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2 Department of Computer Siene, University of Toronto, Canadaalexei�s.toronto.eduAbstrat. Control Theory and feedbak ontrol in partiular have beensteadily gaining momentum in software engineering for adaptive systems.Feedbak ontrollers work by ontinuously measuring system outputs,omparing them with referene targets and adjusting ontrol inputs ifthere is a mismath. In Control Theory, quantifying the e�ets of ontrolinput on measured output is a proess known as system identi�ation.This proess usually relies either on detailed and omplex system modelsor on system observation. In this paper, we adopt a Requirements En-gineering perspetive and ideas from Qualitative Reasoning to proposea language and a systemati system identi�ation method for adaptivesoftware systems that an be applied at the requirements level, with thesystem not yet developed and its behavior not ompletely known.1 IntrodutionIn Control Theory (e.g., [8℄), system identi�ation is the proess of determiningthe equations that govern the dynami behavior of a system. White box modelsdesribe a system from �rst priniples, e.g., a model for a physial proess thatonsists of Newton equations. In most ases, suh models are overly ompliatedor even impossible to obtain due to the omplex nature of many systems andproesses (natural or arti�ial).A muh more ommon approah is therefore to start from partial knowledgeof the behavior of the system and its external in�uenes (inputs), and try todetermine a mathematial relation between inputs and outputs without goinginto the details of what is atually happening inside the system. Two types ofmodels are built using this approah:1. Gray box models: although the peuliarities of system internals are not en-tirely known, a ertain model based on both insight into the system and ex-perimental data is onstruted. This model, however, omes with a numberof free parameters (ontrol variables) whih an be estimated using systemidenti�ation. Thus, parameter estimation is an important ativity here;2. Blak box models: no prior model is available here, so everything has to beonstruted from srath, through observation and experimentation. Mostsystem identi�ation algorithms are of this type.



We are interested in employing this ontrol-theoreti framework for the de-sign of adaptive software systems. In this paper, we adopt a Requirements En-gineering (RE) perspetive and assume that a goal-based requirements model isavailable for the system. At the requirements level, the system is not yet imple-mented and its behavior is not ompletely known. With this inomplete informa-tion, we are unable to fully identify how system on�guration parameters a�etoutputs. Thus, quantitative approahes annot be applied. Therefore, we baseour approah on ideas from Qualitative Reasoning [10℄ and propose a systematiway of identifying target outputs and system on�guration parameters as well asqualitative relations between these parameters and measured outputs, all usingmodels. Our proposed tehnique is both qualitative and �exible in the sense thatit an aommodate multiple levels of preision in spei�ations depending onavailable information.Aording to our proposal, the output of system identi�ation for a softwaresystem is an extended and parametrized requirements model. Eah assignmentof parameter values represents a di�erent behavior (on�guration) that the sys-tem might adapt to ful�ll its requirements. Some of the parameters (�variationpoints�) ome diretly from the model. For instane, for a meeting shedulingsystem that needs to ollet timetables from all partiipants when a meeting issheduled, there is a hoie of olleting these diretly from meeting partiipants(e.g., through email) or from a entral repository of timetables. The behaviorsare also determined by a set of ontrol variables that in�uene system exeu-tion, its suess rate, performane, or quality of servie. For instane, the �Collettimetables� goal is in�uened by a parameter �From how Many� (FhM) that de-termines from what perentage of the partiipants we need to ollet timetablesbefore the goal is deemed to have been ful�lled. If we need to ollet from all,i.e., FhM = 100, then the suess rate for the goal may be low and its ompletiontime may be high, ompared to the FhM = 80 setting.The main objetive of this paper is to propose a systemati proess for on-duting system identi�ation. This proess requires some new onepts, notablythe notion of di�erential relations between ontrol variables and indiators (mon-itored variables). We illustrate the proposed proess with an example and vali-date the proposal with experiments on it.The rest of the paper is strutured as follows: setion 2 summarizes researhresults used as the baseline in our proposal; setion 3 presents a language for themodeling of qualitative information on the relation between system parametersand output; setion 4 desribes a systemati proess for system identi�ationusing that language; setion 5 disusses the validation of the proposal; setion 6ompares it to related work; setion 7 desribes future researh diretions; and,�nally, setion 8 onludes the paper.2 Researh BaselineThe following sub-setions brie�y present researh results on top of whih webuild our proposal: Goal-Oriented RE (�2.1) and Qualitative Reasoning (�2.2).



