
Requirements-Driven Qualitative Adaptation

Vı́tor E. Silva Souza, Alexei Lapouchnian, and John Mylopoulos

Department of Inf. Engineering and Computer Science, University of Trento, Italy
{vitorsouza,lapouchnian,jm}@disi.unitn.it

Abstract. Coping with run-time uncertainty pose an ever-present threat
to the fulfillment of requirements for most software systems (embedded,
robotic, socio-technical, etc.). This is particularly true for large-scale,
cooperative information systems. Adaptation mechanisms constitute a
general solution to this problem, consisting of a feedback loop that mon-
itors the environment and compensates for deviating system behavior.
In our research, we apply a requirements engineering perspective to the
problem of designing adaptive systems, focusing on developing a qualita-
tive software-centric, feedback loop mechanism as the architecture that
operationalizes adaptivity. In this paper, we propose a framework that
provides qualitative adaptation to target systems based on information
from their requirements models. The key characteristc of this framework
is extensibility, allowing for it to cope with qualitative information about
the impact of control (input) variables on indicators (output variables)
in different levels of precision. Our proposal is evaluated with a variant
of the London Ambulance System case study.

Keywords: requirements, goal models, adaptive systems, feedback
loops, qualitative reasoning.

1 Introduction

For software systems, as for humans and organizations alike, uncertainty is a
given: at any time, the system is uncertain about all the details of its envi-
ronment, or what might happen next. To cope with it, biological and social
agents are capable of adapting their behavior and their objectives. Consistently
with this, adaptation for software systems has become a focus of much research,
addressing questions such as “How do we design adaptive systems?”, “What
runtime support is needed?”, “How do we ensure that they have desirable prop-
erties, such as stability and quick convergence to an optimal behavior?”

We are interested in developing a set of design principles for adaptive software
systems. We define adaptation as the process of the system switching from one
behavior to another in order to continue to fulfill its requirements. Thus in
adaptation, requirements remain unchanged and an adaptation strategy consists
of choosing a suitable change of behavior to restore requirements fulfillment. Our
proposed framework assumes that requirements should be at the very center of
an adaptation mechanism, determining what constitutes normal behavior, what
is to be monitored and what are possible compensations in case of deviations.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 342–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Requirements-Driven Qualitative Adaptation 343

In earlier work, we have characterized a class of requirements, called Aware-
ness Requirements (AwReqs) that determine what needs to be monitored by
an adaptive system [25]. In addition, we extended goal models (which repre-
sent system requirements, as proposed in [15]) by including control-theoretic
information concerning control variables and indicators, along with qualitative
differential relations that specify the impact of the former on the latter [23].

The main objective of this paper is to “close the loop” by proposing a frame-
work within which a failure of a monitored AwReq leads to a new behavior that
consists of selecting a new variant of the system’s goal model, and/or new values
for its control variables. The proposed mechanism is inspired by control theoretic
concepts, notably the PID controller [13], recast in qualitative terms and using
goal models to define both the desired output and the space of possible behaviors
for getting it. Its key features are the use of requirements models for run-time
adaptation and being highly extensible, allowing for different adaptation algo-
rithms to be used depending on the availability and precision of information. To
validate our proposal, we have implemented our framework and simulated our
adaptation algorithms using different scenarios.

The rest of the paper is organized as follows: Section 2 summarizes our pre-
vious research, which serves as the baseline for this work; Section 3 presents the
main contribution of this paper: an extensible framework for qualitative adap-
tation called Qualia; Section 4 describes how the framework was implemented
and evaluated using simulations; Section 5 compares our approach with related
work; Section 6 discusses challenges in handling multiple concurrent failures,
introducing some of our on-going and future work; finally, Section 7 concludes.

2 System Identification for Adaptive Systems

In our previous work [23,25], we have applied a requirements engineering per-
spective to the problem of designing adaptive systems, focusing on develop-
ing a qualitative software-centric, feedback loop mechanism as the architecture
that operationalizes adaptivity. Feedback loops introduce functionality to a sys-
tem proper, providing monitoring of specified indicators and making the system
aware of its own failures (i.e., aware of when not fulfilling its mandate). In these
cases, a possible adaptation solution is to change the value of one or more system
parameters which are known to have a positive effect on the necessary indicators.

In Control Theory, quantifying the effects of control input on measured output
is a process known as system identification [13]. In some cases (e.g., a thermo-
stat), and given the necessary resources, it is possible to represent the equations
that govern the dynamic behavior of a system from first principles (e.g., quan-
titative relations between the amount of gas injected in the furnace and the
change in temperature produced by it). For most adaptive information systems,
however, such models are overly complex or even impossible to obtain. For this
reason, in [23], we have proposed a systematic system identification method for
adaptive software systems based on qualitative reasoning.

Our proposal is based on Goal-oriented Requirements Engineering (GORE),
which is founded on the premise that requirements are stakeholder goals to be

344 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Fig. 1. Part of the goal model for the A-CAD system [22] after system identification

fulfilled by the system-to-be along with other actors. Goals are elicited from
stakeholders and are analyzed by asking “why” and “how” questions [6]. Such
analysis leads to goal models which are partially ordered graphs with stake-
holder requirements as roots and more refined goals lower down, following ob-
vious AND/OR Boolean semantics for goal satisfaction. Goals are refined until
they reach a level of granularity where there are tasks an actor (human or sys-
tem) can perform. On the other hand, softgoals are special types of goals that
do not have clear-cut satisfaction criteria, and thus refined to measurable quality
constraints for satisfaction. Finally, domain assumptions indicate states of the
world that we assume to be true in order for the system to work. All of these
elements are part of the ontology for requirements proposed by Jureta et al. [15].

An example of a goal model representing system requirements can be seen in
Figure 1, which shows parts of the goal model of an Adaptive Computer-aided
Ambulance Dispatch system (A-CAD), used as a running example throughout
this paper. In the figure, triangles with points of ellipsis represent goal subtrees
that are not relevant for the explanations contained herein and, thus, were re-
moved to make the diagram simpler to read. The interested reader can refer
to [22] for complete models and descriptions of the A-CAD.

