
(Requirement) Evolution Requirements for Adaptive Systems

Vı́tor E. Silva Souza, Alexei Lapouchnian, John Mylopoulos

Department of Information Engineering and Computer Science - University of Trento

Via Sommarive, 14 - Trento, Italy - 38123

{vitorsouza,lapouchnian,jm}@disi.unitn.it

Abstract—It is often the case that stakeholders want to
strengthen/weaken or otherwise change their requirements for
a system-to-be when certain conditions apply at runtime. For
example, stakeholders may decide that if requirement R is
violated more than N times in a week, it should be relaxed
to a less demanding one R-. Such evolution requirements play
an important role in the lifetime of a software system in that
they define possible changes to requirements, along with the
conditions under which these changes apply. In this paper we
focus on this family of requirements, how to model them and
how to operationalize them at runtime. In addition, we evaluate
our proposal with a case study adopted from the literature.

Keywords-Requirements engineering, modeling, evolution,
requirements, adaptive systems

I. INTRODUCTION

It is often the case that the requirements elicited from

stakeholders for a system-to-be are not carved in stone, never

to change during the system’s lifetime. Rather, stakeholders

will often hedge with statements such as “If requirement R

fails more than N times in a week, relax it to R-”, or “If we

find that we are fulfilling our target (requirement S), let’s

strengthen S by replacing it with S+”, or even “Require-

ment Q no longer applies after 20/01/2014”. These are all

requirements in the sense that they come from stakeholders

and describe desirable properties of the system-to-be. They

are special requirements, however, in the sense that their

operationalization consists of changing other requirements,

as suggested by the examples above.

A requirements model defines a space of system behav-

iors, where each behavior fulfills system objectives. When

system adaptation is performed, the new behavior is selected

from this space of alternatives. In this paper, however, we

concentrate on requirements that change that space, thereby

defining a changed set of system behaviors. Such evolutions

allow the system to utilize new alternative behaviors. We call

such requirements Evolution Requirements (a.k.a. EvoReqs)

since they prescribe desired evolutions for other require-

ments. The objective of this paper is to circumscribe this

family of requirements and offer mechanisms for modeling

and operationalizing them. At runtime, EvoReqs have an

effect on the running components of the system with the

purpose of meeting stakeholder directives. EvoReqs allow us

to not only specify what other requirements need to change,

but also when other strategies — such as “retry after some

time” or “relax the requirement” — should be used.

Our approach is goal-oriented in the sense that vanilla

requirements are modeled as goals that can be refined and

correlated, while EvoReqs are modeled as Event-Condition-

Action (ECA) rules that are activated if an event occurs

and a certain condition holds. The action component of an

ECA rule consists of a sequence of primitive operations

on a goal model (that evolve the goal model according

to stakeholder wishes). Each operation effects a primitive

change to a goal model, e.g., removes/adds a goal at the

class or instance level, changes the state of a goal instance,

or undoes the effects of all executed actions for an aborted

execution. Furthermore, such operations can be combined

using patterns in order to compose macro-level evolution

strategies, such as Retry and Relax.

For our goal models, we have adopted ideas from Control

Theory, notably the concepts of control variables and indica-

tors (monitored variables). Such variables are associated to

individual goals in a goal model. An indicator measures the

degree of fulfillment of the goal it is associated with, e.g.,

the percentage of dispatches that arrived at their destination

within 15 minutes. Control variables, on the other hand,

measure the quantity of a resource that is available to the

running system, e.g., the number of ambulance cars available

for dispatching. The primitive actions that can modify a

goal model can not only add/remove/change goals, but also

change the values of control variables.

We validate our proposal with an experiment where an

Adaptive Computer-aided Ambulance Dispatch (A-CAD) is

designed using our approach and is then executed to see

how reasonable its evolution is. Its requirements were based

on the well-known London Ambulance Service Computer-

Aided Despatch (LAS-CAD) failure report [1] and some of

the publications that analyzed the case (e.g., [2]). The A-

CAD is also used as a running example throughout the paper.

The rest of the paper is organized as follows. Section II

summarizes relevant earlier work and introduces the running

example. Section III presents EvoReqs and discusses the

use of reconfiguration as an adaptation strategy. In Section

IV, we detail the run-time coordination process and our

ECA-based implementation, while Section V focuses on the

validation of the proposal. Section VI compares our proposal

to related work in the areas of adaptive systems and software

evolution. Finally, Section VII concludes.



Figure 1. Goal model for the A-CAD after applying our systematic approach for the design of adaptive systems.

II. BASELINE

We have previously proposed a systematic System Iden-

tification process [3] that starts with the elicitation of

Awareness Requirements (AwReqs) [4], representing runtime

indicators of requirements divergence. Our proposal in this

paper is based on these works, which in turn builds on Goal-

Oriented Requirements Engineering (GORE). This section

summarizes this baseline through an example, an Adap-

tive Computer-aided Ambulance Dispatch (A-CAD), whose

model is shown in Figure 1. For more details refer to [5].

A. The Initial Goal Model

Requirements are represented as goals, tasks, softgoals,

domain assumptions (DAs) and quality constraints (QCs).

These elements are part of the ontology proposed by Jureta

et al. [6] for requirements and are supported by many

requirements modeling approaches [7].

The space of alternatives for goal satisfaction is rep-

resented by Boolean AND/OR refinements with obvious

semantics. Tasks, on the other hand, are directly mapped

to functionality in the running system and are satisfied if

executed successfully. Finally, DAs are satisfied if they hold

(affirmed) while the system is pursuing its parent goal. In the

example, the main goal of the system is to Generate opti-

mized dispatching instructions. To be successful, the system

is supposed to satisfy Call taking, Resource identification,

Resource mobilization, Map retrieval and Incident update,

all the while assuming that Resource data is up-to-date.

