
Software Error Early Detection System
Based on Run-time Statistical Analysis of

Function Return Values

Alex Depoutovitch and Michael Stumm

University of Toronto

First Workshop on Hot Topics in Autonomic Computing
June 16, 20062

Alex Depoutovitch and Michael Stumm

System Software is Complex

� Thousands small interacting parts

� State defined by thousands of parameters

� Runs on multiple processors concurrently

� Subject to constant changes

� Different parts are written by different people

� Third party modules

First Workshop on Hot Topics in Autonomic Computing
June 16, 20063

Alex Depoutovitch and Michael Stumm

System Software will always
contain Bugs

� Bugs often result in catastrophic system

failure

� It is easy to notice when bug crashes the

system, but usually it is too late to do

anything

But …..

First Workshop on Hot Topics in Autonomic Computing
June 16, 20064

Alex Depoutovitch and Michael Stumm

System crashes are often gradual

Catastrophic failures rarely occur in real

systems without being preceded by many
smaller non-fatal errors.

Hennessy. The Future of Systems Research. IEEE Computer

Corruption

Crash!

First Workshop on Hot Topics in Autonomic Computing
June 16, 20065

Alex Depoutovitch and Michael Stumm

Objectives

� Continuously measure general well-being of

system software

� Assess likelihood of pending failure at run-

time

� Allow system to take defensive measures

when in abnormal state

First Workshop on Hot Topics in Autonomic Computing
June 16, 20066

Alex Depoutovitch and Michael Stumm

Similar problems

� Thermodynamics:
– Needs to describe behaviour of 1023 molecules

– Each has its own mass, velocity

– Solves it by introducing few macro parameters:
Temperature, Pressure, Volume

� Medicine:
– Needs to describe system composed of billions of cells

– Disease development is often hidden and gradual

– Disease often detected by simple temperature parameter

First Workshop on Hot Topics in Autonomic Computing
June 16, 20067

Alex Depoutovitch and Michael Stumm

Possible applications

� Run-time monitoring of large applications

– Alert system administrator

– Autonomic remedial actions (e.g., disable write-back
caches)

– Automatically redirect user requests to another computer in

a fail-safe cluster and reboot system in abnormal state

� Regression testing of the system

– Can be used to detect corrupt state even if system produces

correct output

First Workshop on Hot Topics in Autonomic Computing
June 16, 20068

Alex Depoutovitch and Michael Stumm

Simple Idea:
monitor function return values

� Instrument code to monitor return values of functions

� Identify error return values

� At run-time statistically analyze normalized

frequency of function error return values

� Compare against expected frequency from reference

workload

� If higher than expected, issue "abnormal state"

warning

First Workshop on Hot Topics in Autonomic Computing
June 16, 20069

Alex Depoutovitch and Michael Stumm

Identification of error values

� Initially assume that all NULLs instead of pointer and
system error codes indicate an error

� Run reference load that exercises the full
functionality of the system

� Determine the reference results:
frequency at which each function is expected to
return what is assumed to be an error value

� Normalize results by dividing by the total number of
function calls (i.e., expected percent of errors for
each function)

First Workshop on Hot Topics in Autonomic Computing
June 16, 200610

Alex Depoutovitch and Michael Stumm

Reference load

� Able to run without system crash

� Produces correct results

� System must be able to run and produce

correct results with load

– several times longer

– several times more intensive

First Workshop on Hot Topics in Autonomic Computing
June 16, 200611

Alex Depoutovitch and Michael Stumm

Global parameter

� Difference between the percentage of errors

returned by functions and the same number
calculated from the reference results,

normalized by total number of function calls

� Parameter must be close to zero when
system is in “normal” state

In reality we found that to be around 0.01%

First Workshop on Hot Topics in Autonomic Computing
June 16, 200612

Alex Depoutovitch and Michael Stumm

Tested Software System

We applied our methodology to the K42 operating
system:

� Open source

� It is under active development but is also mature
enough to run complex benchmarks

