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Abstract 
Large software systems, such as operating 

systems or databases, are extremely complex and 
based on code that is constantly changing with bug 
fixes and new features. As a result, these systems will 
likely never be free of bugs. The bugs typically don't 
expose themselves until they are triggered by a new 
workload, and when triggered, they are rarely 
immediately fatal, but result in a system that 
continues to run for a period of time with corrupt 
internal state. Because the system may then 
deteriorate over time to the point where it becomes 
inoperable, having a method to identify corrupt state 
early would be of value to allow the initiation of 
defensive actions such as flushing page caches or 
redirecting external requests to another service in the 
cluster. 

In this paper, we propose a statistical method of 
detecting problems in software at run-time based on 
analyzing function return values. The methodology, 
at this time, requires the availability of source code, 
but does not require understanding the source code. 
Our experimental results indicate that our method 
can be effective in identifying problems early on, 
potentially allowing for defensive measures. The 
overhead is negligible at less than 1%. 

1 Introduction 
Large software systems, such as operating systems or 
databases, are extremely complex, with internal state 
defined by many thousands of parameters, these 
systems can be in any one of a very large number of 
states at any given time. Moreover, these systems 
tend to be in a constant flux with frequent bug fixes 
and addition of new features, so it is impossible to 
fully test these systems or predict how they will 
behave precisely in future scenarios, and it is unlikely 
these types of systems will ever be entirely free of 
bugs. 

Operating system kernels are a good example of 
such a complex software system. An operating 
system has thousands of internal functions that 
interact with each other and with the outside world, 
and it has thousands of data structures maintaining 
the internal state of the system. The system must be 

preemptible, be able to run concurrently on multiple 
processors sharing state, and must scale reasonably 
well. In addition, a modern operating systems 
typically contains third-party extension modules that 
are loaded into the kernel dynamically at the run-time 
and that interact with the rest of the operating system. 
Often, those writing a kernel component or an 
extension use only a small part of published interface 
and do not fully understand how other parts of the 
system work internally or interact with each other. 
Hence, operating systems will likely always have 
bugs. 

Our goal is to measure the general well-being of 
a target software system and assess the likelihood of a 
pending failure at run-time. Our approach is inspired 
by other areas of science, such as thermodynamics or 
sociology, that use statistical methods to describe 
complex systems. They typically define a small set of 
global parameters (e.g., temperature) which are 
derived from many micro-parameters (e.g., velocities 
of all molecules) using averages or other more 
elaborate statistical functions. Then, an approximate 
model of the system is defined based on the global 
parameters and a set of rules that describe expected 
relationships and behavior. 

In the remainder of the paper, we first describe 
related approaches and then give an overview of the 
general framework we use in Section 2 and 3, 
respectively. In Section 4, we propose a specific 
approach based on monitoring function return values 
in real-time, identifying periods when the percentage 
of error return codes exceeds a threshold. Our 
implementation is described in Section 5, and in 
Section 6, we present results of our experiments that 
show that our method can be effective in identifying 
problems at an early stage while imposing minimal 
overhead. 

2 Related Work 
A number of groups have applied statistical methods 
to predict pending software faults, to assist in 
identifying the existence of bugs, and to detect sub-
optimal operating conditions. Goldszmidt et al. 
published a nice article summarizing common 
problems in applying machine learning and statistical 
methods in systems research [1]. They show the 
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benefits of statistical analysis and machine learning, 
such as the ability to automatically adapt algorithms 
to system and environmental changes.  

Gross et al. give examples of software aging 
problems, where an application can work well for 
some (often very long) time but then requires a 
restart [2]. The authors suggest using statistical 
pattern recognition to predict the time when a restart 
is required. Their approach has two key 
disadvantages: (i) it requires detailed knowledge of 
the software, and (ii) the method must be adapted 
whenever the software is modified.  

Using a similar methodology, Chen et al. record 
run-time paths during execution, and after a failure, 
they statistically analyze the collected data to assist 
identifying the root cause of the problem, focusing on 
execution of unusual paths. The disadvantage of their 
method is that it is unable to give any advanced 
warning, since it can only be applied after problem 
has occurred.  

