crash transparent
to the user. In both cases, the applications were able to run
across a kernel failure without requiring a crash procedure.
After resurrection, the user was presented not only with
the latest contents of all documents, but also with the undo
buffer, relative window positions and other application state
preserved.

5.2 Databases
Another important class of application that can benefit from
Otherworld are database management systems. Storing data
in RAM instead of disk can improve server performance
by up to 140 times [21, 24]. However, a key reason why
in-memory databases are problematic is that data is lost
when the operating system crashes. Otherworld significantly
reduces the risk of data loss due to an operating system

crash by preserving the in-memory data tables across kernel
crashes. Because the database server communicates with
other processes, Otherworld cannot currently resurrect it
without a crash procedure. By adding a simple crash pro-
cedure that saves the contents of the in-memory database
to the disk and restarts the database server, we can improve
its fault tolerance without introducing runtime overhead or
architectural changes.

For our tests, we used MySQL. The MySQL architecture
isolates the code responsible for maintaining data at the
physical level into a separate component called pluggable
storage engine (PSE), which is responsible for the low-
level functions that store and retrieve data. MySQL supports
different types of PSEs. One of these, called MEMORY
PSE, stores the table data in memory without saving it to
disk, thus making the database memory-resident in order to
improve performance.

By examining the MEMORY PSE source code, we found
that all tables allocated by MEMORY PSE are organized in-
ternally in a linked list, which is accessible through a global
variable. MEMORY PSE has functions used for scanning
and retrieving row data from the tables, returned in an in-
ternal format. Also, it has a function that accepts data in the
same format as an argument and inserts it as a new row in
the table. For the purposes of writing our crash procedure,
we did not need to know how these functions work or the
format of row data.

The crash procedure for the MySQL server iterates
through the list of all allocated tables, calls the appropriate
functions to retrieve data rows from these tables, and saves
them to disk. Since the row format is not relevant for our
purposes, we interpret the row contents as an array of bytes.
After the crash procedure has saved all data to disk, it restarts
MySQL, passing it the name of the file with the saved data in
the command line. Furthermore, we modified MySQL to (i)
read during startup the content of all MEMORY PSE tables
from disk that were saved earlier by the crash procedure, and
(ii) initialize the in-memory tables with this content.

It took us a day to write this simple crash procedure. Most
of this time was spent on getting ourselves familiar with
the MySQL architecture, since we did not have any prior
experience with this product. Overall, MySQL has about
700,000 lines of code, and our modifications consisted of
70 new and 5 modified lines of code.

5.3 Web Application Servers
While the HTTP protocol is stateless, many web applications
need a way to maintain session data, such as the contents
of a shopping cart or user credentials, across a sequence of
page accesses. Some Web applications need to be fault tol-
erant, which means that user session data cannot be lost on
system failures. To address this requirement, session data is
typically stored on disk or in a database. The copying of ses-
sion data between in-memory representation and persistent
storage causes at least a 25% performance decrease [23].

By adding an Otherworld crash procedure to the Web ap-
plication server, we can prevent losing session data on ker-
nel failures without the overhead of going to persistent stor-
age. Once a crash procedure is added to the Web application
server, no changes should be required to any Web applica-
tion that runs on this server.

For our case study, we selected the Apache and PHP bun-
dle. The session data is stored by the PHP code in shared
memory and is available to applications through PHP func-
tions. PHP session code stores session data into a hash table
using the session id as a key and a serialized version of the
session data as a value. The address of the hash table is stored
in a global variable. The crash procedure that we wrote gets
the address of the hash table and saves each element of the
table to a file. After the session data is saved to disk, Apache
restarts and initializes the session data table from the file.

As in the MySQL case, we did not need to know how
session data is serialized or the details of the session hash ta-
ble implementation because we reused functions that already
existed to retrieve and populate the session hash table. As a
result, changes to the PHP code were limited to 110 new and
5 modified lines of code. All modifications were limited only
to the PHP module code itself, so all PHP applications can
benefit from improved fault tolerance without any changes.