Softgoals represent (usually non-functional) requirements

that do not have clear-cut criteria for satisfaction, such

as Low cost or Fast dispatching. Before our approach is

applied, however, their satisfaction should be metricized by

one or more QCs, which can be associated with run-time

procedures that check their satisfaction. Figure 1 contains

five softgoals, each of which is associated with one QC.

B. System Identification

After the initial goal model has been built, we conduct a

systematic System Identification process [3] for the adaptive

system-to-be. As in control systems, this process identifies

relevant indicators that can be monitored, system parameters

that can be tuned at runtime and the relation between them,

i.e., how changes in parameters affect indicators.

The first step of system identification consists of eliciting

Awareness Requirements (AwReqs), which are requirements

about the states of other requirements — such as their

success or failure — at runtime [4]. AwReqs represent note-

worthy situations where stakeholders may want the system

to adapt. They also indicate how critical each requirement is

by specifying the degree of failure that can be tolerated. In



other words, AwReqs are used as indicators of requirements

convergence at runtime (one could, however, adapt the

process to use other kinds of indicators).

For the A-CAD experiment, fifteen AwReqs were elicited

and added to the goal model, most of them based on

the problems associated with the LAS-CAD demise. For

example, one of these problems was related to crew members

not properly using Mobile Data Terminals (MDTs) installed

in the ambulances. AwReq AR9 indicates that the system

should be aware of this problem at runtime in order to

adapt, specifying the DA Crew members use MDTs properly

should be true 99% of the times. Another example is AwReq

AR11, which indicates QC Dispatching occurs in 3 min

should never fail. This indicates that stakeholders consider

Fast dispatch a critical requirement.

At runtime, the elements of the goal model are repre-

sented as classes, being instantiated every time a user starts

pursuing a requirement (in the case of goals and tasks) or

when they are bound to be verified (in the case of DAs and

QCs). Furthermore, the framework sends messages to these

instances when there is a change of state (e.g. when they fail

or succeed). Therefore, AwReqs can refer to requirements at

the instance level (e.g., a single instance should not change

its state to Failed, like AR11) or at the class (aggregate) level

(e.g., 99% of the instances created in a specified period of

time should be in the state Satisfied, like AR9). More details

on this monitoring infrastructure can be found in [4].

The next steps in the process consist of identifying pa-

rameters that, when changed, have an effect on the relevant

indicators, modeling the nature of this effect using differen-

tial relations. Figure 1 shows A-CAD’s five variation points

(VP1–VP5) and three control variables (LoA/Level of Au-

tomation, NoC/Number of Calls and NoSM/Number of Staff

Members). For instance, ∆(AR11/LoA) > 0 represents the

relation between LoA and AR11 in a qualitative way: the

higher the level of automation, the faster the dispatch.

When AwReqs fail at runtime, a possible adaptation strat-

egy is to change parameter values in order to improve the

failing indicators. In a recently submitted paper [8], we

propose a framework that searches the solution space for

the best values to assign to system parameters, reconfiguring

the system to adapt. However, in this paper we focus on a

different kind of strategy, one based on changing the re-

quirements model — i.e., the problem space — as specified

by Evolution Requirements. Unlike reconfiguration, which

reasons over the model to try and find the best parameter

values, EvoReqs prescribe specific requirement evolutions

when certain situations are presented, as illustrated in Sec-

tion I. We present this new family of requirements next.

III. EVOLUTION REQUIREMENTS

Evolution requirements specify changes to other require-

ments when certain conditions apply. For instance, suppose

the stakeholders provide the following requirements:

• If a staff member fails to Register call (AR15), she

should retry after a few seconds;

• If there is a negative trend on the success rate of

Ambulances arrive in 8 min for two consecutive months

(AR4), we can tolerate this at most once a year,

relaxing the constraint to three months in a row;

• If we are receiving more calls than we can handle (AR1

or AR2), we do not want the A-CAD to autonomously

hire staff members (i.e., increase NoSM). This task

should be delegated to the management.

We propose to represent these requirements by means of

sequence of operations over goal model elements, in a way

that can be exploited at runtime by an adaptation framework,

which, acting like a controller in a control system, sends

adaptation instructions to the target system. We call them

Evolution Requirements (EvoReqs).

EvoReqs and AwReqs (c.f. §II-B) complement one another,

allowing analysts to specify the requirements for a feedback

loop that operationalizes adaptation at runtime: AwReqs

indicate the situations that require adaptation and EvoReqs

prescribe what to do in these situations. It is important

to note, however, that EvoReqs are not the only way to

adapt to AwReq failures (there is, e.g., reconfiguration [8]).

Analogously, AwReq failures are not the only event that

can trigger EvoReqs (the framework proposed herein can

be adapted to respond to, e.g., scheduled events).

The following subsections present EvoReqs, starting with

low-level operations on requirements (III-A), then defining

patterns to represent common adaptation strategies using

these operations (III-B) and how this framework can ac-

commodate reconfiguration as one possible strategy (III-C).

A. EvoReq Operations

Figure 2 shows a conceptual architecture for a run-time

adaptation framework. The Monitor component has been

proposed in [4] and includes an instrumentation phase which

augments the target system with logging capabilities. Here,

the term target system is used as in Control Theory, i.e.,

the base system around which one defines a feedback loop.

By analyzing the requirements (goal model with AwReqs,

parameters, etc.) and the log entries, this component is able

to conclude if and when certain AwReqs have failed.