Other than the aforementioned goal model elements, the diagram also shows
some of the indicators and system parameters identified for the A-CAD. In
our research, we use Awareness Requirements (AwReqs) [25] to define indicators
of requirements convergence. AwReqs represent undesirable situations to which
stakeholders would like the system to adapt, in case they happen (e.g., failure
of critical requirements). Figure 1 shows eight of the sixteen AwReqs identified
for the A-CAD, e.g., quality constraint Dispatch occurs in 3 min should never
fail (AR11), AwReq AR1 should have 90% success rate (AR2), etc.

Requirements-Driven Qualitative Adaptation 345

Although AwReqs are not performance measurements per se, they are defined
in terms of these measures (in the above examples, dispatch time and success
rate), setting targets for requirement satisfaction. Currently, our framework uses
strictly AwReqs as indicators and, therefore, in this papers the terms indicator
and AwReq will be used interchangeably. The approach presented here could,
however, be adapted to other kinds of indicators, as long as they are monitored
and the system is made aware of their failures.

Parameters can be of two flavors. Variation points consist of OR-refinements
which are already present in high variability systems (i.e., systems that offer
different means of satisfying certain goals) and merely need to be labeled. E.g.,
the value of VP2 specifies if the system should assume the Gazetteer is working
and up-to-date or if staff members should Obtain map info manually.

Control variables are abstractions over large/repetitive variation points and
are represented by black diamonds attached to the elements of the model to
which they refer. For instance, LoA represents the Level of Automation of tasks
Determine best ambulances and Inform stations/ambulances, abstracting over
the (repetitive) OR-refinements that would have to be added to them in order
to represent such variability. LoA is an example of an enumerated variable (possi-
ble values are manual, semi-automatic and automatic), whereas MST (Minimum
Search Time), NoSM (Number of Staff Members working) and NoC (Number of
Calls, which is dependent on NoSM) are instead numeric.

Having identified the indicators to monitor and the parameters that can be
tuned at runtime, we can finally model the effect changes in the latter have on
the former in a qualitative way, which is done by means of differential relations.
Considering indicator AR11 as example, the A-CAD specification contains the
following relations (and subsequent descriptions):

Δ (AR11/NoSM) [0,MaxSM] > 0 (1)

Δ (AR11/LoA) > 0 (2)

Δ (AR11/MST) [0, 180] < 0 (3)

Δ (AR11/V P2) < 0 (4)

(1) More staff members increases the chance of satisfying AR11 ;
(2) The higher the level of automation, the faster the dispatching;
(3) Increasing the minimum search time makes dispatching take longer;
(4) Obtaining maps manually contributes negatively to a fast dispatching.

As the examples above show, the syntax Δ (i/p) > 0 represents the fact that if
parameter p is increased, so is indicator i. This syntax borrows from Calculus the
concept of differential equations: if i = f(p), a positive differential f ′ > 0 means
that the greater the value of p, the greater the value of i. Negative differentials are
analogous. Note that for variation points the convention is that they “increase”
from left to right. See [23] for further details.

Moreover, equations (1) and (3) exemplify the specification of boundaries for
the specified effect, the former using a variable that represents the maximum
number of staff members the ambulance service’s facilities can hold (to be spec-
ified later), the latter using numerical boundaries directly.

346 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Finally, relations referring to the same indicator can be refined to specify: (a) if
a change in one parameter has greater effect than another; and (b) if changing
more than one parameter at the same time has cumulative effect on the indicator
(which is assumed to be the default behavior). In our running example, an order
has been established among the effects that different parameters have towards
AR11, as shown in Equation (5). Absolute values are used in order to properly
compare positive and negative effects.

|Δ (AR11/V P2) | > |Δ (AR11/LoA) | >
|Δ (AR11/MST) | > |Δ (AR11/NoSM) | (5)

In the field of Qualitative Reasoning, there is a spectrum of choices of qualitative
representation languages, each of them providing a different level of precision
(sometimes referred to as resolution) [10]. Some examples of qualitative quantity
representation languages are [10]:

– Status abstraction: represents a quantity by whether or not it is normal;
– Sign algebra: represents parameters according to the sign of their underlying

continuous parameter — positive (+), negative (−) or zero (0). It is the
weakest form of representation that supports some kind of reasoning;

– Quantity space: represents continuous values through sets of ordinal rela-
tions, providing variable precision as new points of comparison are added;

– Intervals : similar to quantity space representation, consists of a variable-
precision representation that uses comparison points but also includes more
complete information about their ordinal relationship;

– Order of magnitude: stratify values according to some notion of scale, such
as hyper-real numbers, numerical thresholds or logarithmic scales.

The proposed representation for the information elicited through system identifi-
cation allows analysts to start with a very low level of precision (e.g., Δ (I/P) >
0, similar to sign algebra) and evolve this specification when more information
becomes available (e.g., Δ (I/P) [a, b] > 0, using landmarks as boundaries of
intervals). Such evolution can happen either horizontally (more information at
the same level of precision) or vertically (increasing the precision of a specific
information, e.g., Δ (I/P) = 2, meaning I = 2×P , quantitative precision). The
framework proposed in this paper can accommodate different levels of precision,
enabling more elaborate adaptation algorithms when more precise information
is available. The process and algorithms for refining precision of differential re-
lations among indicators and control variables as the system operates remains
an open problem on our to-do list.

3 A Framework for Qualitative Adaptation

As we have just seen, system identification adds to a requirements model qual-
itative information on how changes in system parameters affect indicators that
are deemed important by the stakeholders. With this information, it is already

Requirements-Driven Qualitative Adaptation 347

possible to propose an adaptation algorithm for when AwReqs fail at runtime, for
instance: (1) find all parameters that affect the failed AwReq positively; (2) cal-
culate the one(s) with the least negative impact on other indicators; (3) return
a new system configuration changing the value of this/these parameter(s).

In this paper, we address two particular limitations of our current approach:

– There are still a few pieces of information missing regarding the requirements
for adaptation. E.g., considering the algorithm proposed in the previous
paragraph, the following questions (among others) are still unanswered: how
many parameters should be changed and by how much? When calculating
negative impact to other indicators, should priorities (e.g., [17], § 3.3) among
them be considered? What if the AwReq fails again, should the previous
adaptation attempts be taken into account when deciding a new one?