2.1 Goal-Oriented Requirements Engineering (GORE)Goal-oriented approahes to RE model requirements in terms of goals, softgoals,quality onstraints (QCs) and domain assumptions (DAs) [9℄. As running exam-ple for this paper, �gure 1 shows a goal model for a Meeting Sheduler system.

Fig. 1. Goal model for a Meeting Sheduler system.In our example, the main goal of the system is to Shedule meeting. Goalsan be deomposed using Boolean deompositions with obvious semantis. Forinstane, to Shedule meeting, one has to Charaterize meeting, Collet timeta-bles, Find available rooms and Choose shedule. On the other hand, to Collettimetables, it is enough either to Email partiipants, Call partiipants or to Col-let from system alendar. Goals are deomposed until they reah a level ofgranularity where there are tasks an ator (human or system) an perform toful�ll them.Softgoals are speial types of goals that represent non-funtional require-ments (qualities) that do not have lear-ut satisfation riteria. Goals and tasksontribute to the satisfation of softgoals through positive or negative ontribu-tion links. Softgoals need to be re�ned into quality onstraints (QCs) whiho�er onrete metris for measuring how well the system is ful�lling a softgoal[9℄. For example, Good partiipation is a desired quality for our system, reeiv-ing positive ontribution from Shedule manually and negative from Let systemshedule. A lear-ut satisfation riteria for this softgoal is spei�ed by the QCAt least 90% of partiipants attend.



Goal models may also ontain domain assumptions (DAs), whih are state-ments that we assume to be true in order for the system to work. In the example,we assume there are Loal rooms available in order to Find loal rooms. If theassumption turns out to be false, its parent goal will not be satis�ed.Finally, �gure 1 also illustrates system parameters that were identi�edfor the meeting sheduler example. Monitored and ontrolled parameters havelong been proposed as a way to implement reoniliation for adaptive systems atruntime [5℄. However, in our proposal these are intentional parameters whih areintrodued muh earlier in the development proess, at the level of requirements.The example shows �ve ontrol variables as blak diamonds onneted to otherelements of the model.OR-deompositions in goal models also represent intentional variability in thesystem. Choosing a di�erent path at suh variation points has been proposed asa way to on�gure systems [13℄ or to reonile the behavior of adaptive systemsat runtime in previous works suh as [19℄. In �gure 1 we label the three existingOR-deompositions as VP1, VP2 and VP3 in order to be able to referene themin our language.In setion 3.1 we disuss in more depth the role of suh parameters in ourproposal.2.2 Qualitative ReasoningThe key feature of qualitative reasoning (QR) methods (e.g., [10℄) is that whilefrequently there is not enough information to onstrut quantitative models,qualitative models an ope with unertain and inomplete knowledge aboutsystems. They do not require assumptions beyond what is known. Most QRapproahes an be seen as having two types of abstration.Domain abstration abstrats the real domain values of variables into a �nitenumber of ordered symbols that desribe qualitative values, landmarks, that arebehaviorally signi�ant. Landmarks an be numeri or symboli and an inludethe values suh as 0 and ±∞. A qualitative variable value is either a landmarkor an interval between adjaent landmarks. The �nite, totally ordered set of allthe possible qualitative values of a variable is alled its quantity spae.Qualitative funtional abstration, whih gives the ability to represent inom-pletely known funtional relationships between quantities, omplements domainabstration in QR. E.g., signs (+,−,0) an be used to desribe and reason aboutthe diretion of hange in variables � one an state that there exists some mono-tonially inreasing funtion relating two quantities, without elaborating further.Merging qualitative information frequently results in ambiguity, suh as whenombining positive and negative in�uenes without knowing their magnitudes.Ranges of tehniques and notations are available within QR, their appliabilitydepending on the preision of the available information. E.g., one an reasonabout orders of magnitude, if they are known, possibly resolving said ambiguity.