Cohen et al. show how Bayesian networks can 
be used to identify system-level metrics (e.g. CPU 
load, number of I/O requests, and network 
throughput) that correlate with high level application 
performance of an Internet server platform [4].  

None of these systems are capable of 
successfully predicting software system failures or 
even detecting abnormal operation. Having such 
capability, however, is desirable, and feasible 
because, as Hennessy noted [5], catastrophic failures 
rarely occur in real systems without being preceded 
by many smaller non-fatal errors. Gradual failures 
are often not visible, because the software tends to 
ignore them, work around them, or correct them. 

3 General Framework 
The methodology we propose to detect 

abnormal software system state falls under the 
general framework depicted in Figure 1. Micro-
parameters that describe many tiny aspects of the 
system, such as function return values or the time 
spent waiting for a lock, are monitored and collected 
at run-time. However, each of these micro-
parameters may not be very meaningful on their own, 

and the amount of data generated will be too 
voluminous for direct consumption. For this reason, 
statistical methods can be used to process the large 
amount of fine-grained data, filtering out irrelevant 
noise, to produce more meaningful global 
parameters. With an appropriate set of global 
parameters, it is possible to define acceptable ranges 
for their values, as well as rules as to how the global 
parameters are expected to relate to one another. 
System state can then be viewed as having been 
corrupted if global parameter values lie outside the 
acceptable ranges or if the rules are violated. 

With such a framework, four questions need to 
be addressed: 
1. Which micro-parameters can and should be 

monitored in a system? 
2. What global parameters can be defined that can 

be effectively calculated from the micro-
parameters and are meaningful at the same time? 

3. How do the defined global parameters relate to 
each other and what ranges are acceptable for 
their values? 

4. How can these relationships be used to discover 
bugs, predict system failures, and measure the 
general well-being of the system? 

Collecting the right set of micro-parameters is 
the most critical step because they provide the 
foundation for all subsequent statistical calculations. 
The following list contains examples of the micro-
parameters that are well suited for describing system 
state: 

• commonly used performance metrics such as: 
CPU, memory and I/O load introduced by 
specific parts of the system, various queue 
lengths, cache miss rates, and data from various 
hardware counters; 

• size of data allocated; e.g., for object-based 
systems it may be number of instantiated objects 
of each type; 

• error values returned by individual functions; 
• the time it takes to execute each function. 

These parameters have the property that they are 
applicable to all parts of the software system and 
require minimal knowledge of the specifics of the 
software. For example, for function return values, we 
only need to know what return values indicate a fault. 
Very often –1 or 0 indicate an error, or in case of 
functions returning a pointer, a null pointer typically 
indicates a fault. More importantly, what constitutes 
an error return value can be determined automatically 
using statistical methods. 

In this general framework, code is injected into 
the software to monitor and collect micro-parameters, 
and to periodically invoke a statistical engine. The 
statistical engine processes the micro-parameters to 
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obtain values for global parameters and to (i) identify 
violated rules, and (ii) identify parameter values that 
lie outside acceptable ranges. 

To automatically identify acceptable ranges for 
the global parameters, it is possible to generate the 
global parameters on a running system assumed to 
operate correctly with a reference workload, 
recording the ranges encountered. Then, when the 
target software is run with new workloads, parameter 
values that lie outside the ranges encountered with 
the reference workload may indicate an abnormal 
situation. 

4 Analyzing Return Values 
The specific method we propose uses the above 
framework based on monitoring function return 
values. Specifically, we attempt to monitor the rate at 
which functions return an error value. To determine 
which function return values represent an error, we 
initially assume that error is indicated with 0 for 
functions returning pointers and 0 or –1 for all other 
functions, and we validate this assumption on each 
function individually by running a reference load that 
exercises the full functionality of the system. We 
refer to the recorded data as reference results. 
Running the reference load allows us to determine 
the frequency at which each function is expected to 
return what is assumed to be an error value. 
Experimentally, we have found that the reference 
results are not sensitive to the specific set of 
applications we use as a load, as long as the load 
exercises most of the system functionality. However, 
to obtain meaningful reference results the system 
from which reference results are obtained must be 
stable. 