– Moreover, the adaptation algorithm exemplified above is just one of many
possible algorithms that can be used given the available qualitative infor-
mation about the system’s dynamic behavior. Among the many possible
algorithms, the choice of which to use should belong to the stakeholders and
domain experts and, thus, be part of the system requirements specification.
The adaptation framework should be able to accommodate this.

Therefore, in this paper we propose a framework to operationalize adaptation
at runtime based on this qualitative information. We call this framework Qualia
(Qualitative adaptation). When made aware of a failure in an indicator, Qualia
adapts the system by conducting eight activities, as shown in Figure 2 and
described below (the numbers below match the ones in the figure):

1. One or more parameters modeled during system identification are chosen;
2. Based on the relation of this/these parameter(s) with the failed indicator,

Qualia decides by how much it/they should be changed;
3. The chosen parameter(s) are then incremented (consider decrements as neg-

ative increments for simplicity) by the calculated value(s);
4. The framework waits for the change to produce any effect on the indicator;
5. Qualia evaluates the indicator again after the waiting time;
6. In each cycle, Qualia may learn from the outcome of this change, possibly

evolving the adaptation mechanism and updating the model;
7. Finally, it decides whether the current indicator evaluation is satisfactory

and either concludes the process or starts over;
8. If it decides to start over, it reassesses the way adaptation was conducted in

the previous cycles, possibly adapting itself for the following cycle.

To accommodate the different levels of precision, we propose an extensible frame-
work by defining an interface for each activity in the process of Figure 2 and
providing default implementations that assume only the minimum amount of
information is available. Then, we allow designers to create and plug-in new
procedures into Qualia, possibly requiring more information about the system
in order to be applicable. We use the term adaptation algorithm to refer to
the set of procedures chosen to support the adaptation process. In the require-
ments specification, analysts should indicate which adaptation algorithms to use
in response to each indicator failure.

348 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Fig. 2. The adaptation process followed by the Qualia framework

In the following sub-sections, we present three adaptation algorithms : the
Default Algorithm (§ 3.1), the Oscillation Algorithm (§ 3.2) and the PID-based
Algorithm (§ 3.3). To illustrate how Qualia can accommodate different levels
of precision, we also propose different procedures (§ 3.4) for the first step of its
process (Parameter Choice). An important remark here is that we do not make
any claim on which adaptation algorithm is better suited for any particular
context, but instead we just illustrate how this framework can be extended as
needed. The choice of algorithm to use is the responsibility of the analysts.

3.1 The Default Algorithm

As mentioned earlier, when adapting the system, Qualia executes the algorithm
that has been associated with the failure at hand by stakeholders or domain ex-
perts. When a particular algorithm is not specified, Qualia executes the Default
Algorithm, which requires minimum information from the requirements models:

– Indicators: Qualia has to be notified of indicator failure, hence the model
should specify what are the relevant indicators in a way such that another
component of the feedback loop is able to monitor them. For this purpose,
we use AwReqs (cf. Section 2) and its monitoring infrastructure [25];

– Parameters: to adapt to an indicator failure, there should be at least one
related parameter. Section 2 also described how this information is specified
through differential equations;

– Unit of increment: each numeric parameter must specify its unit of incre-
ment, because Qualia will not be able to guess it.

The unit of increment is important for the comparison among indicator/parame-
ter relations. E.g., the comparison |Δ (AR11/MST) | > |Δ (AR11/NoSM) | pre-
sented earlier as part of Equation (5), should be complemented by UNoSM = 1
and UMST = 10 seconds, meaning that changing MST by 10s improves AR11
more than changing NoSM by 1 staff member. Moreover, enumerated parameters
must be ordered (cf. [23]) and their unit of increment defaults to choosing the
next value in the order.

The Default Algorithm is composed of eight default procedures, one for each
activity of the process depicted earlier in Figure 2 (again, the numbers below
match the numbers in the figure):

Requirements-Driven Qualitative Adaptation 349

1. Random Parameter Choice: picks one parameter randomly from the set of
parameters related to the failed indicator, considering those which can still
be incremented by at least one unit (i.e., are within their boundaries).

2. Simple Value Calculation: decides the increment value for the chosen param-
eter, by multiplying the value of the parameter’s unit of increment U by the
indicator’s increment coefficient K, returning the value V = K × U .

The increment coefficient is an optional parameter (with default
value K = 1) that can be associated to each indicator in the spec-
ification to determine how critical it is to adapt to their failures.
Higher values of K will produce more significant changes, but the
requirements engineer should be aware of the risks of overshooting.
Note also that parameters should never exceed their boundaries.

3. Simple Parameter Change: changes the chosen parameter by the calculated
value, at the class level.

The class/instance terminology is inherited from our previous work [25]:
changes at the class level will affect the system “from now on”,
whereas changes at the instance level only affect the current execu-
tion of the system.

4. Simple Waiting: waits until the next time the indicator is evaluated by the
monitoring component of the feedback loop.

5. Boolean Indicator Evaluation: verifies if, after executing the first four steps
of the process, the next time the indicator succeeded.

6. No Learning: in the Default Algorithm, learning is skipped.
7. Simple Resolution Check : stops the process if the outcome of the indicator

evaluation (step 5) was positive, otherwise it iterates.
8. No Algorithm Reassessment : the Default Algorithm does not reassess or

adapts itself, but always executes the same procedures in every iteration.

Let us illustrate the above algorithm using the A-CAD. Imagine that for a given
emergency call received, an ambulance was not dispatched within three min-
utes, breaking indicator (AwReq) AR11 (quality constraint Dispatching occurs
in 3 min should never fail). Available parameters to improve this indicator are
NoSM, LoA, MST and VP2 (assuming all are within boundaries). For this example,
consider that the Random Parameter Choice procedure chose MST.

Imagine further that the specification says that KAR11 = 2 and we know that
UMST = 10s and, moreover, Equation (3) says that MST contributes negatively
to AR11. Therefore, the Simple Value Calculation procedure decides to decrease
MST by V = 2× 10s = 20s and, as a consequence, the Simple Parameter Change
procedure does so at the class level, i.e., for all dispatches following the one that
did not satisfy AR11, until further notice.