3 Parameters and Qualitative Di�erential RelationsIn this setion, we further disuss system parameters and indiators of systemoutput, as well as propose a language based on qualitative modeling [10℄ toaugment our (goal-oriented) requirements model with information that apturesthe relationships among the these parameters in a qualitative way.3.1 System Parameters and IndiatorsAs previously disussed, our proposal onsists of a language and a systematiproess to identify and model qualitative relations between on�guration param-eters and measured outputs of the system. Given our Requirements Engineeringperspetive, we propose to augment goal models of system requirements by re-ognizing variation points and ontrol variables (olletively alled parameters)and identifying indiators (of system output).Variation points (VPs) are the OR-deompositions already present in thegoal model. As we have mentioned in �2.1, seleting a di�erent path at a VP atruntime is one way of reon�guring the system in order to adapt to failures. Ourproposal adds labels to VPs in the goal model (e.g., VP1, VP2 and VP3 in �gure1) in order to refer to them when modeling qualitative relations (see �3.3).In this paper we introdue ontrol variables (CVs), whih represent anotherpowerful mehanism for system (re)on�guration. CVs are part of the system in-put. They an be applied to goals, tasks, and domain assumptions (DAs) and areused as abstrations over goal/domain model fragments. In partiular, CVs arederived from families of related, but slightly di�erent goal/task or DA alterna-tives, as in �gure 2, where the goals Collet timetables from 10% of partiipants,Collet timetables from 20% of partiipants, et. are shown as alternative waysto ahieve the parent Collet timetables goal.
Fig. 2. Using a CV as an abstration over families of subtrees.Here, we identify variations that di�er in some value (usually, but not ne-essarily numeri) and abstrat that value as a parameter to be attahed to theappropriate goal model element as a CV (e.g., the FhM, From how Many variablein �gure 2). Figure 1 shows more examples of CVs, suh as: RF (required �elds



when haraterizing a meeting), RfM (number of rooms for meeting available �note that this CV applies to a DA), et.The bene�ts of having CVs inlude the ability to represent large number ofmodel variations in a ompat way as well as the ability to onisely analyze howhanges in CV values a�et the system's suess rate and/or quality of serviewhen, e.g., sheduling meetings. As any parameter in software design, a CV needsto be taken into onsideration (i.e., propagated) when re�ning the goal modelelement that it applies to and later when designing and implementing the system.In this proposal, we are interested in analyzing the e�et of values of CVs onsystem output and thus omit the details of CV re�nement and implementation.Finally, indiators are essential to ontrol systems as these are monitoredsystem output values that feedbak loops need to ompare to the output targetsin order to alulate the ontrol error and to determine how the system's ontrolinput needs to be adjusted. Indiators are similar to gauge variables, proposedby van Lamsweerde in [11℄.Indiators need to be measurable quantities. In goal models, quality on-straints (QCs) as well as the suess rates for hard goals and tasks an be usedas indiators. Sine the number of potential indiators is large, we need to se-let as indiators the important values that the adaptive system should striveto ahieve. Awareness Requirements (AwReqs) [18℄ are requirements that talkabout the suess or failure of other requirements, e.g., �Find available roomsshould never fail� or �Shedules produed in less than a day should sueed 75%of the time�. AwReqs are formalized and ome with a monitoring infrastruture.They an be attahed to QCs, hard goals, et. (i.e., potential indiators) andapture the referene input of the system as well as speify the target suessrates or other requirements about them. In our system identi�ation approah(�4), we use AwReqs as the indiators in goal models. In the next sub-setions,however, we use cost and speed to refer to the QCs attahed to softgoals Lowost and Fast sheduling, respetively.Given the above de�nitions for system parameters and indiators and tak-ing the Find loal room goal of �gure 1 as an example, we would like to modelinformation suh as: �upon inreasing the value of RfM, the suess rate of Findloal room also inreases� and �at VP2, when hoosing Call hotels and onventionenters over Call partner institutions, your ost will inrease�. This kind of in-formation is very important for a feedbak ontroller in its task of deiding howto adapt the system to ful�ll its requirements.In the remainder of the setion we desribe the qualitative approah forapturing and analyzing this information. Our approah does not di�erentiatebetween ontrol variables and variation points and, thus, we hereafter refer tothem generally as system parameters or simply parameters .3.2 Numeri ParametersNumeri parameters, suh as Rooms for Meetings (RfM), From how Many (FhM)and Maximum Con�its Allowed (MCA) (see �gure 1), an assume any integer orreal value at runtime. There ould be, however, some domain-related onstraints,



e.g., RfM an obviously assume only positive integer values, FhM ranges between0% and 100%, et.Changing the value of a numeri parameter a�ets many aspets of sys-tem performane, whih, as explained in the previous sub-setion, are measuredthrough indiators. Taking the parameter RfM as an example, and assuming thesuess rate of Find loal room is a�eted by hanges in RfM, we ould de�nethis indiator as a funtion of the parameter (learly a simpli�ation):
success rate of F ind local room = f(RfM) (1)We ould then say how hanges in RfM a�et the suess rate of the goal bydelaring if the derivative of f is positive or negative. Using Leibniz's notation:
∆〈success rate of F ind local room〉