5.4 In-memory Checkpointing
A popular mechanism for minimizing the consequences of
application and operating system failures is checkpointing.
There are several approaches aimed at reducing the overhead
of checkpointing by saving checkpoints to memory rather
than to a disk. Zheng et al. show that saving checkpoints to
memory reduces overhead by more than a factor of ten [34].
However, in-memory checkpointing does not protect from
operating system crashes because the memory is overwrit-
ten during a traditional system reboot. On the other hand,
the advantage of checkpointing is that it does not necessarily
require support from the applications. By combining Other-
world with existing checkpointing techniques, we can im-
prove the reliability of in-memory checkpointing by protect-
ing in-memory checkpoints from operating system crashes
without changing the applications themselves.

We tested our technique with the Berkeley Labs Check-
point-Restart (BLCR) library [16]. BLCR is a system-level
checkpointing solution. BLCR consists of a kernel module
and a user-level library that together checkpoint unmodified
applications. We modified BLCR so that, instead of writing
checkpoints to disk, it writes them to memory. We measured
the performance of the in-memory checkpointing solution
against the performance of unmodified BLCR. As long as
the checkpoint size is significantly less than the amount
of available physical memory, checkpointing performance
improves approximately by a factor 10. We were also able to
successfully recover application checkpoints from operating
system crashes and continue running applications from those
checkpoints. We did not introduce any modifications apart

from modifying BLCR to keep checkpoints in memory. That
is, no crash procedure was necessary in this case.

6. Evaluation
In order to evaluate the reliability of Otherworld, we utilized
the synthetic fault injection mechanism originally developed
at the University of Michigan for evaluating the reliability
of the Rio File Cache [25] and later used for evaluating
Nooks reliability [30]. Each fault changes a single integer
value on the kernel stack of a random thread, or a single
instruction, or instruction operand in the kernel code. This
emulates many common errors, such as stack corruption,
uninitialized variables, incorrect testing conditions, incorrect
function parameters, and wild writes.

In order to simplify the automation of a large number of
test runs, we conducted experiments that did not measure
performance within a VMWare virtual machine. The ma-
chine had two virtual CPUs, 1GB of RAM, and 22GB of
disk storage. Experiments that measured performance were
run on a physical machine with a single dual core CPU, 4GB
of RAM and 120GB of disk storage.

We tested the reliability of Otherworld with 5 applica-
tions: the vi and JOE text editors, MySQL, Apache/PHP,
and the BLCR in-memory checkpointing system. For each
application, we conducted a number of fault injection ex-
periments. For each experiment we injected 30 faults at a
time. About 20% of the experiments did not result in a ker-
nel fault, and all applications continued executing with no
visible problems. We discarded these experiments from our
statistics. In total we observed 400 experiments for every ap-
plication that ended with a kernel fault. In each experiment,
we waited until the main kernel initialized itself, loaded
the crash kernel, and started the application before inject-
ing the faults. Each application executed a workload, and the
progress of this workload was logged on a remote computer
so that we could know the correct state of the application at
every point in time. We injected faults after a random amount
of time and observed the outcome. If the system was unable
to perform a microreboot, or the crash kernel failed to resur-
rect the application because of main kernel memory corrup-
tion, we considered resurrection a failure. After an applica-
tion was resurrected, it saved its data to disk, and we checked
this data against the remote log. If any data was missing or
incorrect, we considered resurrection to have failed because
of data corruption. Otherwise, we considered resurrection to
be a success. Since no extra code is executed unless a crash
occurs, we did not observe any run-time processor or I/O
overhead.

The vi and JOE workloads consisted of replaying a se-
quence of keystrokes that emulated a working user. The
MySQL workload consisted of a sequence of SQL queries
issued by a remote client that inserted, deleted, and updated
data in the in-memory table. After resurrection, we checked
the correctness of data within the table. The BLCR workload

Benchmark Increase in TLB
misses

Performance
overhead

MySQL 22% 3.4%
Apache 51% 4.8%
Volano 55% 11.6%

Table 3. Performance overhead of enabling user memory
space protection while executing system calls.