Since AR11 is evaluated at every dispatch, the next dispatch will resume
the process (Simple Waiting procedure) and the Boolean Indicator Evaluation
procedure will check if, after MST was reduced by 20s, the next dispatch took less
than 3 minutes to complete. If the 20s reduction was effective, then the Simple
Resolution Check procedure will stop the process; otherwise it will repeat the
same procedures as above.

350 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Fig. 3. A scenario of use of the Oscillation Algorithm in the A-CAD

As mentioned earlier, the requirements engineer should include in the require-
ments specification which algorithm — i.e., which set of procedures — should
be used for each system failure. The Default Adaptation Algorithm can be rep-
resented by the empty set ∅, meaning that all the default procedures described
above will be used. Other algorithms, as will be described next, are represented
by naming the non-default procedures that compose them: the specified pro-
cedures replace their default counterparts (the one with the same interface),
keeping the default ones that have not been replaced.

3.2 The Oscillation Algorithm

One of the desired characteristics of control systems is to avoid overshooting its
control inputs. For instance, if an ambulance dispatch takes 3min10s, we decide
to reduce MST from 60s to 0s and the next dispatch takes only 2min10s, we have
overshot MST’s decrement by 50s. Granted, this overshoot could be corrected
whenever some other indicator (e.g., AR16, which controls if unnecessary ambu-
lances are sent to incident sites) fails and MST is chosen to be incremented. Still,
a good adaptation algorithm tries to avoid overshooting in the first place and,
in what follows, we present one such algorithm.

The Oscillation Algorithm works as depicted in Figure 3: back to the AR11 /
MST scenario, imagine that given the current circumstances, the optimal1 value
for MST is 45s. The controller obviously does not know it, so when AR11 fails,
it decreases MST to 40s, which actually solves the problem. However, instead of
stopping here, the algorithm assumes to have overshot the change, and thus
starts incrementing the same parameter in the opposite direction, using half of
the previous increment value. When MST is set to 50s, AR11 fails again,
which makes the controller switch increment direction and halve the increment
value one more time. This process goes on until one of the following conditions:

– The parameter is incremented to a value that it has already assumed before,
which means that we should be very close to the optimal value. E.g., if we

1 Here, we consider “optimal” the smallest change that fixes the problem, because we
assume every adaptation brings negative side effects to other indicators. If this is not
the case, one could just set the parameter to its maximum (minimum) value from
the start and no adaptation is necessary.

Requirements-Driven Qualitative Adaptation 351

continue the oscillations shown in Figure 3, MST will assume values 47s, 46s,
45s and then stop;

– The algorithm has already performed the maximum number of oscillations,
which is an optional attribute that can be assigned to a specific AwReq or to
the entire goal model. Here, we consider each inversion of increment direction
to be an oscillation (three, in the figure);

– The increment value is halved to an amount that is lower than the minimum
change value of the parameter at hand (optional). For instance, Figure 3
represents the case in which this value is 5s. Note that, for integer variables
such as MST, 1 is the lowest possible value.

In order to tune this algorithm, the framework also allows for the specification
of parameters’ halving factors different from the default value of 0.5. When
oscillating, the increment value will be multiplied by the specified factor. The
table below summarizes the Oscillation Algorithm:

Oscillation Algorithm

Specification {Oscillation Parameter Choice, Oscillation Value Calculation, Os-
cillation Resolution Check}

Properties – Maximum number of oscillations (optional);
– Minimum change value (optional);
– Halving factors (default = 0.5).

The Oscillation Resolution Check procedure assumes to have overshot when
the problem is fixed and begins the oscillations, whereas the Oscillation Value
Calculation procedure is responsible for determining when the value should be
increased or decreased and when it should be halved. The Oscillation Parameter
Choice procedure replaces the default, random one by choosing the parameter
randomly at first, but then maintaining the choice until the end of the oscilla-
tions. Later, in Section 3.4, other parameter choice procedures will be illustrated,
some of which could also be used here.

3.3 The PID-Based Algorithm

As mentioned in Section 1, our framework’s controller is inspired by control-
theoretic concepts, notably the Proportional-Integral-Differential (PID) controller.
This controller is widely used in the process control industry and provides an
efficient algorithm (described in most books on Control Theory, e.g., [13], Chap-
ter 9) to keep a single output of the target system as close as possible to the
specified, single reference input.

The question that arises then is the following: given its proven efficacy, would
it be possible to use the actual PID algorithm in our models? First, since the PID
algorithm works with single input/single output (SISO) and information systems
usually have multiple inputs/multiple outputs (MIMO), this algorithm would
work well only when the analyst can identify, for a given indicator, one single
parameter whose changes have a significant effect in the indicator’s outcome.
Moreover, since this algorithm requires a numeric value for the control error

352 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

and AwReqs (our indicators) are somewhat of a Boolean nature (success =
true|false), we need a way to extract a numeric value from them.

As detailed in [25], AwReqs can be divided in three categories: Delta AwReqs
impose constraints over properties of the domain (e.g., “number of ambulances
at the incident should not be greater than the number specified”), Aggregate
AwReqs determine requirements’ success rates (“75% of the ambulances should
arrive within 8 minutes”), and Trend AwReqs impose constraints over aggre-
gated success rates over time (“success rate of Get good feedback should not
decrease two weeks in a row”). Qualia will extract numeric control errors from
these types of AwReqs as follows:

– Delta AwReqs : if the property is numeric, calculate the difference between
desired and monitored values. In the above example, they are the specified
number and the actual number of ambulances at the incident;

– Aggregate AwReqs : calculate the difference between the desired and actual
success rates. Note that AwReqs of the form “R should never fail” can be
translated into “R should have 100% success rate”;

– Trend AwReqs : calculate the difference between the last two measured suc-
cess rates. In the above example, if the rate decreases in 7% in the first week
and then again by 4% in the second, the control error is 4%.

If the AwReq in question follows one of these patterns, the PID Algorithm can
be used. As the table below indicates, the algorithm affects Qualia’s procedures
for value calculation, indicator evaluation and resolution check.

PID-based Algorithm

Specification {PID Value Calculation, PID Indicator Evaluation, PID Resolution
Check}

Properties None.