∆RfM
> 0 (2)Relation 2 tells us that if we inrease the value of RfM, the suess rate of Findloal room also inreases. Of ourse, the analogous derease-derease relation isalso inferred. The ∆y/∆x notation is used instead of dy/dx beause RfM, aspreviously mentioned, assumes only disrete values. Furthermore, in pratie weuse a simpli�ed linearized notation to improve writability:

∆ (〈success rate of F ind local room〉/RfM) > 0 (3)Suppose there is a limit to whih this relation holds: after a given number,adding more rooms will not help with the suess rate of Find loal room. Forthis ase, we use the onept of landmark values (see �2.2) and speify an inter-val in whih the relation between the parameter and the indiator holds. Sinewe are dealing with qualitative information, we might not know exatly howmany rooms are enough, so we de�ne a landmark value alled enoughRooms:
∆ (〈success rate of F ind local room〉/RfM) [0, enoughRooms] > 0. Althoughspeifying this interval intuitively tells us that adding extra rooms after there arealready enough of them available does not hange the suess rate of the goal, oneould formalize this information, making it expliit: ∆ (〈success rate of F ind
local room〉/RfM) [enoughRooms,∞] = 0.This gives us the general form for di�erential relations in our proposal, shownin (4), where ∆ an be replaed with d in ase of a ontinuous parameter, theinterval [a, b] is optional, with default value [−∞,∞], 〈op〉 should be substitutedby a omparison operator (>, ≥, <, ≤, = or 6=) and C is any onstant, not justzero as in previous examples.

∆ (indicator/parameter) [a, b] 〈op〉 C (4)Non-zero values for C are useful for expressing di�erent rates of hange.When faing a deision on how to improve an indiator I, given the information
∆ (I/P1) > 0 and ∆ (I/P2) > 0 the ontroller will arbitrarily hoose to eitherinrease P1 or P2; on the other hand, ∆ (I/P1) > 2 and ∆ (I/P2) > 7 ould helpit hoose P2 in ase I needs to be inreased by a larger fator.



If we replae the onstant C by a funtion g(parameter), we will be able torepresent nonlinear relations between indiators and parameters, for instane,
∆ (cost/RfM) = 2×RfM (ost inreases by the square of the inrease of RfM).However, linear approximations greatly simplify the kind of modeling we areproposing and are enough for our objetives. Moreover, it is very hard to obtainsuh preise qualitative values before the system is in operation.3.3 Enumerated ParametersIn addition to numeri parameters, parameters that onstrain their possible val-ues to spei� enumerated sets are also possible. Variation points are lear ex-amples of this type of parameter, as their possible values are onstrained to theset of paths in the OR-deomposition. Control variables, however, an also beof enumerated type (in e�et, as disussed in setion 3.1, ontrol variables areabstrations over families of goal models in an OR-deomposition).Figure 1 shows �ve enumerated parameters eliited for the meeting sheduler,two enumerated ontrol variables and three variation points :� Required �elds (RF) in the task Charaterize meeting an assume the values:partiipants list only, short desription required or full desription required ;� View private appointments (VPA) in the task Collet from system alendaran be either yes or no.� At Collet timetables, VP1 an assume values Email partiipants, Call par-tiipants or Collet automatially ;� At Find available rooms, VP2 an assume values Find loal rooms, Call part-ner institution or Call hotels and onvention enters ;� At Choose shedule, VP3 an assume values Shedule manually or Let systemshedule.Unlike numeri parameters, the meaning of �inrease� and �derease� is notde�ned for enumerated types. However, we use a similar syntax to speify howhanging from one value (α) to another (β) a�ets a system indiator:

∆ (indicator/parameter) {α1 → β1, α2 → β2, . . . , αn → βn} 〈op〉 C (5)By performing pair-wise omparisons of enumerated values, stakeholders anspeify how hanges in an enumerated parameter a�et the system. For example,the relations below show how hanges in VP2 a�et, respetively, the indiatorsost and speed (both inrease if you do the hanges listed between urly brakets).
∆ (cost/V P2) {local → partner, local → hotel, partner → hotel} > 0 (6)