These failures should then trigger an Adapt component

that decides which requirement evolution operations the

target system should execute (this decision process is further

discussed in Section IV). These operations are obtained from

the specification of EvoReqs, which are also part of the re-

quirements depicted in Figure 2. EvoReqs, thus, are specified

as a sequence of primitive operations which have an effect on

the target system (TS) and/or on the adaptation framework

(AF) itself, effectively telling them how to change (or, using

a more evolutionary term, “mutate”) the requirements model

in order to adapt. The existing operations and their respective

effects are shown in Table I.



Table I
REQUIREMENT EVOLUTION OPERATIONS AND THEIR EFFECT ON THE TARGET SYSTEM (TS) AND/OR THE ADAPTATION FRAMEWORK (AF).

Instruction Effect

abort(ar) TS should “fail gracefully”, which could range from just showing an error message to shutting the entire system down,
depending on the system and the AwReq ar that failed.

apply-config(C, L) TS should change from its current configuration to the specified configuration C. Argument L indicates if the change
should occur at the class level (for future executions) and/or at the instance level (for the current execution).

change-param([R|r],
p, v)

TS should change the parameter p to the value v for either all future executions of requirement R or the requirement
instance r currently being executed

copy-data(r, r’) TS should copy the data associated with performative requirement instance r (e.g., data provided by the user) to
instance r’.

disable(R),

suspend(r)

TS should stop trying to satisfy requirement instance r in the current execution, or requirement R from now on. If r
(or R) is an AwReq, AF should stop evaluating it.

enable(R), resume(r) TS should resume trying to satisfy requirement instance r in the current execution, or requirement R from now on.
If r (or R) is an AwReq, AF should resume evaluating it.

find-config(algo,

ar)

AF should execute algorithm algo to find a new configuration for the target system with the purpose of reconfiguring
it. Other than the AwReq instance ar that failed, AF should provide to this algorithm the system’s current configuration
and the system’s requirements model.

initiate(r) TS should initialize the components related to r and start pursuing the satisfaction of this requirement instance. If r
is an AwReq instance, AF should immediately evaluate it.

new-instance(R) AF should create a new instance of requirement R.

rollback(r) TS should undo any partial changes that might have been effected while the satisfaction of performative requirement
instance r was being pursued and which would leave the system in an inconsistent state, as in, e.g., Sagas [9].

send-warning(A, ar) TS should warn actor A (human or system) about the failure of AwReq instance ar

terminate(r) TS should terminate any component related to r and stop pursuing the satisfaction of this requirement instance. If r
is an AwReq instance, AF should no longer consider its evaluation.

wait(t) AF should wait for the amount of time t before continuing with the next operation. TS is also informed of the wait
in case changes in the user interface are in order during the waiting time.

wait-for-fix(ar) TS should wait for a certain condition that indicates that the problem causing the failure of AwReq ar has been fixed.

As can be seen in the table, adaptation instructions

have arguments which can refer to, among other things,

system actors, requirements classes (upper-case R) or in-

stances (lower-case r) and system parameters. Actors can

be provided by any diagram that models external entities

that interact with the system (e.g., i⋆ Strategic Dependency

models [10]). Requirements classes/instances are provided

by the monitoring component [4], which represents the

elements of the requirements model as UML classes each

extending the appropriate class from the diagram shown in

Figure 3. Run-time instances of these elements (such as the

various incident calls and ambulance dispatches) are then

represented as objects that instantiate these classes. Finally,

parameters are elicited during system identification, as ex-

plained in Section II-B. Instructions apply-config and

find-config also refer to configurations and algorithms,

which will be further explained in Section III-C.

Below, we show the specification of one of the examples

presented earlier in this section: retry a goal when it fails.

g’ = new-instance(G_RegCall);
copy-data(g, g’);
terminate(g);
rollback(g);
wait(5s);
initiate(g’);

Here, g represents an instance of goal Register call,

referred to by the instance of AwReq AR15 that failed. The

framework then creates another instance of the goal, tells the

target system to copy the data from the execution session of

the failed goal to the one of the new goal, to terminate the

failing components and rollback any partial changes made

by them. After 5s, the framework finally instructs the target

system to initiate the new goal (i.e., it starts to pursue its

child tasks), thus accomplishing “retry after a few seconds”.

Although evolution operations are generic, their effects

on the target system are application-specific. For example,

instructing the system to try a requirement again could

mean, depending on the system and the requirement, retry-

ing some operations autonomously or showing a message

to the user explaining that she should repeat the actions

she has just performed. Therefore, in order to be able to

carry out these operations, the target system is supposed

to implement an Evolution API that receives all operations

of Table I, for each requirement in the system’s model.

Obviously, as with any other requirement in a specification,

each 〈operation, requirement〉 pair can be implemented

on an as-needed basis.

Revisiting the previous example, copy-data should tell

the A-CAD to copy the data related to the goal that failed

(e.g., information on the emergency that has already been

filled in the system) to a new user session, terminate

closes the screen that was being used by the staff member



Figure 2. Conceptual architecture for a run-time adaptation framework.

Figure 3. Class model for requirements in GORE, adapted from [4].

to register the call, rollback deletes any partial changes

that might have been saved, wait shows a message asking

the user to wait for 5s and, finally, initiate should open

a new screen associated with the new user session so the

staff member can try again. All this behavior is specific

to the A-CAD and the task at hand and the way it will

be implemented depends highly on the technologies chosen

during its architectural design.