3.4 Other Procedures

In the beginning of Section 3, we have stated that Qualia supports different levels
of precision by allowing for new procedures to be implemented and plugged
in to the framework for each of the eight activities in its adaptation process
(Figure 2). To illustrate how our proposed framework can be extended, we focus
here on the Parameter Choice activity and describe new procedures that execute
it differently from the default one, especially in the presence of more precise
information in the specification:

– Shuffle Parameter Choice: with the same amount of information used by
the Random Parameter Choice procedure, this procedure randomly puts
the system parameters in order during the first cycle and picks the next one
using this pre-defined sequence when switching parameters is required.

Requirements-Driven Qualitative Adaptation 353

A new property — repeat policy — determines when the parameter
choice procedure should repeat the last used value or switch to a
different one. Its default value is repeat while incrementable, but it
can be set to repeat M times, where M is also configurable.

– Ordered Effect Parameter Choice: if differential relations regarding the indi-
cator in question have been refined to provide comparison of their effect (as
explained in Section 2), this procedure orders the parameters according to
their effect on the indicator and uses them in this order.

Other than the repeat policy property, an order property is also rel-
evant to this procedure, specifying if relations should be placed in
ascending or descending order of effect (depending if stakeholders
would like to start with the parameters that have the greatest or
the smallest effect on the indicator). Moreover, if the set of relations
concerning an indicator is only partially ordered, the remaining pa-
rameters property specifies if the non-ordered relations should be
excluded from the list or shuffled at the end of it.

– Ordered Side Effect Parameter Choice: in case priorities among indicators
are given (using, e.g., [17]), this procedure orders the parameters according to
the priority of the indicators to which the parameter change would contribute
negatively. It is particularly suitable for lower-priority indicators that can,
in general, be sacrificed to maintain high-priority ones.

The side effect calculation property specifies if the average of the
priorities of the indicators that suffer side effects should be calculated
or if only the highest priority should be considered. The remaining
parameters and order properties are also relevant here.

– Ordered Maturation Time Parameter Choice: domain experts can specify
an optional attribute to differential relations called maturation time, which
indicates how long it takes for the changes in the related parameter to take
effect in the related indicator. Take, for instance, the scenario described in
Section 3.1, and say Qualia has chosen NoSM instead of MST to adapt for the
failure in AR11. Hiring and training a new staff takes a few days and, thus,
the framework should wait for this specified time before continuing. Hence,
this procedure will order the relations by their maturation times. As with
the other ordered parameter choice procedures, the order parameter is also
relevant here. Notice that relations’ maturation time attribute also affects
the Default Waiting procedure, illustrated earlier.

Finally, all of the procedures presented above can be further customized by
the number of parameters property, which defaults to 1, but can be set to any
positive integer, or even all parameters, mimicking the behavior of a multiple
input, single output (MISO) control system. As demonstrated throughout this
section, our proposed framework can be extended as needed by requirements
engineers, depending on stakeholder requirements.

354 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Fig. 4. Overview of the Zanshin framework and the addition of Qualia

4 Implementation and Evaluation

To evaluate Qualia, the framework described in Section 3, we have implemented
it as a component of the Zanshin framework. Proposed in [24] (and available at
http://github.com/vitorsouza/Zanshin), Zanshin applies an Event-Condi-
tion-Action (ECA)-based process to adapt to AwReq failures by effecting changes
in other requirements in the model. Figure 4 shows an overview of the framework,
highlighting with thicker borders the components added by this paper.

The monitoring infrastructure of our previous work [25] has been used to
identify AwReq (indicator) failures from the log entries of the instrumented target
system. The Monitoring Service will then notify Zanshin’s Adaptation Service
about AwReq state changes (e.g., AR11 has succeeded, AR11 has failed, etc.). In
some cases, based on the system requirements, this component might conclude
that reconfiguration should be used, and asks the Reconfiguration Service for
one of its registered reconfiguration strategies. Qualia is registered as a strategy,
but Zanshin allows for other reconfiguration frameworks to be plugged-in (e.g.,
some existing frameworks are described as related work in Section 5). After the
selected reconfiguration strategy produces a new configuration, the Adaptation
Service sends it to the target system through a callback API.

The framework was implemented as a set of OSGi bundles and its require-
ments meta-models were specified using the Eclipse Modeling Framework (EMF),
as shown in Figure 5. Because of space constraints, the meta-model for require-
ments specifications in Zanshin will not be reported here, but the reader can
refer to [24] for its description. Figure 5 shows four elements from A-CAD’s goal
model, which were depicted earlier in Figure 1: root goal Generate optimized
dispatching instructions, softgoal Fast dispatching, its quality constraint (QC)
Dispatching occurs in 3 min and AwReq AR11, which targets that QC.

In the <strategies> tag, we can see that Qualia has been selected as recon-
figuration strategy for failures of AR11. Further below, the <configuration> tag
specifies parameter MST as a numeric control variable (ncv), with UMST set to
10 and initial value 60. Finally, the <relations> tag represents the differential
relation shown back in Equation (3): Δ (AR11/MST) [0, 180] < 0.

Based on experimental evaluation methods of Design Science [14], we devel-
oped simulations to mimic the behavior of the A-CAD in different possible run-
time scenarios, in order to evaluate the framework’s response to system failures.

http://github.com/vitorsouza/Zanshin

Requirements-Driven Qualitative Adaptation 355

� �

<?xml version ="1.0" encoding ="UTF -8"?>
<acad:AcadGoalModel ...>
<rootGoal xsi:type ="acad:G_GenDispatch">
...
<children xsi:type ="acad:S_FastDispatch"/> <!--7-->
...
<children xsi:type ="acad:Q_Dispatch" softgoal ="//@rootGoal/@children.7"/>

<!--12 -->
...
<children xsi:type ="acad:AR11" target="// @rootGoal/@children.12"

incrementCoefficient="2">
<condition xsi:type ="model:ReconfigurationResolutionCondition"/>
<strategies xsi:type ="model:ReconfigurationStrategy" algorithmId="qualia

">
<condition xsi:type ="model:ReconfigurationApplicabilityCondition"/>

</strategies>
</children > <!--26 -->

</rootGoal >
<configuration>
<parameters xsi:type ="acad:CV_MST" type="ncv" unit="10" value="60" metric

="integer "/>
</configuration>
<relations indicator="// @rootGoal/@children.26" parameter="//

@configuration/@parameters.0" lowerBound="0" upperBound="180"
operator ="ft" />

</acad:AcadGoalModel>
� �

Fig. 5. Part of the A-CAD requirements specified as an EMF model

The simulations send logging messages to the Monitoring Service, equivalent to
the ones that would have been sent by a real system, indicating a failure. For
instance, one of the implemented simulations produces log entries that indicate
that Dispatching occurs in 3 min was not satisfied, which triggers a failure of
AR11. Based on the EMF model of Figure 5, Zanshin activates Qualia, which
executes its Default Algorithm, described and illustrated in Section 3.1.