∆ (speed/V P2) {partner → local, hotel → local, partner → hotel} > 0 (7)Often, however, an order among enumerated values w.r.t. di�erent indiatorsan be established. For instane, analyzing the pair-wise omparisons shown in



relations 6 and 7, we onlude that w.r.t. ost, local � partner � hotel, whilefor speed partner � hotel � local. Depending on the size of the set of valuesfor an enumerated parameter, listing all pair-wise omparisons using the syntaxspei�ed in (5) may be tedious and verbose. If it is possible to speify a totalorder for the set, doing so and using the general syntax presented for numeriparameters in equation (4) an simplify eliitation and modeling.3.4 ExtrapolationsDi�erential relations always involve one indiator, but may involve more thanone parameter. For example, �inreasing� VP1 and VP3 (onsidering the order ofthe alternatives in variation points to be based on their position in the model,asending left-to-right) ontributes positively to indiator IFS = Fast shedul-ing both separately � ∆ (IFS/V P1) > 0 and ∆ (IFS/V P3) > 0 � and inombination � ∆ (IFS/ {V P1, V P3}) > 0.When we are not given any relation that di�erentially relate two parame-ters P1 and P2 to a single indiator I, we may still be able to extrapolate suha relation on the basis of simple linearity assumptions. E.g., if we know that
∆(I/P1) > 0 and ∆(I/P2) > 0, it would be reasonable to extrapolate the re-lation ∆(I/ {P1, P2}) > 0. More generally, our extrapolation rule assumes thathomogeneous impat is additive (�gure 3). Note that in ases where P1 and P2have opposite e�ets on I, nothing an be extrapolated beause of the qualitativenature of our relations.

Fig. 3. Combining the e�ets of di�erent CVs on the same indiator.Generalizing, given a set of parameters {P1, P2, . . . , Pn}, if ∀i ∈ {1, . . . , n} ,
∆ (I/Pi) [ai, bi] 〈op〉 Ci, our extrapolation rule has as follows:

∆ (I/ {P1, P2, . . . , Pn})

n⋂

i=0

[ai, bi] 〈op〉

n∑

i=0

Ci (8)If it is known that two parameters annot be assumed to have suh a om-bined e�et, this should be expliitly stated, e.g., ∆ (I/ {P1, P2}) < 0.From di�erential alulus we extrapolate on the onept of the seond deriva-tive. If y = f(x), we an say that y grows linearly if f ′(x) > 0 and f ′′(x) = 0 (it



�has onstant speed�). However, if we have f ′′(x) > 0, then y's rate of growthalso inreases with the value of x (it �aelerates�). Qualitative information onseond derivatives an be modeled in our language using the following notation:
∆2 (I/P ) [a, b] 〈op〉 C. Thus, if we say that ∆2 (I/P1) > 0 and ∆2 (I/P2) = 0,the ontroller may onlude that P1 is probably a better hoie than P2 for largevalues. Other onepts, suh as in�etion and saddle points, maxima and min-ima, et. ould also be borrowed, although we believe that knowing informationon suh points in a I = f(P ) relation without knowing the exat funtion f(P )is very unlikely.4 System Identi�ation ProessIn this setion, we desribe a systemati proess for system identi�ation. Pro-ess Input: a requirements model G (suh as the one in �gure 1). Proess Out-put: a parametrized spei�ation of the system behavior S = {G, I, P,R (I, P )},where G is the goal model, I is the set of indiators identi�ed by AwReqs in themodel, P is the set of parameters, and R (I, P ) is the set of relations betweenindiators and parameters. At runtime, a feedbak-loop ontroller reeives S asinput in order to adapt the system pro-atively or in ase of failures.The following are the steps of the proess. They an be applied iteratively,gradually enrihing the model with eah iteration.Step 1. Identify indiators: Introdue AwReqs into the goal model Gspeifying target suess rates for QCs, hard goals or tasks. Output: the set ofindiators I.Step 2. Identify parameters: Identify possible variations in the goal modela�eting the indiators, whih, therefore, an be manipulated to adjust the per-formane of the system. These are aptured by ontrol variables and variationpoints (see �3.1). Output: the set of parameters P .Step 3. Identify di�erential relations: For eah indiator from the set
I the requirements engineer asks: whih parameters from P does this indiatordepend on? Alternatively, iterate through set P and ask, for eah parameter,whih indiator in I is a�eted by it. Either way, one should end up with amany-to-many assoiation between the sets. There are heuristis that help inanswering these questions:Heuristi 1 : if provided, softgoal ontribution links apture these dependen-ies for variation points. E.g., in �gure 1, the hoies in VP1 ontribute to thesoftgoal Fast sheduling and thus VP1 a�ets the suess rate of Shedules pro-dued in less than a day, a QC derived from that softgoal. Any AwReq-derivedindiator involving that QC is therefore also a�eted.Heuristi 2: another heuristi for deriving potential parameter-indiator re-lations is to link indiators to parameters that appear in the subtrees of thenodes the indiators are assoiated with. The rationale for this is the fat thatparameters in a subtree rooted at some goal G, whih models how G is ahieved,hange the subtree, thus potentially a�eting the indiators assoiated with the