B. Adaptation Strategies as Patterns

The operations of Table I allow us to describe different

adaptation strategies in response to AwReqs failures using

EvoReqs. However, many EvoReqs might have similar struc-

tures, such as “wait t seconds and try again, with or without

copying data”. Therefore, to facilitate their elicitation and

modeling, we propose the definition of patterns that rep-

resent common adaptation strategies. Below we show the

specification of the Retry strategy:

Retry(copy: boolean = true; time: long) {
r = awreq.target; R = r.class;
r’ = new-instance(R);
if (copy) copy-data(r, r’);
terminate(r); rollback(r);
wait(time);
initiate(r’);

}

Table II
ADAPTATION STRATEGIES ELICITED FOR THE A-CAD EXPERIMENT.

Strategy Description

Delegate Delegates the solution of the problem to an external
agent (human or system) and waits for the problem to
be fixed.

Warning Like Delegate, warns an external agent about the prob-
lem, but does not wait for the problem to be fixed.
Useful in situations in which the system cannot or does
not need to be blocked while the problem is being fixed.

Relax Can be applied to any kind of requirement, including
AwReqs. Inspired by the RELAX framework [12] (c.f.
§VI), this strategy relaxes the satisfaction condition of
a requirement, either at the instance level (relax only
the current achievement of the requirement) or at the
class level (relax future executions of the requirement).
There are two flavors for this strategy: replacing the
requirement with a relaxed version of itself and, in case
of AND-refined requirements, disabling one or more
children to facilitate the satisfaction of the parent.

Strengthen The analogous counterpart of Relax, strengthens the
satisfaction condition of a requirement and is useful
in combination with Relax to create trade-offs among
requirements.

Abort Last resort, aborts the execution of the system as
gracefully as possible.

A strategy is defined by a name, a list of arguments that

it accepts (with optional default values) and an algorithm

(composed of JavaTM-style pseudo-code and evolution op-

erations) to be carried out when the strategy is selected.

Strategies are usually associated to failures of AwReqs and,

therefore, we can also refer to the instance of the AwReq

that failed using the keyword awreq in the pseudo-code.

Given this strategy, and assuming that time is represented in

milliseconds, the example from Section III-A could be more

concisely expressed as Retry(5000).

After strategies have been elicited and represented as

patterns, they can be associated with AwReqs and added

to the requirements specification (e.g, Retry(5000) and

AR15). Due to space constraints, we do not propose a

specific syntax for their inclusion in the models.

Other than Retry, in our experiments we have identified

and formalized the adaptation strategies summarized in

Table II (refer to [5] for their specifications). This list is not

intended to be exhaustive and new strategies can be created

as needed. For instance, one could take inspiration from

design patterns for adaptation [11]. Furthermore, it does not

include Reconfiguration, which in an important strategy.

C. Reconfiguration

Wang & Mylopoulos [13] provide a GORE-based defini-

tion of a system configuration: “a set of tasks from a goal

model which, when executed successfully in some order,

lead to the satisfaction of the root goal”. We add to this

definition the values assigned to each control variable (CV)

elicited during system identification (c.f. § II-B). Reconfigu-



ration, then, is the act of replacing the current configuration

of the system with a new one in order to adapt.

As mentioned before, EvoReqs are the focus of this

work and we have proposed a reconfiguration framework

in another paper, which has been recently submitted to

review [8]. However, the EvoReqs framework proposed

herein was designed in a way to facilitate the integration with

one or more reconfiguration components. This is done by

considering Reconfiguration a type of adaptation strategy.

EvoReqs can, thus, be used to specify that stakeholders

would like to use reconfiguration, in one of two ways:

1) If stakeholders wish to apply a specific reconfiguration

for a given failure, instructions like change-param,

enable/disable and initiate/terminate

can be used to describe the precise changes in require-

ments at class and/or instance level;

2) Instead, if there is no specific way to reconfigure,

a reconfiguration algorithm that is able to com-

pare the different alternatives should be executed

using the find-config instruction, after which

apply-config is called to inform the target system

about the new configuration.

Below, we show the pattern that describes the adaptation

strategy of option 2. The strategy receives as arguments

an algorithm to find the new configuration, the AwReq that

failed and thus triggered the strategy and the level at which

the changes should be applied: class (future executions),

instance (current execution) or both.

Reconfigure(algo: FindConfigAlgorithm, ar:
AwReq, level: Level = INSTANCE) {

C’ = find-config(algo, ar)
apply-config(C’, level)

}

The state-of-the-art on goal-based adaptive systems pro-

vides several algorithms that are capable of finding a new

system configuration. To cite a couple of examples, [13]

proposes algorithms that suggest a new configuration with-

out the component that has been diagnosed as responsible

for the failure; whereas [14] assign preference rankings to

softgoals and determine the best configuration using a SAT

solver. A more thorough review of reconfiguration proposals

is included in [8]. Note that different reconfiguration algo-

rithms may require different information from the model.

For instance, [13] requires a goal model and a diagnosis

pointing to the failing component, whereas [14] needs the

preference rankings of softgoals. Analysts should provide

the required information accordingly.

IV. THE ADAPTATION PROCESS

Using the language described in Section III, requirements

engineers can specify stakeholders’ EvoReqs in a precise

way (based on clearly-defined primitive operations) that can

also be exploited at runtime by an adaptation framework

(e.g., Figure 2). However, more than one EvoReq can be

✞ ☎
1 processEvent(ar : AwReq) {
2 session = findOrCreateSession(ar.class);
3 session.addEvent(ar);
4 solved = ar.condition.evaluate(session);
5 if (solved) break;
6
7 ar.selectedStrategy = null;
8 for each s in ar.strategies {
9 appl = s.condition.evaluate(session);
10 if (appl) {
11 ar.selectedStrategy = s;
12 break;
13 }
14 }
15
16 if (ar.selectedStrategy == null)
17 ar.selectedStrategy = ABORT;
18
19 ar.selectedStrategy.execute(session);
20 ar.condition.evaluate(session);
21 }

✝ ✆

Figure 4. Algorithm for responding to AwReq failures.

