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Abstract— We consider the problem of system identification
of helicopter dynamics. Helicopters are complex systems, cou-
pling rigid body dynamics with aerodynamics, engine dynam-
ics, vibration, and other phenomena. Resultantly, they pose
a challenging system identification problem, especially when
considering non-stationary flight regimes.

We pose the dynamics modeling problem as direct high-
dimensional regression, and take inspiration from recent results
in Deep Learning to represent the helicopter dynamics with a
Rectified Linear Unit (ReLU) Network Model, a hierarchical
neural network model. We provide a simple method for ini-
tializing the parameters of the model, and optimization details
for training. We describe three baseline models and show that
they are significantly outperformed by the ReLU Network
Model in experiments on real data, indicating the power of the
model to capture useful structure in system dynamics across
a rich array of aerobatic maneuvers. Specifically, the ReLU
Network Model improves 58% overall in RMS acceleration
prediction over state-of-the-art methods. Predicting acceleration
along the helicopter’s up-down axis is empirically found to be
the most difficult, and the ReLU Network Model improves by
60% over the prior state-of-the-art. We discuss explanations
of these performance gains, and also investigate the impact of
hyperparameters in the novel model.

I. INTRODUCTION AND BACKGROUND

System identification, the modeling of a system’s dynam-
ics, is a basic and important part of control. Constructing
such a model is often the first step in controller design.
Modeling accuracy directly impacts controller success and
performance, as inaccuracies appear to the controller as
external disturbances.

The aerobatic helicopter has received attention in the past
as a system that is difficult to both model and control but
which humans can fly effectively, even through complex
maneuvers. The helicopter system couples rigid body dy-
namics with aerodynamic forces, internal control loops and
lag, engine dynamics, vibration, etc.[1, 2, 3, 4]. Much of
this dynamic coupling involves state variables like airflow
which are not easily measured, and thus remain hidden.
The resulting system identification problem for aerobatic
helicopters poses a challenging problem. This paper focuses
on a method to learn a system dynamics model by leveraging
captured state-action trajectories from expert demonstrations.

The helicopter is well studied, and simple linear models
from aerodynamic first-principles allow construction of con-
trollers for simple trajectories (hover, forward flight) [5, 6, 7].
More complex nonlinear models from first-principles with
parameters learned from data have enabled some simple
aerobatics (roll, hammerhead, split-S) [8, 9, 10]. Advanced

Authors are with the Department of Electrical Engineering and Computer
Science, University of California at Berkeley, USA {ali.punjani,
pabbeel}@berkeley.edu

Fig. 1. The dynamical modeling method presented in this work is used to
model a helicopter’s dynamics as it is flown through aerobatics. A unified
model is learned for a rich array of maneuvers, including flips, loops,
stop and go, vertical sweeps, circles, dodging, orientation sweeps, gentle
freestyle, tictocs, chaos, and aggressive freestyle.

aerobatics, however, have only been successfully flown under
autonomous control using Apprenticeship Learning [11]. In
the Apprenticeship Learning approach for autonomous heli-
copter aerobatics, demonstrations of interest are collected,
then aligned in time using a variant of Dynamic Time
Warping (DTW) [12, 13]. From the aligned trajectories, a
target trajectory for control and time-varying dynamics are
estimated. Together, the target trajectory and time-varying
dynamics around that trajectory allow for successful control
of the helicopter through advanced aerobatics, using Model
Predictive Control (MPC). The Apprenticeship Learning
work demonstrates that in fact helicopter dynamics during
aerobatics are predictable enough for MPC to be successful
in control around even the most complex trajectories [11].
This suggests that the difficulty in modeling helicopter dy-
namics does not come from stochasticity in the system or un-
structured noise in the demonstrations. Rather, the presence
of unobserved state variables causes simple models to be
innacurate, even though repeatability in the system dynamics
is preserved across repetitions of the same maneuver.