goal. E.g., the parameter RfM is below the goal Find available rooms in the treeand thus an be (and atually is) a�eting its suess rate, an indiator.Heuristi 3 : yet another way to identify potential parameter-indiator rela-tions is to look at the non-funtional onerns that these parameters/indiatorsaddress and to math the ones with the same onern. [18℄ desribes how NFRssuh as robustness, ritiality, et. lead to the introdution of AwReqs into goalmodels. The already-mentioned softgoal ontributions expliitly link variationpoints with NFRs. Similar analysis should be done for ontrol variables.The modeling of the parameter-indiator relations is done using the languageof setion 3. Output: R (I, P ), the initial set of relations between indiators andparameters.Step 4. Re�ne relations: The initial set of parameter-indiator relationsprodued in Step 3 should be re�ned by omparing and ombining those thatrefer to the same indiator. When omparing two relations, say∆ (I1/RfM) > 0and ∆ (I1/V P2) > 0 (where I1 might represent 〈success rate of F ind local
room〉), the modeler an investigate whether either of these adaptation strategiesis better than the other and by how muh. This may result in the model beingre�ned into, e.g., ∆ (I1/RfM) > ∆ (I1/V P2), whih would help the ontrollerfaing the hoie between these alternatives. The analysis of whether seletingan alternative makes the value of an indiator math its referene input is to beaddressed in future work.Combining relations also refers to what has been disussed in setion 3.4: if apositive hange in both parameters results in a positive hange in the indiator,should we expet the default behavior in whih ∆ (I1/ {RfM, V P2}) > 0 orshould we expliitly speify that this is not the ase? Suh questions should beasked for any set of relations that refer to the same indiator.Note that when ombining relations to analyze alternatives, are must betaken to only look at the parameters/indiators relevant in the urrent systemon�guration. E.g., in �gure 1, the parameter View Private Appointments (VPA)annot a�et any indiator if the value of VP1 is not Collet automatially. Out-put: R (I, P ), the updated set of relations between indiators and parameters.5 ValidationTo validate our proposal, we applied the system identi�ation proess desribedin setion 4 to the meeting sheduler example presented throughout this paper,identifying 9 indiators (in the form of AwReqs), 8 system parameters (5 ontrolvariables and 3 variation points as shown in �gure 1) and a total of 24 di�erentialrelations among the identi�ed indiators and parameters.For instane, one of the identi�ed indiators refers to the goal Find avail-able rooms as a ritial requirement that should never fail, whih is modeledin AwReq AR5: NeverFail(G-FindAvailRooms). During parameter identi�a-tion, Rooms for Meeting (RfM) and VP2 were identi�ed, along with other pa-rameters that are not relevant to AR5. In the next phase, two relations wereidenti�ed: ∆ (AR5/RfM) > 0 (inreasing the number of loal rooms helps),



∆ (AR5/V P2) > 0 (hanging from local → partner → hotel helps). During re-�nement, analyzing RfM and VP2 in ombination provided∆ (AR5/ {RfM, V P2})
= ∆ (AR5/V P2) (inreasing the number of loal rooms and then not using themdoes not make sense) and∆ (AR5/RfM) = ∆ (AR5/V P2) (hanging RfM or VP2is equally e�etive).Then, we developed a simulation that reads the above system informationas well as events reporting AwReq failures (whih ould be provided by theframework we have presented in [18℄) in order to identify possible adaptivityations that ould be taken by the ontroller during reoniliation. For example,when an event representing the failure of AR5 is reeived during the simulation,the program replies with the hoies of parameter hanges that have positivee�et on AR5 based on the above qualitative relations:* AwReq AR5 has failed! To reonile, the ontroller ould:- Current value of VP2 = loal. Change it to one of: [partner, hotel℄- Current value of RfM = 3. Inrease it.- Note: VP2 and RfM should not be hanged in ombination.With the information given by the di�erential relations, the program wasable to identify available alternatives to adapt the system in ase of failure.More sophistiated algorithms to analyze all the possibilities and selet the bestourse of ation (onsidering also the e�et on NFRs, for example) are in ourfuture plans for developing a omplete framework for system adaptivity based onfeedbak loops. We are also urrently working on a larger ontrolled experiment,onduting system identi�ation on the London Ambulane System [6℄.6 Related WorkThere is growing interest in Control Theory-based approahes for adaptive sys-tems and many of the proposed approahes inlude some form of system identi-�ation stage, in whih the adaptive apabilities of the system are eliited andmodeled. In [7℄, modeling is done by representing system and environment a-tions as well as �uents that express properties of the environment. In GAAM[17℄, measurable/quanti�able properties of the system are modeled as attributes,a preferene matrix spei�es the order of preferene of adaptation ations to-wards goals (similarly to what we proposed in setion 3.3) and an aspirationlevel matrix determines the desired levels of attributes of eah goal. Our workdi�ers from these by providing qualitative information on the relation betweensystem parameters and run-time indiators.In [14℄, Letier & van Lamsweerde augment KAOS with a probabilisti layerin order to allow for the spei�ation of partial degrees of goal satisfation,thus quantifying the impat of alternative designs in high-level system goals.In the approah, domain-spei� quality variables (QVs) assoiated with goalsare modeled and objetive funtions (OFs) de�ne domain-spei�, goal-relatedquantities to be maximized or minimized. Proposed heuristis for identifying QVsand OFs ould be useful in the eliitation of ontrol variables in our approah.