Figure 5. Entities involved in the ECA-based coordination process.

associated to each requirement divergence, which prompts

the need for a process that coordinates their execution.

Here, we propose a process based on ECA rules for

the execution of adaptation strategies in response to system

failures. This process is summarized in the algorithm shown

in Figure 4, which manipulates instances of the classes

represented in the class model of Figure 5.

The process is triggered by AwReq evaluations, indepen-

dent of the AwReq instance’s final state (Success, Failed or

Canceled). For instance, let us recall one of the examples in

the beginning of Section III: say the monthly success rate of

Ambulances arrive in 8 min has decreased twice in a row,

causing the failure of AR4 and starting the ECA process.

The algorithm begins by obtaining the adaptation session

that corresponds to the class of said AwReq, creating a new

one if needed (line 1). As shown in Figure 5, an adaptation

session consists on a series of events, referring to AwReq

evaluations. This time-line of events can be later used to

check if a strategy is applicable or if the problem has been

solved (i.e., if the adaptation has been successful). Active

sessions are stored in a repository (e.g., a hash table indexed

by AwReq classes attached to the user session) which is

managed by the findOrCreateSession() procedure.



In the example, assuming it is the first time AR4 fails, a

new session will be created for it.

Then, the process adds the current AwReq’s evaluation as

an event to the active session, immediately evaluates if the

problem has been solved — this is done by considering the

AwReq’s resolution condition, which analyzes the session’s

event time-line — and stops the process if the answer is affir-

mative (3–5). For example, the trivial case is considering the

problem solved if the (next) AwReq evaluates to success, but

this abstract class can be extended to provide different kinds

of resolution conditions, including, e.g., involving a human-

in-the-loop to confirm if the problem has indeed been solved,

organizing conditions into AND/OR-refinement trees (like in

a goal model), etc. For the running example, let us say that

AR4 has been associated with the aforementioned simple

resolution condition. Since the AwReq’s state is Failed, the

session is not considered solved and the algorithm continues.

If the current AwReq evaluation does not solve the

issue, the process continues to search for an applica-

ble adaptation strategy to execute in order to try and

solve it (7–14). It does so by going through the list

of strategies associated with the AwReq that failed in

their predefined order (e.g., preference order established

by the stakeholders) and evaluating their applicability con-

ditions, breaking from the loop once an applicable strat-

egy has been found. As with ResolutionCondition,

ApplicabilityCondition is also abstract and should

be extended to provide specific kinds of evaluations. For

instance, apply a strategy “at most N times per session/time

period”, “at most in X% of the failures/executions”, “only

during specified periods of the day”, AND/OR-refinements,

etc. (patterns can be useful here). Some conditions might

even need to refer to some domain-specific properties or

contextual information. If no applicable strategy is found,

the process falls back to the Abort strategy (16–17).

Back to the running example, imagine now that the A-

CAD designers have associated two strategies to AR4. First,

relax it by replacing AR4 with AR4’, which verifies if the

success rate has decreased not in two, but in three con-

secutive months (i.e., not TrendDecrease(30d, 3)).

This strategy is associated with a condition that constraints

its applicability to at most once a year. Second, the Warning

strategy is also associated with AR4, sending a message to

the ambulance service managers so they can take corrective

action. To this strategy a simple applicability condition is

associated, which always returns true. Therefore, if this is

the first time AR4 fails in the current year, it will be relaxed

to AR4’, otherwise the Warning strategy will be selected.

After the strategy is selected, it is executed and the

session is given another chance to evaluate its resolution

(sometimes we would like to consider the issue solved after

applying a specific strategy, independent of future AwReq

evaluations, e.g. when we use Abort). When an adaptation

session is considered resolved, it should be terminated,

which marks it as no longer being active. At this point, future

AwReq evaluations would compose new adaptation sessions.

Instead, if the algorithm ends without solving the problem,

the framework will continue to work on it when it receives

another AwReq evaluation and retrieves the same adaptation

session, which is still active. Some adaptation strategies can

force a re-evaluation of the AwReq when executed, which

guarantees the continuity of the adaptation process.

For the AR4 example, the session would remain active

until another month has been passed and AR4’ is checked.

If the success rate increases then, AR4’ will be satisfied,

triggering another call to processEvent(), which would

find AR4’s session and, according to the resolution condi-

tion, consider it solved and terminate it. If the rate decreases

one more time, though, the Warning strategy is used and

the session remains active until the following month. Later,

when we discuss the framework’s implementation, this co-

ordination process is depicted with another example.

As this example illustrated, information on resolution and

applicability conditions should be present in the require-

ments specification in order for the adaptation framework

to use this process. As with EvoReqs, we do not propose

any particular syntax for the inclusion of this information

in the specification. Furthermore, the ECA-based process is

only one possible solution for the coordination and execution

of adaptation strategies in response to AwReq failures at

runtime. It can be replaced or combined with other processes

that use EvoReqs and any extra specification necessary (e.g.

applicability and resolution conditions) to: (a) select the best

strategy to apply; (b) execute it; (c) check if the problem has

been solved; (d) loop back to the start if it has not.

V. IMPLEMENTATION AND EVALUATION

This section presents an evaluation of our proposal, based

on Design Science methods [15]. In §V-A, we show that

EvoReqs can be operationalized at runtime using the ECA-

based process, bringing value to the target adaptive system.

§V-B briefly discusses the performance of this solution.