After producing the reference results, we can 
then run the system under real workloads and 
measure the number of error values returned by its 
functions relative to the reference results. The 
absolute number will, of course, depend on the 
particular system workload, so normalization is 
required. We normalize by dividing by the total 
number of function calls (i.e. percent of functions 
returning error codes). 

More precisely, the global parameter we monitor 
is the difference between the number of functions 
returning errors and the same number calculated from 
the reference results, normalized by total number of 
function calls. In an ideal situation, where the 
reference load is representative of future workloads, 
we expect this parameter to be close to zero if the 
software has not encountered any bugs. On the other 
hand, if the state of the system has become corrupted, 
then we expect the parameter to significantly deviate 
from zero. 

The advantage of the proposed approach is that 
it can be applied to any large software system without 
understanding the code base and without knowing 
which function return values indicate error. 

5 Implementation 
We have applied the techniques described in the 
previous section to the K42 operating system, which 
was developed by IBM and the University of Toronto 
[6]. K42 is an open source operating system, written 
mostly in C++. We selected K42 for our experiments 
in part because it is a system still under active 
development that we understand well and for which 
we have bugs we can easily inject. However, we 
envision using K42’s hot-swapping capability to 
replace objects at run-time when the early warning 
system identifies a problem.  

We implemented a C++ preprocessor that 
automatically scans C++ source files, finds functions 
that return either system status code or a pointer. K42 
contains approximately 4,500 functions. Roughly 
1,800 of them return either a system status code or a 
pointer and we only record the return values of these 
functions. (System status code values are usually the 
same throughout the system.) The preprocessor 
injects code that records the return value along with 
the address of the corresponding return statement. 
The return statement address will help us identify 
functions that returned error values and execution 
paths in offline analysis. The injected code also 
increments a counter of function calls, and once in 
every N calls, triggers the statistical analysis engine 
to process and analyze the collected data. 

The statistical engine periodically computes the 
global parameter from the collected set of micro-
parameters and analyzes it in the hope of detecting 
when the system enters a state that might be of 
interest. Specifically, the engine considers the system 
to have gotten into an abnormal state when the 
normalized number of functions returning an error 
value exceeds some threshold. This analysis must be 
done frequently enough so that the system entering an 
abnormal state can be detected soon after the state 
becomes corrupted in order to have time be able to 
react to it and possibly take corrective or recovery 
actions. At the same time, the analysis cannot be too 
frequent so as not to introduce too much overhead. 

6 Experimental Results 
In this section, we present our findings from 
experiments using the K42 operating system running 
the MySQL database server with a benchmark load. 
The benchmark suite we used was created by the 
MySQL team to test the performance of MySQL 
server on different platforms [7]. We ran a number of  
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tests from this suite using the K42 operating system 
with known bugs to determine (i) whether we could 
detect the existence of the bugs in the system by 
monitoring the global parameter we defined, and (ii) 
whether the resulting abnormal system state could be 
detected early enough to provide sufficient time for 
corrective actions. With a positive answer to both of 
these questions, several attractive applications are 
possible as described in section 7.  

For our experiments, we modified the K42 
kernel by adding the statistical analysis engine, and 
used the preprocessor to inject the code to collect the 
function return values. The current implementation 
invokes the statistical engine once in every 1000 
function calls. The reference load we used was the 
full set of regression tests built up by the K42 team 
over the years, and when run, we made sure these 
tests produce the expected results. We ran the same 
workload on the system with and without the 
instrumentation. The total overhead introduced by 
both the injected code and the statistical engine was 
less than 1%, which can be considered negligible. 

After running the reference load, we ran the 
system with two real bugs. One of the bugs, a 
resource leakage in the file access code, was 
discovered beforehand and was reintroduced in order 
to test our approach. The second one, an I/O 
synchronization problem, was discovered 
accidentally by our approach and we had been 
unaware of it before we ran our experiments.  

While running the system, we collected the 
statistics in real time until the system or application 
crashed or froze. After that, we determined whether 
the difference between the global parameter values 
observed in the system with and without the bugs 

was large enough to be noticeable and measured the 
time period between the point where the abnormal 
situation is clearly identifiable for the first time and 
the time the system crashed or froze. 