However, unlike our work, their models do not ontain a lear relation betweenthese variables and indiators measured in the target system.Approahes suh as i* [16℄, the work by Elahi & Yu [4℄ and other propos-als on design-time trade-o� analysis an be adapted to provide information forrun-time adaptivity (i.e., removing the need for stakeholder intervention in theanalysis). For instane, ontribution links in i* an provide qualitative relationsbetween variation points and indiators, although they lak the means of dif-ferentiating between links with the same label (e.g., see Call partiipants andEmail partiipants in �gure 1). GRL [1℄ ould be used for this purpose, if ar-dinal ontribution values (1, 2, ...) were hanged to ordinal ones (1st, 2nd, ...),thus providing a graphial representation of enumerated value orders (�3.3). Ourproposal provides suh run-time trade-o� information with a syntax that is moreonise (ontrol parameters abstrat what would have to be represented as largegoal sub-trees), uniform (an relate any system parameter to indiators) and�exible (the preision of the spei�ation depends on the available information).The proposal by Brake et al. [2℄ automates the disovery of software tuningparameters at the ode level using reverse engineering tehniques. A taxonomyof parameters and patterns to aid in their automati identi�ation provides somesort of qualitative relation among parameters, whih may be �tunable� or justobserved. While their work targets existing and legay software, our proposaltakes a Requirements Engineering perspetive and, thus, an refer to higherlevel parameters, suh as the suess rate of a funtional requirement or a qualityonstraint imposed over a non-funtional one.Finally, our proposal learly di�ers from quantitative approahes (e.g., [1, 3,11, 15℄) in that we are using qualitative information, based on the premise thatquantitative estimates at requirements time are usually unreliable [4℄ (assuminga domain with high unertainty or inomplete knowledge of the behavior ofthe system-to-be). Our approah allows the modeler to start with minimuminformation available and add more as further details about the system beomeavailable (either by eliitation or through run-time analysis one the system isexeuting).7 Disussion and Future WorkIn this paper so far, we have overlooked an important modeling dimension, on-textual variability. In this setion, we sketh how it an be taken into onsid-eration in the system identi�ation proess of setion 4. We then disuss otherresearh diretions that we plan to pursue in the future.Properties of the environment an a�et the requirements for and the opera-tion of a system, but, unlike the parameters we have disussed previously (CVsand VPs), ontext parameters annot be diretly manipulated, only monitored.Contexts are abstrations of suh properties [12℄. For instane, the type of ameeting an be viewed as a ontext for the meeting sheduling system, as anbe the importane of a meeting organizer within the ompany. From the pointof view of Control Theory, ontext most losely orresponds to a disturbane