Modeling systems with hidden latent state is often treated
as a parameter learning problem in a graphical model
[14, 15]. One illustrative example is Expectation Maximiza-
tion - Extended Kalman Smoothing (EM-EKS) [15] which
treats the dynamical system as a latent variable model, and
aims to directly estimate the hidden latent state at each
timestep along a demonstration trajectory while simultane-
ously learning a simple dynamics model. In EM-EKS, the
form of the dynamics model as well as the number of
hidden state variables needs to be prescribed a-priori. The
Apprenticeship Learning method of [11], on the other hand,
deals with hidden state by relying on the assumption that
across different demonstrations of the same maneuver, the
trajectories of both observed and hidden state variables are
similar. For example, [11] expects that the effect of the
airflow around the helicopter is similar at the apex of two
different loop demonstrations. Using DTW to align annotated
loop trajectories and their corresponding state trajectories



allows the method of [11] to estimate the dynamics of the
helicopter at the apex without explicitly inferring the hidden
state.

Although the DTW step in [11] aligns demonstrations
based on their entire state trajectory, it is clear that at any
particular time, the hidden states (for instance airflow) of the
helicopter system depend only on the past. A well known
result from dynamical systems theory, Takens Theorem,
[16, 17] provides further insight into this viewpoint. Takens
Theorem states that for a large class of nonlinear dynamical
systems with d-dimensional state space, only 2d+1 previous
measurements of a single system output are required to
effectively reconstruct the system state. Naturally, this leads
to the idea of directly learning a dynamical model from
time-lagged outputs, and skipping the intermediate step of
inferring hidden states. This paper aims to exploit this
notion in order to construct a global nonlinear model of
the helicopter that does not require annotation or alignment
of trajectories, has few tuning parameters and that captures
dynamics throughout the entire set of flight regimes over
which data is collected.

A sequence of time-lagged system outputs and controls
grows in dimensionality as the time horizon is increased.
Thus, learning a direct high-order dynamics model requires
a method for regression of a nonlinear function in a high-
dimensional input space. Recently, Deep Learning (regres-
sion using hierarchical neural network representations) has
had much success in high-dimensional learning problems in
domains like image understanding [18], natural language pro-
cessing [19, 20], and most relevantly with time-series inputs
as in handwriting [21] and speech recognition [22]. In Deep
Learning, the lowest layers in the hierarchical representation
partition the input space, by computing a transformation of
the inputs where each component is only active in a certain
region. This makes the regression task of the next layer in
the hierarchy, taking the transformed components as input,
much simpler. This is a similar notion to Hybrid System
Identification [23], where a system is modeled using a set of
simple sub-models, along with definitions of regions in state-
control space where each sub-model is active. We believe
the power of Deep Learning can be brought to the system
identification task through this connection; deep learning
methods can be used to learn sub-models and the definitions
of their corresponding active regions jointly.

Our main contribution in this work is proposing a novel
Rectified-Linear Unit (ReLU) Network Model, providing de-
tails about parameter initialization and optimization methods.
We compare the model against three baseline methods, and
show that it performs well in modeling helicopter dynam-
ics across all flight regimes for which data was collected.
The range of maneuvers covered includes forward/sideways
flight, vertical sweeps, inverted vertical sweeps, stop-and-go,
flips, loops, turns, circles, dodging, orientation sweeps, ori-
entation sweeps with motion, gentle freestyle, tic-toc, chaos,
and aggressive freestyle. We describe the ReLU Network
Model in Section IV after defining baseline models in Section
III for performance comparison. Section II gives details of

the helicopter system on which our experiments are carried
out. Results and discussion follow in Section V.

II. THE HELICOPTER SYSTEM

Consider a dynamical system with state vector s and
control inputs u. The task of system identification is to find
a function F which maps from state-control space to state-
derivative:

ṡ = F(s,u,θ)

Typically F is restricted to be from a certain family of
functions F parameterized by θ . The system identification
task then becomes to find, given training data, a vector θ

(and the corresponding F) which minimizes prediction error
on a set of held-out test data. In our problem setting, training
and test data sets consist of state-control trajectories, with no
additional labels.