A. Operationalizing EvoReqs

To demonstrate the value EvoReqs can bring to the devel-

opment of adaptive systems, we have built the adaptation

framework depicted earlier in Figure 2, together with a

simulation component as the target system that mimics

failure situations that could occur in the A-CAD.

The framework was implemented as OSGi bundles

(Core, Logging, Monitoring, Adaptation and Simula-

tion) and their source code is available for download

(github.com/vitorsouza/Zanshin). The Core bundle exposes

four service interfaces, each of which implemented by a

different bundle:

• Monitoring Service: monitors the log provided by the

target system and detects changes of state in AwReq



✞ ☎
<?xml version="1.0" encoding="UTF-8"?>
<acad:AcadGoalModel ...>
<rootGoal xsi:type="acad:G_GenDispatch">
<children xsi:type="acad:G_CallTaking">
<children xsi:type="acad:D_MaxCalls"/>
<children xsi:type="acad:G_RegCall">
<children xsi:type="acad:T_InputInfo"/>
<children xsi:type="acad:T_DetectLoc"/>

</children>
...

</children>
...

</rootGoal>
...
<awReqs xsi:type="acad:AR15" target="//@rootGoal/

@children.0/@children.1">
<condition xsi:type="model:SimpleResolutionCondition

"/>
<strategies xsi:type="model:RetryStrategy" time="

5000">
<condition xsi:type="

model:MaxExecApplicabilityCondition"
maxExecutions="1"/>

</strategies>
<strategies xsi:type="

model:RelaxDisableChildStrategy" child="//
@rootGoal/@children.0/@children.1/@children.1">

<condition xsi:type="
model:MaxExecApplicabilityCondition"
maxExecutions="1"/>

</strategies>
</awReqs>
</acad:AcadGoalModel>
✝ ✆

Figure 6. The A-CAD requirements specified as an EMF model.

instances, submitting these to the Adaptation Service.

This component is further described in [4];

• Adaptation Service: implements the ECA-based coor-

dination process described in Figure 4 (§IV), analyz-
ing the requirements specification and deciding which

adaptation strategy to execute next;

• Target System Controller Service: implemented by the

Simulation bundle, serves as a bridge between the

adaptation framework and the target system, by imple-

menting the operations of Table I, which are called by

the executed adaptation strategies;

• Repository Service: implemented by the Core bundle

itself, stores the instances of the requirements models

that are used by the other services.

Requirements models are specified using Eclipse Model-

ing Framework meta-models: the Core component provides

the basic GORE classes (c.f., Figure 3) and the classes

involved in the ECA-based process (c.f., Figure 5). These

meta-models are extended by the Simulation bundle to pro-

vide classes representing the A-CAD requirements, i.e., one

EMF class for each requirement of the goal model shown

earlier in Figure 1, extending the appropriate GORE/ECA

classes. Finally, the A-CAD requirements specification can

be written as an EMF model, as shown in Figure 6.

This model excerpt shows the specification of goal

Register call, its child tasks and ancestor goals, and

AwReq AR15, which refers to Register call as its tar-

get using EMF’s syntax for references within a model.

AR15 is specified to have a simple resolution condition

— i.e., if the AwReq evaluation succeeded, the problem

is solved — and two associated adaptation strategies:

Retry(5000) (mentioned back in Section III-B) and

RelaxDisableChild(T_DetectLoc) (which relaxes

✞ ☎
AF: Processing state change: AR15 -> Failed
AF: (S1) Created new session for AR15
AF: (S1) The problem has not yet been solved...
AF: (S1) RetryStrategy is applicable.
AF: (S1) Selected: RetryStrategy
AF: (S1) Applying strategy RetryStrategy(true; 5000)
TS: Received: new-instance(G_RegCall)
TS: Received: copy-data(iG_RegCall, iG_RegCall)
TS: Received: terminate(iG_RegCall)
TS: Received: rollback(iG_RegCall)
TS: Received: wait(5000)
TS: Received: initiate(iG_RegCall)
AF: (S1) The problem has not yet been solved...
-----------------------------------------------------
AF: Processing state change: AR15 -> Failed
AF: (S1) Retrieved existing session for AR15
AF: (S1) The problem has not yet been solved...
AF: (S1) RetryStrategy is not applicable
AF: (S1) RelaxDisableChildStrategy is applicable.
AF: (S1) Selected: RelaxDisableChildStrategy
AF: (S1) Applying strategy RelaxDisableChildStrategy(

G_RegCall; Instance level only; T_DetectLoc)
TS: Received: suspend(iG_RegCall)
TS: Received: terminate(iT_DetectLoc)
TS: Received: rollback(iT_DetectLoc)
TS: Received: resume(iG_RegCall)
AF: (S1) The problem has not yet been solved...
-----------------------------------------------------
AF: Processing state change: AR15 -> Succeeded
AF: (S1) Retrieved existing session for AR15
AF: (S1) The problem has been solved. Terminate S1.
✝ ✆

Figure 7. Adaptation framework execution log for the AR15 simulation.

the satisfaction of the goal by disabling task Detect caller

location). Both strategies are applicable at most once during

an adaptation session, as can be seen in the specification.

When the simulation is ran, the A-CAD specification is

read and represented in memory as JavaTM objects (using

EMF’s API). Once the framework detects AR15 has changed

its state (again, details in [4]), it conducts the ECA-based

coordination process, producing a log similar to the one

shown in Figure 7. In the figure, messages are prefixed

with TS and AF to indicate if they originate from the target

system or the adaptation framework, respectively, which run

in separate threads. This is done to resemble more closely

a real life situation, in which the target system is a separate

component from the adaptation framework.

