
 1

Software Error Early Detection System
based on Run-time Statistical Analysis of Function Return Values

Alex Depoutovitch and Michael Stumm
Department of Computer Science, Department Electrical and Computer Engineering

University of Toronto, Toronto, Canada
{depout,stumm}@eecg.utoronto.ca

Abstract
Large software systems, such as operating

systems or databases, are extremely complex and
based on code that is constantly changing with bug
fixes and new features. As a result, these systems will
likely never be free of bugs. The bugs typically don't
expose themselves until they are triggered by a new
workload, and when triggered, they are rarely
immediately fatal, but result in a system that
continues to run for a period of time with corrupt
internal state. Because the system may then
deteriorate over time to the point where it becomes
inoperable, having a method to identify corrupt state
early would be of value to allow the initiation of
defensive actions such as flushing page caches or
redirecting external requests to another service in the
cluster.

In this paper, we propose a statistical method of
detecting problems in software at run-time based on
analyzing function return values. The methodology,
at this time, requires the availability of source code,
but does not require understanding the source code.
Our experimental results indicate that our method
can be effective in identifying problems early on,
potentially allowing for defensive measures. The
overhead is negligible at less than 1%.

1 Introduction
Large software systems, such as operating systems or
databases, are extremely complex, with internal state
defined by many thousands of parameters, these
systems can be in any one of a very large number of
states at any given time. Moreover, these systems
tend to be in a constant flux with frequent bug fixes
and addition of new features, so it is impossible to
fully test these systems or predict how they will
behave precisely in future scenarios, and it is unlikely
these types of systems will ever be entirely free of
bugs.

Operating system kernels are a good example of
such a complex software system. An operating
system has thousands of internal functions that
interact with each other and with the outside world,
and it has thousands of data structures maintaining
the internal state of the system. The system must be

preemptible, be able to run concurrently on multiple
processors sharing state, and must scale reasonably
well. In addition, a modern operating systems
typically contains third-party extension modules that
are loaded into the kernel dynamically at the run-time
and that interact with the rest of the operating system.
Often, those writing a kernel component or an
extension use only a small part of published interface
and do not fully understand how other parts of the
system work internally or interact with each other.
Hence, operating systems will likely always have
bugs.

Our goal is to measure the general well-being of
a target software system and assess the likelihood of a
pending failure at run-time. Our approach is inspired
by other areas of science, such as thermodynamics or
sociology, that use statistical methods to describe
complex systems. They typically define a small set of
global parameters (e.g., temperature) which are
derived from many micro-parameters (e.g., velocities
of all molecules) using averages or other more
elaborate statistical functions. Then, an approximate
model of the system is defined based on the global
parameters and a set of rules that describe expected
relationships and behavior.

In the remainder of the paper, we first describe
related approaches and then give an overview of the
general framework we use in Section 2 and 3,
respectively. In Section 4, we propose a specific
approach based on monitoring function return values
in real-time, identifying periods when the percentage
of error return codes exceeds a threshold. Our
implementation is described in Section 5, and in
Section 6, we present results of our experiments that
show that our method can be effective in identifying
problems at an early stage while imposing minimal
overhead.

2 Related Work
A number of groups have applied statistical methods
to predict pending software faults, to assist in
identifying the existence of bugs, and to detect sub-
optimal operating conditions. Goldszmidt et al.
published a nice article summarizing common
problems in applying machine learning and statistical
methods in systems research [1]. They show the

 2

benefits of statistical analysis and machine learning,
such as the ability to automatically adapt algorithms
to system and environmental changes.

Gross et al. give examples of software aging
problems, where an application can work well for
some (often very long) time but then requires a
restart [2]. The authors suggest using statistical
pattern recognition to predict the time when a restart
is required. Their approach has two key
disadvantages: (i) it requires detailed knowledge of
the software, and (ii) the method must be adapted
whenever the software is modified.

Using a similar methodology, Chen et al. record
run-time paths during execution, and after a failure,
they statistically analyze the collected data to assist
identifying the root cause of the problem, focusing on
execution of unusual paths. The disadvantage of their
method is that it is unable to give any advanced
warning, since it can only be applied after problem
has occurred.

Cohen et al. show how Bayesian networks can
be used to identify system-level metrics (e.g. CPU
load, number of I/O requests, and network
throughput) that correlate with high level application
performance of an Internet server platform [4].

None of these systems are capable of
successfully predicting software system failures or
even detecting abnormal operation. Having such
capability, however, is desirable, and feasible
because, as Hennessy noted [5], catastrophic failures
rarely occur in real systems without being preceded
by many smaller non-fatal errors. Gradual failures
are often not visible, because the software tends to
ignore them, work around them, or correct them.