The result of this particular simulation is shown in Figure 6. In this output,
S represents the simulation (i.e., the target system), Z is Zanshin and Q is for
Qualia. Figure 5 shows that Qualia selected MST and reduced its value to 40s,
but another failure in AR11 followed, and therefore the parameter was again
reduced to 20s, which solved the problem.

Another simulation uses a randomly generated goal model with different num-
ber of parameters (from 100 to 1000, scaling up by 100 elements each time), all of
them related to a failing AwReq. Zanshin andQualia were timed in ten sequential
executions of this simulation and average times for each number of parameters,
as shown in Table 1, indicate linear scalability. In effect, by analyzing Qualia’s
default algorithm, one can conclude that its complexity is O(N × R), where N
is the number of parameters to choose and R is the number of differential rela-
tions in the model. With proper data structures, however, this complexity can
be further reduced. In [24], we showed that Zanshin also scales linearly to goal
models of increasing number of elements.

Qualia and Zanshin are part of a broader research proposal for the design of
adaptive systems using a control theoretic perspective founded on requirements.
Further evaluation efforts are in our future research plans, including experiments
with actual running systems, user surveys to evaluate our methods and modeling
language, then finally full-fledged case studies with partners in industry.

356 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

� �

S: A dispatch took more than 3 minutes !
Z: State change: AR11 (ref. Q_Dispatch) -> failed
Z: (S1) Created new session for AR11
Z: (S1) Selected strategy: ReconfigurationStrategy
Z: (S1) Exec. ReconfigurationStrategy(qualia; class)
Q: Parameters chosen: [CV_MST]
Q: To inc/decrement in the chosen parameters: [20]
S: Instruction received: apply -config ()
S: Parameter CV_MST should be set to 40
Z: (S1) The problem has not yet been solved ...
--
S: A dispatch took more than 3 minutes !
Z: State change: AR11 (ref. Q_Dispatch) -> failed
Z: (S1) ...
Q: Parameters chosen: [CV_MST]
Q: To inc/decrement in the chosen parameters: [20]
S: Instruction received: apply -config ()
S: Parameter CV_MST should be set to 20
--
S: A dispatch took less than 3 minutes .
Z: State change: AR11 (ref. Q_Dispatch) -> succeeded
Z: (S1) Problem solved. Session will be terminated.
� �

Fig. 6. Result of the A-CAD simulation in which AR11 fails

Table 1. Average time (in milliseconds) for executions of Qualia and Zanshin

Elements Qualia Zanshin

100 40.4 1, 187.5

200 1, 064.4 4, 416.3

300 2, 098.5 10, 122.3

400 3, 132.2 11, 851.1

500 4, 164.8 13, 097.7

Elements Qualia Zanshin

600 5, 212.6 14, 323.4

700 6, 244.4 15, 568.3

800 7, 283.3 18, 811.1

900 8, 314.6 20, 621.6

1000 9, 169.0 26, 135.4

5 Related Work

In the field of requirements-driven adaptation two well-known proposals are the
RELAX framework [27] and FLAGS [1], the former based on structured natural
language whereas the latter uses goal models. Both of them use fuzzy logic in or-
der to transform “crisp” (invariant) requirements into “relaxed” ones in order to
capture uncertainty. Additionally, in FLAGS, adaptive goals define countermea-
sures to be executed when goals are not attained, using ECA rules. The GAAM
approach [21] models quantifiable properties of the system as attributes, while
specifying the order of preference of adaptation actions towards goals in a pref-
erence matrix, and the desired levels of attributes of each goal in an aspiration
level matrix.

Several approaches in the literature propose adaptation through reconfigura-
tion, i.e., switching the system’s behavior by finding a new configuration for its
parameters. Wang & Mylopoulos [26] propose algorithms that suggest a new
configuration without components that have been diagnosed as responsible for
a failure; Nakagawa et al. [19] developed a compiler that generates architectural
configurations by performing conflict analysis on goal models; Fu et al. [11] use
reconfiguration to repair systems based on an elaborate state-machine diagram

Requirements-Driven Qualitative Adaptation 357

that represents the life-cycle of goal instances at runtime; Peng et al. [20] assign
preference rankings to softgoals and determine the best configuration using a
SAT solver; Khan et al. [16] apply Case-Based Reasoning to find the best con-
figuration; Dalpiaz et al. [5] propose an algorithm that finds all valid variants to
satisfy a goal and compares them based on their compensation/cancelation cost
and benefit (e.g., contribution to softgoals).

Like us, Filieri et al. [8] have also applied control theory to the problem of de-
signing adaptive systems with a requirements perspective, focusing on adapting
to failures in reliability and modeling requirements using Discrete Time Markov
Chains (DTMCs). There, transitions are labeled with control variables, whose
values can be set by a controller that decides the system’s settings in order to
keep satisfying the requirements. Well established control theoretic tools are used
to design such controller and the authors claim the approach can be extended to
deal with failures of different nature. An extension [9] proposes a more efficient
solution for dynamic binding of components and an auto-tuning procedure.

Our work is also related to design-time trade-off approaches, considering that
they could be tailored for the type of reasoning needed for run-time adaptation.
For instance, Heaven & Letier [12] use stochastic simulation in order to generate
quality values which are used to compute objective functions over a goal model,
simulating design decisions in order to compare and optimize them.