As the log shows, the framework is able to execute the

specified adaptation strategies, sending EvoReq operations to

the target system, which should then adapt according to the

instructions. Other than demonstrating the usefulness of our

proposed approach, such operationalization of EvoReqs can

help in the development of adaptive systems by separating

the adaptation concerns into a specific component.

B. Performance

To evaluate the performance of the implementation, we

have developed a simulation in which goal models of differ-

ent sizes (100–1000 elements) are built and have an AwReqs

failing at runtime. The framework applies the adaptation

strategy that is also included in the specification and the

target system (i.e., the simulation) acknowledges it.

Both the target system and the adaptation framework

threads were timed and results showed that the impact of

the implementation on the former is minimal, whereas the

latter scales linearly with the size of the goal model. Space

constraints prevent us from presenting more complete results



in this paper, but the interested reader can experiment the

simulations for themselves by downloading its source code.

Furthermore, the target system and adaptation framework

can be ran in a separate computers, reducing the impact of

the adaptation process even further.

VI. RELATED WORK

Our work relates both to the Adaptive Systems and Soft-

ware Evolution areas. Here, however, we restrict ourselves

to approaches that, like ours, are focused on requirements.

Our approach is quite similar to FLAGS [16]. This

service-oriented approach allows for the definition of adap-

tive goals which, when triggered by a goal not being satis-

fied, execute a set of adaptation actions that can change the

system’s goal model in different ways — add/remove/modify

goals or agents, relax a goal, etc. — and in different levels —

in transient or permanent ways. FLAGS is based on Linear

Temporal Logic and our approach is less heavy-handed in

the formalism that is used than logic-based formalisms such

as LTL, which has been found to be difficult in many

practical settings. Furthermore, our approach is more gen-

eral, offering a more varied set of operations over the goal

model and allowing for extensible applicability/resolution

conditions for adaptation strategies. On the other hand,

FLAGS deals with synchronization and conflict resolution

of adaptation goals, whereas EvoReqs just delegate these

issues to the target system, sending instructions according to

the specification of adaptation strategies. Considering these

issues is a good opportunity for future work. The RELAX

framework [12] is similar to FLAGS, although it does not

provide a runtime framework that operationalizes adaptation.

Another similar work is proposed by Fu et al. [17]. Their

approach represents the life-cycle of instances of goals at

runtime using a state-machine diagram and, based on it, an

algorithm can prevent possible failures or repair the system

in case of requirements deviation. Their proposal, however,

works at the instance-level only and does not change the

system in a “from now on” fashion. Moreover, the list

of possible adaptation strategies is fixed, whereas EvoReqs

offers a fixed set of operations that can compose many

different kinds of adaptation strategies. Failure prevention

can also be implemented in our approach by specifying

AwReqs not only on system failures but also on indications

they are about to occur (if possible). EvoReqs associated

with these AwReqs could then enact preventive measures,

avoiding the failure altogether.

Most requirements-based adaptive systems proposals fo-

cus on the solution space. Qureshi & Perini [18] focus on

service-based applications and adapt by searching for new

services at runtime. Brown et al. [19] encapsulates Adapt

operator extended LTL in specifications, which allows the

system to switch between operational domains. Approaches

that perform adaptation by reconfiguration, such as the ones

cited in Section III-C, also fall into this category. Our

work, on the other hand, proposes to adapt by changing the

requirements (problem) space instead.

The problem of requirements evolution has mainly been

addressed in the context of software maintenance. Thus,

most research on this topic treats it as a post-implementation

phenomenon (e.g., “evolution of requirements refers to

changes that take place in a set of requirements after initial

requirements engineering phase” [20]) caused by changes in

the operational environment, user requirements, operational

anomalies, etc. A lot of research has been devoted to the

classification of types of changing requirements such as

mutable, adaptive, emergent, etc. [21] and factors leading to

these changes. Generally, these changes are viewed as being

unanticipated and thus as not being able to be modeled a pri-

ori [22]. Our work is quite different in this respect as we use

EvoReqs to define trajectories for possible runtime require-

ments changes under particular circumstances. Clearly, not

all requirements changes can be anticipated, but in this work

we focused on modeling those that capture what the system

should do in case it fails to meet its objectives. The triggers

for these changes are clearly identifiable as requirements

divergences can be anticipated. Nevertheless, these changes

represent requirements evolution as they modify the original

system requirements.

Requirements evolution research has focused on modeling

requirements change and its impact on the system. For in-

stance, in [23], environment changes are propagated through

requirements changes and down to design. Each triggered

requirements change is analyzed in terms of its risks and the

impact it has on the users’ needs. Since we are dealing with

anticipated and explicitly specified requirements changes,

the analysis of their impact on the system in our approach

can be carefully predicted. Another important aspect of

requirement evolution is the completeness and consistency

of requirements models. E.g., to address this, [24] proposes

a formal approach based to requirements evolution utilizing

non-monotonic default logics with belief revision. In our

approach, we assume that the responsibility for requirements

consistency rests with the modeler.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have characterized a new family of

requirements, called Evolution Requirements, which specify

changes to other requirements when certain conditions apply.

We have also proposed an approach to model this type of

requirement and to operationalize them at runtime in order

to provide adaptivity capabilities to a target system. This

approach allows us to explicitly and precisely model changes

to requirements models in response to certain conditions,

e.g., requirements failures.