3 General Framework
The methodology we propose to detect

abnormal software system state falls under the
general framework depicted in Figure 1. Micro-
parameters that describe many tiny aspects of the
system, such as function return values or the time
spent waiting for a lock, are monitored and collected
at run-time. However, each of these micro-
parameters may not be very meaningful on their own,

and the amount of data generated will be too
voluminous for direct consumption. For this reason,
statistical methods can be used to process the large
amount of fine-grained data, filtering out irrelevant
noise, to produce more meaningful global
parameters. With an appropriate set of global
parameters, it is possible to define acceptable ranges
for their values, as well as rules as to how the global
parameters are expected to relate to one another.
System state can then be viewed as having been
corrupted if global parameter values lie outside the
acceptable ranges or if the rules are violated.

With such a framework, four questions need to
be addressed:
1. Which micro-parameters can and should be

monitored in a system?
2. What global parameters can be defined that can

be effectively calculated from the micro-
parameters and are meaningful at the same time?

3. How do the defined global parameters relate to
each other and what ranges are acceptable for
their values?

4. How can these relationships be used to discover
bugs, predict system failures, and measure the
general well-being of the system?

Collecting the right set of micro-parameters is
the most critical step because they provide the
foundation for all subsequent statistical calculations.
The following list contains examples of the micro-
parameters that are well suited for describing system
state:

• commonly used performance metrics such as:
CPU, memory and I/O load introduced by
specific parts of the system, various queue
lengths, cache miss rates, and data from various
hardware counters;

• size of data allocated; e.g., for object-based
systems it may be number of instantiated objects
of each type;

• error values returned by individual functions;
• the time it takes to execute each function.

These parameters have the property that they are
applicable to all parts of the software system and
require minimal knowledge of the specifics of the
software. For example, for function return values, we
only need to know what return values indicate a fault.
Very often –1 or 0 indicate an error, or in case of
functions returning a pointer, a null pointer typically
indicates a fault. More importantly, what constitutes
an error return value can be determined automatically
using statistical methods.

In this general framework, code is injected into
the software to monitor and collect micro-parameters,
and to periodically invoke a statistical engine. The
statistical engine processes the micro-parameters to

Figure 1. The general framework

Micro-parameters

Software system

Online Bug
detection

Heuristic rules

Warning!

Statistical algorithm Global parameters

 3

obtain values for global parameters and to (i) identify
violated rules, and (ii) identify parameter values that
lie outside acceptable ranges.

To automatically identify acceptable ranges for
the global parameters, it is possible to generate the
global parameters on a running system assumed to
operate correctly with a reference workload,
recording the ranges encountered. Then, when the
target software is run with new workloads, parameter
values that lie outside the ranges encountered with
the reference workload may indicate an abnormal
situation.

4 Analyzing Return Values
The specific method we propose uses the above
framework based on monitoring function return
values. Specifically, we attempt to monitor the rate at
which functions return an error value. To determine
which function return values represent an error, we
initially assume that error is indicated with 0 for
functions returning pointers and 0 or –1 for all other
functions, and we validate this assumption on each
function individually by running a reference load that
exercises the full functionality of the system. We
refer to the recorded data as reference results.
Running the reference load allows us to determine
the frequency at which each function is expected to
return what is assumed to be an error value.
Experimentally, we have found that the reference
results are not sensitive to the specific set of
applications we use as a load, as long as the load
exercises most of the system functionality. However,
to obtain meaningful reference results the system
from which reference results are obtained must be
stable.

After producing the reference results, we can
then run the system under real workloads and
measure the number of error values returned by its
functions relative to the reference results. The
absolute number will, of course, depend on the
particular system workload, so normalization is
required. We normalize by dividing by the total
number of function calls (i.e. percent of functions
returning error codes).

More precisely, the global parameter we monitor
is the difference between the number of functions
returning errors and the same number calculated from
the reference results, normalized by total number of
function calls. In an ideal situation, where the
reference load is representative of future workloads,
we expect this parameter to be close to zero if the
software has not encountered any bugs. On the other
hand, if the state of the system has become corrupted,
then we expect the parameter to significantly deviate
from zero.

The advantage of the proposed approach is that
it can be applied to any large software system without
understanding the code base and without knowing
which function return values indicate error.

5 Implementation
We have applied the techniques described in the
previous section to the K42 operating system, which
was developed by IBM and the University of Toronto
[6]. K42 is an open source operating system, written
mostly in C++. We selected K42 for our experiments
in part because it is a system still under active
development that we understand well and for which
we have bugs we can easily inject. However, we
envision using K42’s hot-swapping capability to
replace objects at run-time when the early warning
system identifies a problem.