The helicopter state s is represented by a total of twelve
degrees of freedom, three for each of position r, attitude q,
linear velocity v, and angular velocity ω . The control space
u for the helicopter consists of four inputs. Cyclic pitch
controls u1 and u2 cause the helicopter to pitch forward-
back or sideways respectively. Tail rotor collective pitch u3
modulates tail rotor thrust, causing yaw. The main rotor
collective pitch control u4 modulates the pitch angle of blades
in the main rotor, and consequently impacts the total thrust
of the main rotor in the up-down direction.

Following standard practice in system identification and
helicopter modeling in particular [24, 11], we make an in-
formed choice about the family of functions F . Knowledge
of gravity and the kinematics of rotation are both directly
incorporated into F , so that only the dynamics particular
to the helicopter are encoded in θ . Consider a fixed world
reference frame (1) and a frame (2) fixed to the center of
mass of the helicopter. Rotation matrix C12 (parameterized
by quaternion q) rotates vectors from frame 2 to frame 1,
and the velocity and angular velocity of the helicopter can
be expressed in frame 2 as v and ω . Then the kinematics
of rotating frames, along with the differential equation for
quaternion rotations [25] provide the form of F :

ṡ =


ṙ
q̇
v̇
ω̇

= F(s,u,θ) =


C12v
1
2 ω̂q

CT
12g−ω× v+ fv(s,u,θ)

fω(s,u,θ)

 (1)

Here g is the known acceleration of gravity, and f =
( fv, fω) is the unknown linear and angular acceleration that
the helicopter undergoes, measured in the helicopter frame,
as a function of state, control, and model parameters. The
system identification task for the helicopter is now to find
θ , given observed values of f , s, and u. In this work we
minimize mean squared prediction error over a training set
of demonstration data, solving

min
θ

T

∑
t=1

1
T
‖ f̃t − f (st ,ut ,θ)‖2 (2)



where f̃t are the observed values of f along a demonstration
trajectory. Equation 2 results in a linear or nonlinear least
squares problem depending on the form of f (s,u,θ).

III. BASELINE MODELS

A simple dynamics model can be constructed by selecting
f from the class of affine functions, and fitting the linear
coefficients θ to the observed data with least squares regres-
sion. This Linear1Acceleration Model (originally proposed in
[24]) serves as our baseline model, and has been shown to
achieve state-of-the-art performance in our problem setting
[24]. In the alternate setting of learning trajectory specific
models, where maneuver labels are given at training and
test time, Apprenticeship Learning provides state-of-the-art
models [11].

In our work, the Linear Acceleration Model is defined as

f = Pxt +Qyt (3)

Where x =
[
v ω 1

]T, y =
[
u u̇

]T, and P, Q are
matrices of parameters which are learned.

Note that we include the control derivatives u̇ in the model.
This is important especially in the case of yaw-rate control
u3, due to the presence of an internal gyroscope and control
loop in the helicopter. The input u3 modulates the setpoint
of the internal control loop rather than directly controlling
the yaw torque, so the helicopter acts more like a first-order
system than a second-order system. Thus the rate of change
of the yaw input is a better predictor of the yaw acceleration
than the control input value itself.

Based on the Linear Acceleration Model, we construct
a slightly more advanced baseline model in which f is a
function of the current state and controls, and also of a
sequence of past control inputs. This modification results
in the Linear Lag Model, and serves to allow the model
to capture control lag which can be seen as a simple but
important type of hidden system state. The Linear Lag Model
is defined as

f = Pxt +
H

∑
i=0

Qiyt−i (4)

where H is a horizon into the past, and P, Q0...QH are
matrices of parameters to be learned.