Finally, it is important to consider the limitations of our

proposal. ECA rulesets have a number of inherent problems,

that are the subject of active research. One is the lack of

confluence (i.e., invoking the same set of rules in different



order will produce different results), while another is the

possibility that conflicting rules (e.g., those assigning the

same non-sharable resource to two different processes) may

fire at the same time, thus requiring conflict resolution (e.g.,

using rule priorities or utility functions). Such conflicts may

manifest themselves only at runtime, thereby complicating

consistency checking among ECA rules.

Therefore, our method puts a lot of responsibility on the

target system’s designers, who need to be concerned with

issues such as consistency, correctness and completeness.

Also, the operationalization of EvoReqs assumes the target

system can be appropriately instrumented, which might

make the approach difficult to apply on legacy systems

or systems that rely heavily on third-party components/ser-

vices. Furthermore, when stakeholder requirements are very

complex, representing them using adaptation strategies, ap-

plicability and resolution conditions can make the model

difficult to read. Finally, our current implementation deals

with AwReq failures separately and is not able to handle

multiple concurrent failures. All these limitations provide

opportunities for further research, which may also include

an experiment with the complete framework and a real

application for further validation, the development of a

CASE tool to help in model design, among others.

ACKNOWLEDGMENT

This work has been supported by the ERC advanced grant

267856 “Lucretius: Foundations for Software Evolution”

(April 2011 – March 2016) — http://www.lucretius.eu.

REFERENCES

[1] Report of the inquiry into the London Ambulance Service.
South West Thames Regional Health Authority, 1993.

[2] J. Kramer and A. L. Wolf, “Succeedings of the 8th Inter-
national Workshop on Software Specification and Design,”
ACM SIGSOFT Software Engineering Notes, vol. 21, no. 5,
pp. 21–35, Sep. 1996.

[3] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “System
Identification for Adaptive Software Systems: A Require-
ments Engineering Perspective,” in Proc. ER 2011. Springer,
2011, pp. 346–361.

[4] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. My-
lopoulos, “Awareness Requirements for Adaptive Systems,”
in Proc. SEAMS ’11. ACM, 2011, pp. 60–69.

[5] V. E. S. Souza, “An Experiment on the Design of an Adaptive
System based on the LAS-CAD,” University of Trento, Italy,
Tech. Rep. http://disi.unitn.it/∼vitorsouza/a-cad/, 2012.

[6] I. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the
Core Ontology and Problem in Requirements Engineering,”
in Proc. RE 2008. IEEE, 2008, pp. 71–80.

[7] A. van Lamsweerde, “Goal-Oriented Requirements Engineer-
ing: A Guided Tour,” in Proc. RE 2001. IEEE, 2001, pp.
249–262.

[8] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos,
“Requirements-driven Qualitative Adaptation,” in submitted
for publication (under review), 2012.

[9] H. Garcia-Molina and K. Salem, “Sagas,” ACM SIGMOD
Record, vol. 16, no. 3, pp. 249–259, 1987.

[10] E. S. K. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social
Modeling for Requirements Engineering. MIT Press, 2010.

[11] A. J. Ramirez and B. H. C. Cheng, “Design Patterns for
Developing Dynamically Adaptive Systems,” in Proc. SEAMS
2010. ACM, 2010, pp. 49–58.

[12] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and
J.-M. Bruel, “RELAX: Incorporating Uncertainty into the
Specification of Self-Adaptive Systems,” in Proc. RE 2009.
IEEE, 2009, pp. 79–88.

[13] Y. Wang and J. Mylopoulos, “Self-repair Through Reconfigu-
ration: A Requirements Engineering Approach,” in Proc. ASE
2009, 2009.

[14] X. Peng, B. Chen, Y. Yu, and W. Zhao, Self-Tuning of Soft-
ware Systems through Goal-based Feedback Loop Control.
IEEE, 2010.

[15] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design
Science in Information Systems Research,” MIS Quarterly,
vol. 28, no. 1, pp. 75–105, 2004.

[16] L. Baresi and L. Pasquale, “Adaptive Goals for Self-Adaptive
Service Compositions,” in Web Services (ICWS), 2010 IEEE
International Conference on, july 2010, pp. 353–360.

[17] L. Fu, X. Peng, Y. Yu, and W. Zhao, “Stateful Requirements
Monitoring for Self-Repairing of Software Systems,” Fudan
University, China, Tech. Rep. FDSE-TR201101, available at
http://www.se.fudan.sh.cn/paper/techreport/1.pdf, 2010.

[18] N. A. Qureshi and A. Perini, “Requirements Engineering for
Adaptive Service Based Applications,” in Proc. RE 2010.
IEEE, 2010, pp. 108–111.

[19] G. Brown, B. H. C. Cheng, H. Goldsby, and J. Zhang, “Goal-
oriented specification of adaptation requirements engineering
in adaptive systems,” in Proc. SEAMS 2006, 2006, pp. 23–29.

[20] A. I. Antón and C. Potts, “Functional paleontology: system
evolution as the user sees it,” in Proc. ICSE 2001. IEEE,
2001, pp. 421–430.

[21] S. Harker, K. Eason, and J. Dobson, “The change and
evolution of requirements as a challenge to the practice of
software engineering,” in Proc. RE 1993, 1993, pp. 266–272.

[22] N. Ernst, A. Borgida, and I. Jureta, “Finding Incremental
Solutions for Evolving Requirements,” in Proc. RE 2011,
2011, pp. 15–24.

[23] W. Lam and M. Loomes, “Requirements Evolution in the
Midst of Environmental Change: A Managed Approach,” in
Proc. Euromicro 1998. IEEE, 1998, pp. 121–127.

[24] D. Zowghi and R. Offen, “A Logical Framework for Model-
ing and Reasoning About the Evolution of Requirements,” in
Proc. RE 1997. IEEE, 1997, pp. 247–257.