Application Kernel memory Page tables
vi 116 KB 60%
JOE 137 KB 61%
MySQL 711 KB 70%
Apache 844 KB 83%
BLCR 941 KB 83%

Table 4. Size of the data read by the crash kernel during the
resurrection process.

consisted of periodic in-memory checkpointing of a test ap-
plication with a memory footprint of 800MB. After resurrec-
tion, we ensured that the application could be restored from
the checkpoint and that application data was not corrupted.
We were able to successfully resurrect applications in more
than 97% of the cases .

Our first set of tests showed a successful resurrection rate
of only 89%. In order to improve this number, we did sev-
eral incremental modifications that improved the robustness
of Otherworld. We found that in 8% of the experiments, the
system either completely stalled or experienced recursive
failures, thus failing to transfer control to the crash kernel.
Also, we found that in response to double faults (an excep-
tion that occurs if the processor encounters a problem while
trying to service a pending interrupt or exception) KDump
stops the system instead of invoking the crash kernel. We
fixed the first problem by enabling Linux software lock de-
tection and emulating a hardware watchdog timer by forc-
ing the virtual machine to issue a non-maskable interrupt
(NMI) on detection of a stall. The NMI handler responds
with microrebooting the kernel. Although not widely used
in practice, the hardware watchdog timer is a common com-
ponent of many modern x86 and ARM chipsets. Intel has in-
cluded a watchdog timer in all of its x86 architecture chipsets
since 2002 [18]. AMD also includes a watchdog timer in
many of its chipsets. Both Linux and Windows are shipped
with watchdog drivers. The second problem was corrected
by fixing the Linux double fault interrupt handler to start the
microreboot process. Other fixes to KDump included pre-
vention of infinite recursion while trying to print the stack
and not relying on the validity of the descriptor of the cur-
rently executing process. After these changes, the successful
resurrection rate increased to 97% or better. None of those
changes affected application performance.

Application Successful
resurrection

Failure to boot
the crash kernel

Failure to resurrect
application

Data corruption with / without
user space protected

vi 97.5% 2.5% 0% 0% / 0%
JOE 97.75% 2.25% 0% 0% / 0.25%
MySQL 97.25% 2% 0.5% 0.25% / 0.5%
Apache/PHP 97% 3% 0% 0% / 0%
BLCR 97% 2.75% 0.25% 0% / 0.5%

Table 5. Results of resurrection experiments.

We did not encounter any application data corruption
for Apache/PHP, but we encountered data corruption on
one occasion for JOE and on two occasions for BLCR and
MySQL. Protecting the user space, as described in Section
4, reduced (for MySQL) or even eliminated (for the rest
of workloads) user space corruption in our experiments but
introduced overhead mainly due to TLB flush operations
that occur on every page table switch. In order to estimate
the performance impact of protecting user memory spaces
while executing code in the kernel, we ran the MySQL
benchmark suite and the Apache benchmarking tool with
and without user space protection enabled. Since neither
in-memory checkpointing systems nor text editors have a
high rate of system calls, they were not affected by page
switching overhead and were not further considered for this
evaluation. However, we added the Volano benchmark to
our tests [33]. This benchmark simulates a chat server with
multiple client sessions. It is a highly parallel and system call
intensive application, the type of workload that should be the
most sensitive to system call overhead. The results of these
experiments are presented in Table 3. As we can see, the
overhead of protecting the user space ranges from 3%-5%
for Apache and MySQL to 11.6% for Volano benchmark.

We were able to detect only 3 cases, out of a total of 2000
experiments, where resurrection failed due to kernel data
structure corruption. This result is perhaps to be expected,
since the amount of data needed for resurrection from the
main kernel is relatively small. Table 4 shows the size of the
data that the crash kernel needs to read from the main kernel
for resurrecting the applications we tested. We found this
size to be less then 1 MB for all of the examples considered.
The last column lists which proportion of the main kernel
data structures required to resurrect the process contained
page tables, illustrating that page tables constitute the largest
portion of the main kernel data retrieved. The ratio between
the size of the main kernel data important for resurrection
and the size of the virtual address space gives us a rough
estimate of the probability of wild writes corrupting data
important for resurrection. Even for an application with the
largest possible memory footprint on a 32-bit systems - 3
GB, the amount of data retrieved will be approximately 5
MB, which is less than 0.13% of the total address space.