We implemented a C++ preprocessor that
automatically scans C++ source files, finds functions
that return either system status code or a pointer. K42
contains approximately 4,500 functions. Roughly
1,800 of them return either a system status code or a
pointer and we only record the return values of these
functions. (System status code values are usually the
same throughout the system.) The preprocessor
injects code that records the return value along with
the address of the corresponding return statement.
The return statement address will help us identify
functions that returned error values and execution
paths in offline analysis. The injected code also
increments a counter of function calls, and once in
every N calls, triggers the statistical analysis engine
to process and analyze the collected data.

The statistical engine periodically computes the
global parameter from the collected set of micro-
parameters and analyzes it in the hope of detecting
when the system enters a state that might be of
interest. Specifically, the engine considers the system
to have gotten into an abnormal state when the
normalized number of functions returning an error
value exceeds some threshold. This analysis must be
done frequently enough so that the system entering an
abnormal state can be detected soon after the state
becomes corrupted in order to have time be able to
react to it and possibly take corrective or recovery
actions. At the same time, the analysis cannot be too
frequent so as not to introduce too much overhead.

6 Experimental Results
In this section, we present our findings from
experiments using the K42 operating system running
the MySQL database server with a benchmark load.
The benchmark suite we used was created by the
MySQL team to test the performance of MySQL
server on different platforms [7]. We ran a number of

 4

tests from this suite using the K42 operating system
with known bugs to determine (i) whether we could
detect the existence of the bugs in the system by
monitoring the global parameter we defined, and (ii)
whether the resulting abnormal system state could be
detected early enough to provide sufficient time for
corrective actions. With a positive answer to both of
these questions, several attractive applications are
possible as described in section 7.

For our experiments, we modified the K42
kernel by adding the statistical analysis engine, and
used the preprocessor to inject the code to collect the
function return values. The current implementation
invokes the statistical engine once in every 1000
function calls. The reference load we used was the
full set of regression tests built up by the K42 team
over the years, and when run, we made sure these
tests produce the expected results. We ran the same
workload on the system with and without the
instrumentation. The total overhead introduced by
both the injected code and the statistical engine was
less than 1%, which can be considered negligible.

After running the reference load, we ran the
system with two real bugs. One of the bugs, a
resource leakage in the file access code, was
discovered beforehand and was reintroduced in order
to test our approach. The second one, an I/O
synchronization problem, was discovered
accidentally by our approach and we had been
unaware of it before we ran our experiments.

While running the system, we collected the
statistics in real time until the system or application
crashed or froze. After that, we determined whether
the difference between the global parameter values
observed in the system with and without the bugs

was large enough to be noticeable and measured the
time period between the point where the abnormal
situation is clearly identifiable for the first time and
the time the system crashed or froze.

Figure 2 depicts the percentage of functions
that return error values over the total number of
function calls. The workload that was used to produce
these curves was the table creation test from the
MySQL benchmark suite. The figure contains three
curves for three different system runs we measured.
The first run (curve 1) used the kernel that did not
have any known bugs. The error rate is around 0.01%
with small spikes up to 3.5%. The spikes, however,
are very short, for periods of at most 0.1-0.5 seconds.

For the second run (curve 2), the kernel
contained both bugs described above. The second
curve ends at the point where the benchmark test
stopped running because the system ran out of
resources. The percentage of the function calls
returning error values starts to increase dramatically
at approximately 400 seconds after the start of the
benchmark. From that point on, the percentage of
functions calls returning error values stays at 1-1.5%
for another 300 seconds and after that increases even
further to 4-7%, remaining high until the system fails.

For the third run, we used the kernel with the
resource leakage bug fixed, but with the I/O bug
remaining. In this case, the benchmark test completes
successfully, but our statistical analysis shows that
there are still some problems. The percentage of
functions calls returning error values is consistently
larger than zero and stays at 0.5-2% with spikes up to
4.5% until the benchmark finishes. This made us
suspect there was another bug. After carefully
analyzing which functions return error values and

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00
Time (sec)

0.00

2.00

4.00

6.00

8.00

P
er

ce
nt

ag
e

of
 fu

nc
tio

ns
 fa

ile
d

(%
)

No known bugs (curve 1)

Test is stuck, memory leak and fsync bug (curve 2)

Test finishes successfully, fsync bug still there (curve 3)

Curve 2

Curve 3

Curve 1

0.00 2000.00 4000.00 6000.00 8000.00 10000.00

Time (sec)

0.00

1.00

2.00

3.00

4.00

P
er

ce
nt

ag
e

of
 fu

nc
tio

ns
 fa

ile
d

(%
)

No known bugs (curve 1)

Test is stuck, memory leak and fsync bug (curve 2)

Curve 2

Curve 1

Figure 2. Percentage of function failed during
MySQL table creation benchmark

Figure 3. Percentage of function failed during
MySQL data insertion benchmark

 5

inspecting the code, the second bug in the I/O
synchronization routine was found.