Compared to the above approaches, the novelty in our proposal is the use of
qualitative information about requirements, allowing analysts to start with the
minimum information at hand and add more as further details about the system
become available. In many cases, quantitative approaches might be difficult or
even impossible to apply accurately and reliably due to the relativity of numer-
ical values, incorrect mathematical judgment, non-linearity of value functions,
etc. [7]. Furthermore, we advocate for expressive, but simple requirements mod-
els, believing that heavy formalisms such as linear temporal logic, fuzzy logic
and DTMCs can, in some cases, place unnecessary burden on developers.

Qualitative reasoning has also been used by others to analyze system re-
quirements in a similar fashion to what we propose. Menzies & Richardson [18]
propose a matrix that depicts the contribution of process actions to interest-
ing indicators (positive, negative, unknown or none) and use stochastic simu-
lation to analyze this matrix and decide the best choice of actions, consider-
ing stakeholder-assigned utility values for each indicator. The proposed matrix
conveys the same kind of information as our differential equations, albeit our
models have considerably more expressive power. Elahi & Yu [7] also focus on
requirements trade-offs at design-time, making pair-wise comparison of alterna-
tives with respect to goals that were selected as indicators. We propose a more
concise and expressive means to represent such comparisons, namely differential
equations. Furthermore, both approaches focus on design-time decisions whereas
our proposal targets run-time adaptation.

Finally, the use of control-theoretic concepts in our research (advocated by
recent survey/roadmap papers such as [3,4]) comes from the fact that, in order
to be adaptive, systems need to implement some kind of monitor-adapt feedback

358 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

loop. Given our Requirements Engineering perspective, our approach makes ex-
plicit in the models both requirements for monitoring (indicators/AwReqs) and
adaptation (the chosen adaptation algorithms), allowing developers to design
adaptive systems all the way from requirements to implementation.

6 Discussion and Future Work

The models proposed in this approach are a first step towards a comprehensive
method for the specification of adaptation requirements based on GORE and
qualitative reasoning techniques. Moreover, the Qualia framework offers a pro-
totype for the operationalization of such requirements at runtime, alleviating
developers of most of the effort of implementing the features of a feedback loop.
Nonetheless, there is still a lot of work to be done, especially if we intend to
apply this research in practice, on real software development projects.

One assumption that might threaten the applicability of our proposal in
more complex systems is that of variable independence. Our proposed language
(cf. § 2) represents how changes in single parameters affect single indicators,
whereas in complex, adaptive systems, parameters (or indicators) cannot be
assumed to be independent of one another. Nonetheless, this simplification is
not accidental. State-of-the-art methods for modeling and controlling multiple
inputs/multiple outputs (MIMO) control systems — such as state/output feed-
back and Linear Quadratic Regulator (see [28], § 3.4) — can be very complex
and many software projects may not dispose of the necessary (human/time) re-
sources to produce models with such degree of formality. As mentioned in the
previous section, our approach is intended to be less heavy-handed in the for-
malism, while at the same time allowing analysts to model the requirements for
the system’s adaptation based on a feedback loop architecture.

Another considerable limitation of our current approach is the fact that its
adaptation process responds to failures of single indicators (AwReqs) and does
not consider the scenario in which multiple indicators fail concurrently and one
failed indicator’s adaptation might have an influence in another’s. Procedures
like Ordered Side Effect Parameter Choice, together with the specification of in-
dicators’ priorities (e.g., [17]), can help in avoiding undesirable situations such as
focusing on less-critical failures or even deadlocks, but more direct consideration
of concurrent failures is necessary to guarantee some level of consistency.

Therefore, we are currently working on extending Qualia by including a prior-
ity queue that would make the framework deal with more important failures first
(in case, e.g., large maturation times create long-running adaptation cycles); the
introduction of locks (as in database transaction processing) that would prevent
certain parameters form being changed because they affect indicators that have
been locked; and the ability of dealing with multiple failures in a single adapta-
tion loop. The latter would require new procedure implementations, especially
for the activities of Parameter Choice (e.g., choose parameters that do not have
negative effects on all failed indicators), Value Calculation (e.g., considering mul-
tiple increment coefficients), Waiting (e.g., consider the maturation time of all
failed indicators) and, obviously, Indicator Evaluation.

Requirements-Driven Qualitative Adaptation 359

On the methodology side, improvements such as the ellaboration of a graphical
representation in the goal model might make the adaptation specifications easier
to read; pre-defined policies can abstract the choice of adaptation algorithm and
its many attribute values in mnemonics such as “aggressive”, “conservative”,
etc.; moreover, a CASE tool would also greatly help analysts in following our
proposed approach.

Finally, more experiments, especially with real systems, would help us exam-
ine the kinds of adaptation scenarios that are possible and, thus, propose sensible
implementations for the Algorithm Reassessment and Learning activities, which
have received little attention so far. These would involve a repository of past ex-
periences, which would record failures, what was done to adapt and the outcome
of the adaptation. Then, on-line or off-line learning procedures could query this
repository in order to evolve the specification in general.

7 Conclusions

In this paper, we have proposed a framework within which a failure of require-
ments leads to a new behavior obtained by selecting a new variant of the system’s
goal model, and/or new values for its control variables. The proposed controller
is inspired by control theoretic concepts, notably the PID controller, recast in
qualitative terms and using goal models to define the desired output and the
space of possible behaviors for obtaining it. To validate our work, we have im-
plemented our framework and simulated its algorithms using different scenarios.

Our proposal is founded on the thesis that requirements should be at the
very center of any adaptation mechanism, determining what constitutes normal
behavior, what is to be monitored and what are possible compensations in cases
of deviations. Following Berry et al.’s envelope of adaptability [2], systems are
only able to adapt to “the extent to which the adaptation analyst can anticipate
the domain changes to be detected and the adaptations to be performed”.

Moreover, by separating the standard, “normal behavior” from the require-
ments for monitoring and adaptation, our approach provides abstractions that
can facilitate modeling and communication of requirements for systems that are
supposed to have several adaptation capabilities. As with any abstraction in
Software Engineer, our proposals should be applied when the benefits of having
these concepts in the models outweigh the cost of using the approach.

As the discussions illustrated earlier, the work presented here is the first step
towards a full qualitative adaptation framework that can operationalize most
stakeholder requirements for adaptation using a generic feedback loop.