� We have a good knowledge of it

� It has fixed bugs that can be reintroduced

� We envision using its hot-swapping capability to
replace objects at run time

First Workshop on Hot Topics in Autonomic Computing
June 16, 200613

Alex Depoutovitch and Michael Stumm

Code instrumentation

C++ preprocessor that finds functions that
return pointers or system status code

� Total kernel contains 4,500 functions

� Instrumented 1,800 functions

� Instrumented code records returned value
and address of return statement

� Injects code to trigger analysis engine

First Workshop on Hot Topics in Autonomic Computing
June 16, 200614

Alex Depoutovitch and Michael Stumm

Analysis engine

� Periodically computes the global parameter from the

function return values

� Analyzes it in the hope of detecting when threshold is

exceeded

� Frequency of invocation is compromise between early

detection and performance impact

In our implementation it was invoked every 1000 calls
and performance overhead was less than 1%

First Workshop on Hot Topics in Autonomic Computing
June 16, 200615

Alex Depoutovitch and Michael Stumm

Experiments

� Modified K42 operating system with injected code to

collect the function return values and analysis engine

� As a reference load we used set of regression tests

created by K42 team for testing K42

� MySQL 5.0 database server

� Benchmark suite created by MySQL team to test

performance of MySQL on different platforms

First Workshop on Hot Topics in Autonomic Computing
June 16, 200616

Alex Depoutovitch and Michael Stumm

Bugs used for experiments

We tested our system with two real bugs:

� Bug 1:
– Resource leakage in file access code

– Was discovered beforehand and reintroduced in
order to test our approach

� Bug 2:
– I/O synchronisation problem

– We did not know about it beforehand and it was
discovered by our approach

First Workshop on Hot Topics in Autonomic Computing
June 16, 200617

Alex Depoutovitch and Michael Stumm

MySQL table creation benchmark

First Workshop on Hot Topics in Autonomic Computing
June 16, 200618

Alex Depoutovitch and Michael Stumm

MySQL data insertion benchmark

First Workshop on Hot Topics in Autonomic Computing
June 16, 200619

Alex Depoutovitch and Michael Stumm

Limitations

� Apache workload

success

� Injected bugs that skip resources locking failure

� Injected stack corruption

Only 10% of crashes were detected

Goal: improve reliability of Early Detection System
by monitoring and statistically analyzing

additional parameters

First Workshop on Hot Topics in Autonomic Computing
June 16, 200620

Alex Depoutovitch and Michael Stumm

General Framework

� Micro-parameters describe many tiny aspects of the system
Are not meaningful on their own and be too voluminous for direct consumption

� Global parameters are derived from micro-parameters and
describe system state as a whole
System state can be viewed as having been corrupted if global parameter values lie
outside the acceptable ranges or if the rules are violated

Statistical
algorithm

Micro
parameters

Software
system

Online detector
of corrupted

state

Heuristic

rules

Global
parameters

Warning!

Code
instrumentation

First Workshop on Hot Topics in Autonomic Computing
June 16, 200621

Alex Depoutovitch and Michael Stumm

Constraints on micro-parameters

� Fast collection and processing
Less then several percents of overhead

� Generic
Do not require knowledge of specific system part

� Cover all parts of the system
Detect bug in any module

First Workshop on Hot Topics in Autonomic Computing
June 16, 200622

Alex Depoutovitch and Michael Stumm

Examples of micro-parameters

� Commonly used performance metrics such as CPU,
memory and I/O load, cache miss rates, data from
hardware counters

� Size of data allocated; e.g., the number of instantiated
objects of each type

� Error values returned by individual functions

� The time it takes to execute each function

First Workshop on Hot Topics in Autonomic Computing
June 16, 200623

Alex Depoutovitch and Michael Stumm

Constraints on global parameters

� Should be effectively calculated from the
micro-parameters and be meaningful at the

same time

� Determine relation to each other and
acceptable ranges for their values

First Workshop on Hot Topics in Autonomic Computing
June 16, 200624

Alex Depoutovitch and Michael Stumm

Conclusion

While our system is on early stage of

development it demonstrated following
features:

� Detects previously unknown corruptions of system state

� Gives plenty of time between raising “red flag” and crash of the

system

� Has low overhead, which makes it possible to use it in
production systems

First Workshop on Hot Topics in Autonomic Computing
June 16, 200625

Alex Depoutovitch and Michael Stumm

Questions