We develop a third baseline model which extends the
Linear Lag Model to capture some simple nonlinearities
in the helicopter dynamics. In particular, it is known from
physics that many aerodynamic forces (for instance drag)
grow approximately quadratically in velocities. Furthermore,
these forces depend on the frontal shape of the moving
body and are thus expected to be assymetric with respect
to direction of motion (for instance up versus down). To in-
corporate this knowledge, we define a feature transformation
β (z) =

[
z max(0,z)2 min(0,z)2

]T. This transformation is
applied elementwise to x and y in the Linear Lag Model to
arrive at the Quadratic Lag Model:

1The Linear Acceleration Model is not a linear dynamics model, as it only
predicts accelerations measured in the helicopter frame as linear functions
of state variables measured in the helicopter frame. The entire dynamics
model, given by Equation 1, is highly nonlinear.

f = Pβ (xt)+
H

∑
i=0

Qiβ (yt−i) (5)

The transformation β provides the model with flexibility to
capture quadratic nonlinearities in both state variables and
lagged control inputs.

In our experiments, we show that our novel modeling
method (the ReLU Network Model, presented in Section IV)
significantly outperforms these baseline models in prediction
accuracy. The Linear Acceleration Model serves as a direct
state-of-the-art performance baseline [24]. Comparison with
the Linear Lag Model serves to show the impact of addition-
ally accounting for control lag, and the Quadratic Lag Model
serves to show the impact of directly accounting for some
nonlinear dependence on the current state and controls. The
ReLU Network Model, presented next, accounts for all of
these system features and also attempts to extract information
about the hidden state of the helicopter system from state tra-
jectories, which we show provides a significant performance
increase. Note that the baseline models presented here might
appear simple, but are actually nontrivial nonlinear dynamics
models when composed with Equation 1.

IV. RELU NETWORK MODEL

Consider the space P of state-control trajectory
segments, each of length H. Each point pt =
(xt−H ,yt−H ,xt−H+1,yt−H+1, ...,xt ,yt) in this space
corresponds to a small part of a helicopter maneuver,
H timesteps long, ending at time t. Takens Theorem
suggests that if H is large enough, then from any segment
pt in P , the entire hidden state zt of the helicopter at the
end of pt can be reconstructed. Assuming that the mapping
from pt to zt is smooth, we can expect that two points in
P which are similar will also have similar hidden state,
and thus similar dynamics. This leads to an implicit notion
of neighborhoods in P , focused around regions that have
been explored in trajectories where system dynamics are
similar. For example, the apex of a loop might correspond
to one neighborhood, while the beginning of a roll might
correspond to another. This same notion is the principle
behind the method of [11], where alignment of similar
trajectories is used to define neighborhoods.

In this work, we do not use any explicit grouping or
alignment of similar trajectories, and we aim to learn these
neighborhoods directly from training data. In a similar vein
as feature learning [26], and using ideas from recent ad-
vances in computer vision and speech due to Deep Learning
[18, 22], we propose a Rectified Linear Unit Network Model
specifically for system identification. Our ReLU Network
Model is a combination of the Quadratic Lag Model and
a two-layer neural network using rectified-linear units in the
hidden layer. Algebraically, the model can be written

f = Pβ (xt)+
H

∑
i=0

Qiβ (yt−i)+η(pt ;θ) (6)

η(pt ;θ) = wT
φ(W T pt +B)+b (7)

φ(·) = max(0, ·) (8)



Fig. 2. Left: A diagrammatic representation of the neural network used
in the ReLU Network Model. Input p is sent to each of N hidden units.
Each unit computes the inner product of p and Wi, the weight vector for
that unit. A bias Bi is added, and the result sent to the unit activation
function, φ(·) = max(·,0). This rectified-linear activation function simply
zeroes its input if negative. The outputs of all hidden units are then linearly
mixed by the output unit, with weights w and bias b. Right: A pictorial
representation of the flexibility of the ReLU Network Model. Each hidden
unit can be thought of as defining a hyperplane (line) in the 2D input space
pictured. The data points (grey) each fall somewhere in input space and each
has a value we wish to regress (not pictured). Consider the hidden unit i,
drawn in purple. The purple arrow points in the direction of weight vector
Wi, and has length according to Bi. Points on one side of this line do not
activate unit i, while points on the other side (shaded) cause positive output.
This effectively partitions the input space, and the partitions generated by
considering many hidden units (blue) together split the space into regions.
These regions give the model flexibility to capture structure in the input
data. In the ReLU Network Model, the partitions are learned from data.