Figure 2 depicts the percentage of functions 
that return error values over the total number of 
function calls. The workload that was used to produce 
these curves was the table creation test from the 
MySQL benchmark suite. The figure contains three 
curves for three different system runs we measured. 
The first run (curve 1) used the kernel that did not 
have any known bugs. The error rate is around 0.01% 
with small spikes up to 3.5%. The spikes, however, 
are very short, for periods of at most 0.1-0.5 seconds.  

For the second run (curve 2), the kernel 
contained both bugs described above. The second 
curve ends at the point where the benchmark test 
stopped running because the system ran out of 
resources. The percentage of the function calls 
returning error values starts to increase dramatically 
at approximately 400 seconds after the start of the 
benchmark. From that point on, the percentage of 
functions calls returning error values stays at 1-1.5% 
for another 300 seconds and after that increases even 
further to 4-7%, remaining high until the system fails. 

For the third run, we used the kernel with the 
resource leakage bug fixed, but with the I/O bug 
remaining. In this case, the benchmark test completes 
successfully, but our statistical analysis shows that 
there are still some problems. The percentage of 
functions calls returning error values is consistently 
larger than zero and stays at 0.5-2% with spikes up to 
4.5% until the benchmark finishes. This made us 
suspect there was another bug. After carefully 
analyzing which functions return error values and 
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Figure 2. Percentage of function failed during 
MySQL table creation benchmark 
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inspecting the code, the second bug in the I/O 
synchronization routine was found.  

The third run demonstrates, in our view, that 
the methodology we are proposing can be used in a 
real life situation to detect and identify bugs even if 
regression tests pass successfully. As we can see 
from the curves, with the bug in the system, the 
percentage of the functions returning error values is 
abnormally high (i.e. 0.5-2%) for a prolonged period 
of time (i.e. thousands of seconds). This is sufficient 
to react, should we decide to do so.   

Figure 3 depicts the results of another 
benchmark, namely the data insertion benchmark 
from the same MySQL benchmark suite. Again, 
running the kernel with the resource leakage bug 
causes the system to run out of resources and freeze 
before the benchmark ends, but the synchronization 
bug does not reveal itself, since the code that 
contains the bug is not exercised. Because of this, 
only two curves are presented. We can see again that 
when there is a problem in the operating system 
kernel (curve 2), our analysis discovers it well in 
advance. The percentage measured is around 1-1.5% 
for long periods of times (i.e. hundreds of seconds) 
with spikes up to 3.5%. In the contrast, the curve for 
the run with the bug-free version of the kernel (curve 
1) is difficult to see because the error rate very close 
to zero; i.e., constantly less then 0.01%.  

7 Possible Applications 
We see two main areas where our proposed method 
may be used: for regression testing of the system in 
development and for the run-time monitoring of large 
mission critical applications. 

As we have shown, it is possible that even 
regression testing may leave a serious bug undetected 
since regression tests only consider output. Our 
statistical method can be used to detect bugs that 
don’ t affect the output of the program, for example 
when load on the system is not heavy or the run is 
not long enough. This allows earlier detection of 
newly introduced bugs. 

For mission critical systems our method can 
detect abnormal operating conditions, giving an early 
warning signal to the operator by putting the system 
into a “high-alert”  state until the global parameters 
return back to normal. An early warning system also 
allows autonomic remedial actions such as disabling 
write-back caches so that all disk writes occur 
immediately, minimizing the amount of lost data, or 
automatically redirecting user requests to another 
computer in a fail-safe cluster and rebooting the 
system in abnormal state. As shown by Qin et al., 

rebooting the system and re-executing a request in a 
different environment is often enough to solve many 
problems without dropping the request [8]. 

8 Concluding Remarks 
We described a new approach for detecting software 
problems at run time by statistically analyzing 
function return values. The approach was inspired by 
that used in other areas of science to describe the 
behaviour of a system that consist of many small 
parts such as gas in thermodynamics or large group of 
people in sociology. While our work is still at an 
early stage, initial experiments using the K42 
operating system show much promise. Our method 
was able to detect abnormal states early, and it incurs 
only a negligible amount of overhead. We intend to 
do much more extensive experimentation with other 
workloads and bugs. Moreover we intend to expand 
our method to include the analysis of additional 
parameters and rules that define their relationship.  
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