Application Boot time Service interruption time
shell 64 53
MySQL 71 64
Apache 70 68

Table 6. Service interruption time (seconds).

The results are summarized in Table 5. The second col-
umn contains the percentage of cases in which Otherworld
successfully preserved application data through the resurrec-
tion after a failure. The third column lists the percentage of
cases where Otherworld failed to boot the crash kernel. The
fourth column lists the percentage of cases where corrup-
tion in the main kernel structures was detected, preventing
resurrection. The last column lists the percentage of cases
where applications were successfully resurrected, but sub-
sequent data verification detected data corruption. This col-
umn contains two numbers. The first represents the percent-
age of cases where application data was corrupted while run-
ning with application memory protection, while the second
is without application memory protection. For each applica-
tion, Otherworld was able to recover application data suc-
cessfully in 97% or more of the cases.

The major source of resurrection failure is the inability to
transfer control from the main to the crash kernel. Although
the amount of code involved is minimal, Otherworld still re-
quires coordination between CPUs on multiprocessor sys-
tems and is sensitive to the corruption of certain kernel page
entries and the interrupt descriptor table. Since the crash ker-
nel is kept uninitialized and is protected by the memory hard-
ware, we found that once we succeed in passing control to
the crash kernel, it successfully boots itself in 100% of the
cases.

When user space was not protected, 5 experiments out
of 2000 (less then 0.2%) ended with application data cor-
ruption. Protection of user space, as described above, intro-
duces overhead but significantly reduces the probability of
undetected corruption. With protection enabled, application
corruption was observed only in one MySQL experiment,
due to a undetected corruption of a page table entry.

Finally, we measured the time for the system to recover
from a failure while running different workloads. The results
are presented in the Table 6. The second column contains

the time of a system cold start, from the time of pressing the
power button to the time the workload is operational. The
third column contains the time from when the workload is
interrupted by a failure to the time the workload is resur-
rected and operational again. The first row contains the time
till the interactive user is presented with the text mode shell
without any additional application start or resurrection. The
second and the third rows show the time till MySQL and
Apache are operational. Since the crash kernel initializes it-
self after the failure from scratch, the time it takes to boot
the crash kernel is comparable to the time of a cold system
start excluding the time consumed by the BIOS and boot
loader initialization. Both Apache and MySql resurrection
involves calling the crash procedure to save the application
data and the restart of the application. Because of this, the
resurrection process is longer than a clean application start.
This makes the time during which the workload is not op-
erational comparable with that of a full system reboot. Cur-
rently, we a considering different methods of reducing ser-
vice interruption time after a kernel failure. For example, the
exact hardware configuration information is known by the
time of a crash, so the crash kernel hardware detection pro-
cedure may be significantly simplified.

7. Conclusions and Future Work
In this paper, we have introduced Otherworld, a mechanism
that on an operating system kernel failure: (i) microreboots
the operating system without clobbering the state of the
applications, (ii) restores the application processes along
with their memory, open and mapped files, signal handler
descriptors, and physical terminals, and (iii) continues the
execution of these processes from the point at which they
were interrupted, if restoration was successful. Otherworld
thus significantly increases the level of fault tolerance. In
the vast majority of cases, the resurrected applications can
at minimum preserve their data to disk and restart, if they
cannot continue their execution across the kernel failure.
This is in stark contrast to the current state of affairs, where
a kernel failure results in a full system reboot with the loss
of all volatile application state.

We implemented Otherworld in Linux with only minor
changes to the kernel and existing applications. We tested
Otherworld using a variety of different application types
and showed that, even with some kernel resources used by
applications not being restored, all of the above applications
were able to restore their data in more than 97% of kernel
faults. Either no changes to the applications were required
or the changes were minimal and straightforward.