Acknowledgments. We are grateful to our Trento colleagues for their feedback
to this work, which has been supported by the ERC advanced grant 267856
“Lucretius: Foundations for Software Evolution” (unfolding during the period of
April 2011 – March 2016) — http://www.lucretius.eu.

http://www.lucretius.eu

360 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

References

1. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-driven Adap-
tation. In: Proc. of the 18th IEEE International Requirements Engineering Con-
ference, pp. 125–134. IEEE (2010)

2. Berry, D.M., Cheng, B.H.C., Zhang, J.: The Four Levels of Requirements Engi-
neering for and in Dynamic Adaptive Systems. In: Proc. of the 11th International
Workshop on Requirements Engineering: Foundation for Software Quality, pp. 95–
100 (2005)

3. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feed-
back Loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70.
Springer, Heidelberg (2009)

4. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

5. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Adaptive socio-technical systems: a
requirements-based approach. In: Requirements Engineering, pp. 1–24 (2012)

6. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acqui-
sition. Science of Computer Programming 20(1-2), 3–50 (1993)

7. Elahi, G., Yu, E.S.K.: Requirements Trade-offs Analysis in the Absence of Quan-
titative Measures: A Heuristic Method. In: Proc. of the 2011 ACM Symposium on
Applied Computing, pp. 651–658. ACM (2011)

8. Filieri, A., Ghezzi, C., Leva, A., Maggio, M.: Self-Adaptive Software Meets Con-
trol Theory: A Preliminary Approach Supporting Reliability Requirements. In:
Proc. of the 26th IEEE/ACM International Conference on Automated Software
Engineering, pp. 283–292. IEEE (2011)

9. Filieri, A., Ghezzi, C., Leva, A., Maggio, M.: Reliability-driven dynamic binding
via feedback control. In: Private Communication (2012)

10. Forbus, K.D.: Qualitative Reasoning. In: Computer Science Handbook, 2nd edn.,
ch. 62. Chapman and Hall/CRC (2004)

11. Fu, L., Peng, X., Yu, Y., Zhao, W.: Stateful Requirements Monitoring for Self-
Repairing of Software Systems. Tech. rep., FDSE-TR201101, Fudan University,
China (2010), http://www.se.fudan.sh.cn/paper/techreport/1.pdf

12. Heaven, W., Letier, E.: Simulating and Optimising Design Decisions in Quantita-
tive Goal Models. In: Proc. of the 19th IEEE International Requirements Engi-
neering Conference, pp. 79–88. IEEE (2011)

13. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems, 1st edn. Wiley (2004)

14. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Sys-
tems Research. MIS Quarterly 28(1), 75–105 (2004)

15. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the Core Ontology and Problem
in Requirements Engineering. In: Proc. of the 16th IEEE International Require-
ments Engineering Conference, pp. 71–80. IEEE (2008)

http://www.se.fudan.sh.cn/paper/techreport/1.pdf

Requirements-Driven Qualitative Adaptation 361

16. Khan, M.J., Awais, M.M., Shamail, S.: Enabling Self-Configuration in Autonomic
Systems using Case-Based Reasoning with Improved Efficiency. In: Proc. of the 4th
International Conference on Autonomic and Autonomous Systems, pp. 112–117.
IEEE (2008)

17. Liaskos, S., McIlraith, S., Sohrabi, S., Mylopoulos, J.: Representing and reasoning
about preferences in requirements engineering. Requirements Engineering 16(3),
227–249 (2011)

18. Menzies, T., Richardson, J.: Qualitative Modeling for Requirements Engineering.
In: Proc. of the 30th Annual IEEE/NASA Software Engineering Workshop, pp.
11–20. IEEE (2006)

19. Nakagawa, H., Ohsuga, A., Honiden, S.: gocc: A Configuration Compiler for Self-
adaptive Systems Using Goal-oriented Requirements Description. In: Proc. of the
6th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pp. 40–49. ACM (2011)

20. Peng, X., Chen, B., Yu, Y., Zhao, W.: Self-Tuning of Software Systems through
Goal-based Feedback Loop Control. In: Proc. of the 18th IEEE International Re-
quirements Engineering Conference, pp. 104–107. IEEE (2010)

21. Salehie, M., Tahvildari, L.: Towards a Goal-Driven Approach to Action Selection in
Self-Adaptive Software. Software: Practice and Experience 42(2), 211–233 (2012)

22. Silva Souza, V.E.: An Experiment on the Development of an Adaptive
System based on the LAS-CAD. Tech. rep., University of Trento (2012),
http://disi.unitn.it/~vitorsouza/a-cad/

23. Silva Souza, V.E., Lapouchnian, A., Mylopoulos, J.: System Identification for
Adaptive Software Systems: A Requirements Engineering Perspective. In: Jeusfeld,
M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 346–361.
Springer, Heidelberg (2011)

24. Silva Souza, V.E., Lapouchnian, A., Mylopoulos, J.: (Requirement) Evolution Re-
quirements for Adaptive Systems. In: Proc. of the 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 155–164.
IEEE (2012)

25. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness
Requirements for Adaptive Systems. In: Proc. of the 6th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 60–69. ACM
(2011)

26. Wang, Y., Mylopoulos, J.: Self-Repair through Reconfiguration: A Requirements
Engineering Approach. In: Proc. of the 2009 IEEE/ACM International Conference
on Automated Software Engineering, pp. 257–268. IEEE (2009)

27. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: In-
corporating Uncertainty into the Specification of Self-Adaptive Systems. In: Proc.
of the 17th IEEE International Requirements Engineering Conference, pp. 79–88.
IEEE (2009)

28. Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Padala, P., Shin, K.:
What Does Control Theory Bring to Systems Research? ACM SIGOPS Operating
Systems Review 43(1), 62 (2009)

http://disi.unitn.it/~vitorsouza/a-cad/

	Requirements-Driven Qualitative Adaptation
	Introduction
	System Identification for Adaptive Systems
	A Framework for Qualitative Adaptation
	The Default Algorithm
	The Oscillation Algorithm
	The PID-Based Algorithm
	Other Procedures

	Implementation and Evaluation
	Related Work
	Discussion and Future Work
	Conclusions
	References