Here, η is the neural network of N hidden units with weights
W and biases B, and a linear output layer with weights
w and biases b. The hidden unit activation function φ is
a soft threshold function. Matrices P, Q are parameters of
the Quadratic Lag Model to be learned. Figure 2 shows a
diagrammatic representation of the network η .

A. Interpretation

The neural network η can be interpreted as follows. The
input layer takes in a point p from P , representing a segment
of state-control trajectory with length H. Each of N hidden
units computes the inner product of p and one of the columns
of W . Each of these columns, or weight vectors, is also a
point in P . The hidden units add a bias to the inner product
and rectify this value at zero. The output layer is a linear
combination of the hidden units, plus a final bias.

The inner product computed by hidden unit i can be
thought of as a measurement of similarity between the input
p and the hidden unit’s weight vector Wi. This is made
more concrete by noting that the inner product computes
the projection of p onto the direction Wi. The nonlinearity
φ(·) from Equation 8 simply sets the hidden unit’s output
to zero if the projection is less than the unit’s bias Bi.
This means that any input p that does not have sufficient
projection along Wi will be ignored by the hidden unit, while
those inputs that are sufficiently similar to Wi will cause an
output which is proportional to their similarity. In the ReLU
Network Model, both the projection directions W and biases
B are learned from training data. Each hidden unit linearly

partitions the input space into two parts based on W and B;
In one part the unit is inactive with zero output, while in
the other it is active with positive output. This allows for
learning of regions around training examples, where each
region is defined by the set of hidden units which are active
in that region. Figure 2 shows a pictorial representation of
this notion, where each hidden unit separates the space into
an active and inactive part, and the overlap of these parts
partitions the data. In each of these regions, the model has
flexibility to learn a correction to the Quadratic Lag Model
which better represents the dynamics locally. Furthermore,
the total output of the network is piecewise linear in inputs
and continuous over all regions in the input space since all
the hidden units are piecewise linear and continuous in the
inputs.

B. Optimization

For all the models presented in this work, the optimization
problem in Equation 2 can be split into six subproblems, one
for each component of f̃ . These six subproblems are solved
independently. In the case of the ReLU Network Model, this
means training six different neural networks. Empirically we
find that the component of f̃ corresponding to the up-down
acceleration of the helicopter is the most difficult to predict.

Unlike the baseline models, Equation 2 for the ReLU
Network Model is non-convex. We solve this optimization
problem by first fitting the P, Q matrices with the output
of η set to zero, using simple least-squares regression. This
corresponds to fitting a Quadratic Lag Model. We then fix
P and Q, and optimize over the weights and biases of
the neural network (W , B, w, b) using Stochastic Gradient
Descent (SGD) [27]. This entire procedure can be seen as
one iteration of Block-Coordinate Descent.

Stochastic Gradient Descent is the standard optimization
method for training recent neural network models [18, 22,
28] and is very simple to implement. In each iteration, the
objective in Equation 2 is computed over a small subset
of training data, called a minibatch. The gradient of the
objective over the minibatch with respect to the parameters
of the neural network is computed using Backpropagation
[29]. An update step is computed as an average of the past
update step and the current gradient, where the past step is
weighted by a hyperparameter called momentum (typically
set to 0.9). Parameters (weights and biases) are updated
by the new update step, scaled by a learning rate. A new
minibatch is randomly selected from training data and the
next iteration proceeds. The learning rate is decreased during
optimization. Section V-B provides specific details used in
our experiments.

V. EXPERIMENTS

A. Real-World Data

In order to investigate the efficacy of the baseline models
and the ReLU Network Model, we use data from the Stanford
Autonomous Helicopter Project [11]. The data was collected
from a Synergy N9 model helicopter weighing 4.85 kg with
a 720 mm main rotor blade length, shown in Figure 1. The
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Fig. 3. Observed and predicted accelerations in the up-down direction over three difficult test-set trajectories corresponding to different aerobatic maneuvers.
In all cases, the baseline Linear Acceleration Model captures the gross pattern of the acceleration over the maneuver, but performs very poorly compared
to the novel ReLU Network Model.

helicopter is powered by a two-stroke engine. The helicopter
was flown repeatedly through a variety of aerobatic maneu-
vers by an expert pilot. The recorded trajectories include
smoothed estimates of the helicopter state s and controls u at
100Hz sample rate. Using these and Equation 1 we compute
observed values of f̃ along the trajectories. In total there are
6290 seconds of flight time recorded, across 19 maneuvers.