The key benefits of our technique include zero overhead
(or small runtime overhead when application memory space
is protected) and small and fixed memory overhead that is
independent of the amount of data used by the applications.
Another key element of Otherworld is that it does not depend
on a specific operating system architecture. It can be used

with existing commercial operating systems with monolithic
kernels, such as Windows or BSD Unix, as well as with mi-
crokernel operating systems. This fact is crucial for an in-
dustry where billions of dollars have been invested in legacy
operating systems.

Making it feasible for applications to tolerate kernel faults
with no overhead offers new ways to significantly improve
performance of some applications, such as databases or
checkpointing libraries, by allowing them to keep all their
data in memory with significantly reduced risk of losing the
data due to an operating system fault.

As future work, we intend to add support to make
additional resource types resurrectable. In particular, we
are currently working on the automatic resurrection of
TCP/UDP/IP sockets and pipes. We also intend to make var-
ious performance optimization to Otherworld’s current im-
plementation. Examples include reducing the initialization
time of the crash kernel (for example, by executing some
of the initialization code immediately after the crash kernel
is installed and by exploiting device information from the
crashed main kernel), and using page mapping techniques
to reduce the amount of data copied. Finally, we are inves-
tigating ways to efficiently detect and prevent kernel and
application data corruption that might be caused by a kernel
fault.

We expect that the reliability of operating systems may
well improve in the future. Even then, we believe that Other-
world will still be useful, for example, by allowing the ker-
nel to microreboot without terminating running applications,
Otherworld may also be used for hot updates of an operating
system running mission critical software that cannot afford
restarts. Provided that service interruption time during the
kernel reboot can be improved, this feature can be also used
for fast system rejuvenation.

8. Acknowledgments
We would like to thank our shepherd, Julia Lawall, and the
anonymous reviewers for their excellent feedback and help-
ful suggestion for how to improve this paper. We thank our
colleagues Reza Azimi, Adam Czajkowski, Livio Soares,
and David Tam for their help and insightful comments.

References
[1] Auslander, M., Larkin, D., and Scherr, A. The evolution of

the MVS operating system. IBM Journal of Research and
Development 25, 5 (1981), 471–482.

[2] Avizienis, A., Laprie, J. C., Randell, B., and Landwehr, C.
Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure
Computing 1, 1 (2004), 11–33.

[3] Baker, M., Asami, S., Deprit, E., Ouseterhout, J., and Seltzer,
M. Non-volatile memory for fast, reliable file systems.
Proc. of the 5th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (1992),
10–22.

[4] Baker, M., and Sullivan, M. The Recovery Box: Using fast
recovery to provide high availability in the Unix environment.
Proc. of the 1992 USENIX Summer Conf. (1992), 31–43.

[5] Baumann, R. Soft errors in commercial semiconductor
technology: overview and scaling trends. IEEE 2002
Reliability Physics Tutorial Notes, Reliability Fundamentals
(2002), 121.

[6] Biederman, E. Kexec. http://lwn.net/Articles/15468/, 2002.

[7] Bohra, A., Neamtiu, I., Gallard, P., Sultan, F., and Iftode, L.
Remote repair of operating system state using Backdoors.
Proc. of the Intl. Conf. on Autonomic Computing (2004),
256–263.

[8] Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and
Fox, A. Microreboot–a technique for cheap recovery. Proc.
of the 6th Symposium on Operating Systems Design and
Implementation (2004), pp. 31–44.

[9] Chandra, S., and Chen, P. M. The impact of recovery
mechanisms on the likelihood of saving corrupted state.
Proc. of the 13th Intl. Symposium on Software Reliability
Engineering (2002), 91–101.

[10] Chen, Y., Gnawali, O., Kazandjieva, M., Levis, P., and Regehr,
J. Surviving sensor network software faults. Proc. of the 22nd
Proc. of the Symposium on Operating Systems Principles
(2009), 235–246.

[11] Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. An
empirical study of operating system errors. Symposium on
Operating Systems Principles (2001), 73–88.

[12] David, F. M., Chan, E. M., Carlyle, J. C., and Campbell,
R. H. CuriOS: Improving reliability through operating system
structure. Proc. of the 8th Symposium on Operating Systems
Design and Implementation (2008), 59–72.