The third run demonstrates, in our view, that
the methodology we are proposing can be used in a
real life situation to detect and identify bugs even if
regression tests pass successfully. As we can see
from the curves, with the bug in the system, the
percentage of the functions returning error values is
abnormally high (i.e. 0.5-2%) for a prolonged period
of time (i.e. thousands of seconds). This is sufficient
to react, should we decide to do so.

Figure 3 depicts the results of another
benchmark, namely the data insertion benchmark
from the same MySQL benchmark suite. Again,
running the kernel with the resource leakage bug
causes the system to run out of resources and freeze
before the benchmark ends, but the synchronization
bug does not reveal itself, since the code that
contains the bug is not exercised. Because of this,
only two curves are presented. We can see again that
when there is a problem in the operating system
kernel (curve 2), our analysis discovers it well in
advance. The percentage measured is around 1-1.5%
for long periods of times (i.e. hundreds of seconds)
with spikes up to 3.5%. In the contrast, the curve for
the run with the bug-free version of the kernel (curve
1) is difficult to see because the error rate very close
to zero; i.e., constantly less then 0.01%.

7 Possible Applications
We see two main areas where our proposed method
may be used: for regression testing of the system in
development and for the run-time monitoring of large
mission critical applications.

As we have shown, it is possible that even
regression testing may leave a serious bug undetected
since regression tests only consider output. Our
statistical method can be used to detect bugs that
don’ t affect the output of the program, for example
when load on the system is not heavy or the run is
not long enough. This allows earlier detection of
newly introduced bugs.

For mission critical systems our method can
detect abnormal operating conditions, giving an early
warning signal to the operator by putting the system
into a “high-alert” state until the global parameters
return back to normal. An early warning system also
allows autonomic remedial actions such as disabling
write-back caches so that all disk writes occur
immediately, minimizing the amount of lost data, or
automatically redirecting user requests to another
computer in a fail-safe cluster and rebooting the
system in abnormal state. As shown by Qin et al.,

rebooting the system and re-executing a request in a
different environment is often enough to solve many
problems without dropping the request [8].

8 Concluding Remarks
We described a new approach for detecting software
problems at run time by statistically analyzing
function return values. The approach was inspired by
that used in other areas of science to describe the
behaviour of a system that consist of many small
parts such as gas in thermodynamics or large group of
people in sociology. While our work is still at an
early stage, initial experiments using the K42
operating system show much promise. Our method
was able to detect abnormal states early, and it incurs
only a negligible amount of overhead. We intend to
do much more extensive experimentation with other
workloads and bugs. Moreover we intend to expand
our method to include the analysis of additional
parameters and rules that define their relationship.

References
[1] M. Goldszmidt, I. Cohen, A. Fox, S. Zhang. Three

research challenges at the intersection of machine
learning, statistical induction, and systems. In Proc.
10th Workshop on Hot Topics in Operating Systems,
2005.

[2] K. C. Gross, V. Bhardwaj, R. L. Bickford Proactive
Detection of Software Aging Mechanisms in
Performance-Critical Computers. 7th Annual
IEEE/NASA Software Engineering Symposium, 2002.

[3] M. Chen, E. Kiciman, A. Accardi, A. Fox, and E.
Brewer. Using runtime paths for macro analysis. In
Proc. 9th Workshop on Hot Topics in Operating
Systems, 2003.

[4] I. Cohen, M. Goldszmidt, T. Kelly, S. Julie, C. Jeff.
Correlating instrumentation data to system states: A
building block for automated diagnosis and control. In
Proc. 6th Symposium on Operating System Design and
Implementation, 2004.

[5] J. Hennessy. The Future of Systems Research. IEEE
Computer, pages 27--33, August 1999.

[6] J. Appavoo, M. Auslander, M. Burtico, D. Da Silva,
O. Krieger, M. Mergen, M. Ostrowski, B. Rosenburg,
R. W. Wisniewski, J. Xenidis. K42: an Open-Source
Linux-Compatible Scalable Operating System Kernel.
IBM Systems Journal pp. 427-440 Vol. 44, No. 2,
2005

[7] The MySQL Benchmark Suite
http://dev.mysql.com/doc/refman/5.1/en/mysql-
benchmarks.html

[8] F. Qin, J. Tucek, J. Sundaresan, Y. Zhou. Rx: treating
bugs as allergies - a safe method to survive software
failures. In Proc. 20th Symposium on Operating
Systems Principles, 2000