input that annot be manipulated, but in�uenes the output and thus must beaounted for. Contexts are organized using (possibly many) inheritane hierar-hies that re�ne general ontexts (e.g., Regular meeting) into more spei� ones(Mandatory meeting or Information session) with desendants inheriting theproperties of their anestors. Eah hierarhy strutures ontexts along a ontextdimension � some variable aspet of the domain (e.g., meeting importane) �with leaf-level elements diretly monitorable. Multiple inheritane is supported.In [12℄, (soft)goals and ontribution links are identi�ed as ontext-dependentgoal model elements. Contextual annotations apture the e�ets of ontexts onthese elements and thus on software requirements by stating in whih ontextsthe elements are visible. Unless expliitly overridden, the e�ets of anestor on-texts are inherited by their desendants. So, by default, the requirements forRegular meeting are inherited by Mandatory meeting.As disussed in [12℄, varying properties of the environment an have sig-ni�ant e�et on goal models � namely, goal/task/softgoal addition/removal,hanges in VP hoies and di�erent evaluations of these hoies w.r.t. softgoals.Given a ontext-parametrized (i.e., with ontextual annotations) goal model, thealgorithm for produing ontext-spei� versions of it for partiular sets of a-tive ontexts is also desribed. It removes model elements invisible in the urrentontext. The goal modeling notation presented here is more omplex omparedto the notation of [12℄, thus requiring a modi�ed algorithm. The additional el-ements � DAs, QCs, AwReqs, and CVs � are all ontext-dependent, i.e., anhange from ontext to ontext. E.g., the suess rate for the goal Find availablerooms an be set to 95% in a Regular meeting ontext and to 70% in a lessimportant Information session ontext by using the appropriate AwReqs. EahAwReq will be visible in its respetive ontext. Similarly, variations in possiblevalues for VPs/CVs an be represented by di�erent VP/CV variants, eah visiblein their appropriate ontext(s).Clearly, these goal model variations need to be re�eted in the system identi-�ation proess. When we do it in the partiular ontext c, we produe the model
Sc = {Gc, Ic, Pc, Rc (Ic, Pc)}, where Gc is ontext-spei� goal model (a subsetof the ontext-parametrized goal model G) generated by the modi�ed algorithmfrom [12℄. Then, Ic ⊆ I and Pc ⊆ P sine some of the indiators and parametersmay not be visible in c. Moreover, Rc � the set of relations between the relevantparameters and indiators in C � should be restrited to the elements of Ic and
Pc (i.e., r (i, p) ∈ Rc ⇒ i ∈ Ic ∧ p ∈ Pc). While being a neessary ondition, thisexpression does not de�ne the relations in Rc. It is up to the modeler to identifywhih relations exist in the partiular ontexts and how they are de�ned usingthe language of setion 3. One a relationship r (i, p) ∈ Rc is de�ned for theontext c, it also applies for all the desendant ontexts of c unless overriddenand provided that both i and p exist in the desendant ontexts.A omplete analysis of the role of ontextual information on the system iden-ti�ation proess as well as validating the ideas brie�y disussed above is subjetof future work. Other possible future work also inlude investigating: means of es-timating during RE whether a partiular behavior hange will math the desired



targets for the system's output; the e�et indiators an have on one another andhow to model suh a qualitative relation during system identi�ation; what othermethods and onepts from the Control Theory body of knowledge ould be ap-plied in our approah; how does this approah a�et traditional RequirementsEngineering ativities (e.g., stakeholder negotiation during requirements eliita-tion); how an our proposal ontribute to requirements evolution (i.e., hangingthe goal model beause it does not properly represent urrent stakeholder re-quirements, despite the system's adaptive apabilities); et.Finally, the full potential of the proposal presented in this paper will be re-alized in the next steps of our researh, whih inludes the development of aframework that implements adaptivity in a target system using feedbak loops.With AwReqs [18℄ and qualitative relations in the requirement model, it is nowpossible to develop suh a framework that will provide reoniliation (attempt tosatisfy the requirements after failures) and ompensation (resolve any inonsis-tenies that failures might produe) at runtime. One we have developed suh aframework, more experiments are needed to assess to what extent this approahhelps in designing adaptive systems as opposed to traditional GORE methods.In partiular, we are urrently working on di�erent strategies for reonilia-tion. With the information that is added to the models by using the approahproposed in this paper, two basi strategies to be exeuted when a failure isdeteted are: parameter tuning � if there are any parameters that ould bemodi�ed in order to reonile, analyze the qualitative information available andselet the best ourse of ation w.r.t. other indiators � and abort � if thereare no parameters or the ones that exist have already been tried, tell the targetsystem to graefully fail or degrade performane. Other reoniliation strategiesan be devised by analyzing existing proposals in the area of adaptive systemsand other �elds of omputer siene, suh as fault-tolerant omputing, arti�ialintelligene, distributed systems, et.8 ConlusionIn this paper, we argue that urrent requirements models lak an essential in-formation needed by feedbak loop ontrollers in order to adapt their targetsystems: how hanges in parameters a�et relevant monitored indiators. Wepropose a systemati approah for System Identi�ation and, by taking a REperspetive, we use ideas from Qualitative Reasoning to ope with unertainand inomplete knowledge about systems. Our language allows modeling ofparameter-indiator relations varying preision, based on available information.We also brie�y disuss the role of ontextual information on this proess andondut experiments to validate our ideas.Referenes1. Grl website, http://www.s.toronto.edu/km/grl/.
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