[13] Depoutovitch, A., and Stumm, M. Otherworld - giving
applications a chance to survive OS kernel crashes. Proc.
of the 4th Workshop on Hot Topics in System Dependability
(2008).

[14] Goyal, V., Biederman, E., and Nellitheertha, H. KDump, a
Kexec-based kernel crash dumping mechanism. Proc. of the
Linux Symposium (2005), 169–181.

[15] Gu, W., Kalbarczyk, Z., Iyer, R., and Yang, Z. Characteriza-
tion of Linux kernel behavior under errors. Proc. of the Intl.
Conf. on Dependable Systems and Networks (2003), 459–468.

[16] Hargrove, P., and Duell, J. Berkeley lab checkpoint/restart
(BLCR) for Linux clusters. Journal of Physics: Conf. Series
(2006), vol. 46, Institute of Physics Publishing, pp. 494–499.

[17] Herder, J. N., Bos, H., Gras, B., Homburg, P., and Tanenbaum,
A. S. Reorganizing Unix for reliability. Proc. of Asia-Pacific
Computer Systems Architecture Conf. (2006), 81—94.

[18] Intel. Using the Intel ICH family watch-
dog timer (WDT) application note: AP-725
http://www.intel.com/design/chipsets/applnots/292273.htm
(2002)

[19] King, S., Dunlap, G., and Chen, P. Debugging operating
systems with time-traveling virtual machines. Proc. of the
USENIX 2005 Technical Conf. (2005), 1–15.

[20] Laadan, O., and Nieh, J. Transparent checkpoint-restart of
multiple processes on commodity operating systems. Proc. of
the 2007 USENIX Technical Conf. (2007), 323–336.

[21] Lehman, T., Shekita, E., and Cabrera, L. An evaluation of the
Starburst memory-resident storage component. IEEE Trans.
on Knowledge and Data Engineering (1992), 555–566.

[22] Lowell, D. E., Chandra, S., and Chen, P. M. Exploring failure
transparency and the limits of generic recovery. Proc.
of the 4th Symposium on Operating System Design and
Implementation (2000), 289–304.

[23] Microsoft. Underpinnings of the session state imple-
mentation in ASP.NET. http://msdn2.microsoft.com/en-
us/library/aa479041.aspx, 2003.

[24] Ng, W. Design and implementation of reliable main memory.
Ph.D. thesis (1999).

[25] Ng, W. T., and Chen, P. M. The systematic improvement
of fault tolerance in the Rio file cache. Proc. of the 1999
Symposium on Fault-Tolerant Computing (1999), 76–83.

[26] Patterson, D. Recovery oriented computing: A new research
agenda for a new century. Proc. of the 8th Intl. Symposium on
High-Performance Computer Architecture (2002), 223.

[27] Srinivasan, S., Andrews, C., Kandula, S., and Zhou, Y. Flash-
back: A light-weight extension for rollback and deterministic
replay for software debugging. Proc. of the USENIX 2004
Annual Technical Conf. (2004), 29–44

[28] Sullivan, M., and Chillarege, R. Software defects and their
impact on system availability: A study of field failures in
operating systems. Proc. of the 21st Intl. Symposium on
Fault-Tolerant Computing (1991), 2–9.

[29] Swift, M. M., Annamalai, M., Bershad, B. N., and Levy, H. M.
Recovering device drivers. ACM Transactions on Computer
Systems 24, 4 (2006), 333–360.

[30] Swift, M. M., Bershad, B. N., and Levy, H. M. Improving
the reliability of commodity operating systems. ACM
Transactions on Computer Systems 23, 1 (2005), 77–110.

[31] Van Vleck, T. Unix and Multics.
http://www.multicians.org/unix.html, 1993.

[32] VMWare Fault tolerance, http://www.vmware.com/

[33] Volano benchmark, http://www.volano.com/benchmarks.html

[34] Zheng, G., Shi, L., and Kalé, L. FTC-Charm++: an in-memory
checkpoint-based fault tolerant runtime for Charm++ and
MPI. Proc. of the 2004 IEEE Intl. Conf. on Cluster Computing
(2004), 93–103.