We slice each trajectory into ten second long parts, re-
sulting in 629 parts. A randomly selected 318 of these are
used as the training set, 152 as a validation set, and 159
as a testing set. Although each trajectory part comes from
a known maneuver, these labels are not used in training,
and a single, global model is learned that is applicable
across all maneuvers. The training set is used to optimize
model parameters and the validation set is used to choose
hyperparameters.

B. Optimization

For the baseline models, solving Equation 2 requires
simply solving a linear least-squares problem. For the ReLU
Network, we use SGD (see Section IV-B) with a momentum
term of 0.95, a minibatch size of 100 examples, and train
for 200,000 iterations. The learning rate is set at 1× 10−8

and is halved after 100,000 iterations. The training set
consists of 302,546 examples in total, meaning optimization
makes about 66 passes through the dataset. To compute
gradients of the objective in Equation 2, we use an automatic
differentiation library called Theano [30].

C. Initialization

When optimizing neural networks in general, initialization
is an important and often tricky problem. In the case of the
ReLU Network Model, we provide a very simple, effective
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Fig. 4. Histograms of hidden unit activation over the training set, showing
the advantage of our data-based initialization method. Hidden units which
fall at either end of the histogram, being either always active or always
inactive, are not useful to the ReLU Network Model. Our initialization
method does not produce any units which are not useful, and requires no
tuning or setting of hyperparameters.

and tuning-free method for initializing the weights and biases
before beginning SGD. First, note that in the ReLU Network,
any hidden unit is not useful if it is always active or always
inactive over the space of trajectory segments. If the unit is
always inactive, the error gradients with respect to the unit’s
weights will always be zero, and no learning will occur. If the
unit is always active, its contribution to the network output
will be entirely linear in the inputs, which will not allow for
learning of any interesting structure not already captured by
the Quadratic Lag Model. Conventional initialization tech-



niques for neural networks would call for initializing weight
vectors randomly from a zero-mean Gaussian distribution.
Empirically we find that this produces a very large fraction
of hidden units which are always on or always off over
the entire training set. Our initialization strategy is designed
to solve this problem and remove the need for tuning or
adjustment. We simply select examples randomly from the
training set and use these as initial weight vectors. This
corresponds to setting each hidden unit to compare the input
with a direction in P known to contain some training points.
Furthermore, we set the bias of each hidden unit uniformly
at random so that the threshold between inactive and active
lies somewhere between the origin of P and the selected
exemplar. This ensures that the unit is unlikely to be always
active. Our data-based initialization method is motivated by
the use of data exemplars to initialize dictionaries in the
context of sparse coding [31].

Figure 4 is a pair of histograms showing the distribu-
tion of hidden unit activations over the training set. With
conventional random initialization, 56% of the hidden units
are not useful after initialization, while with our data-based
initialization, all the units have activations covering between
5% and 60% of the training set, making them all useful.

We find that after randomly initializing 5000 hidden units,
training leads to an RMS prediction error of 4.27ms−2

on the held out validation set, while using our data-based
initialization leads to an error of 2.70ms−2. This performance
increase is achieved without modifying learning rates or
any other hyperparameters. Though it is likely that the
performance of random initialization could be improved by
further tuning the variances of random noise used, the tedious
and expensive tuning process is eliminated entirely in our
data-based initialization method.

D. Performance

We train the three baseline models (see Section III) and
the ReLU Network Model on the training set, and report
performance as Root-Mean-Square (RMS) prediction error
on the held-out test set. RMS error is used because it
normalizes for the length of trajectories and has meaningful
units for each of the components of f̃ which are regressed.
In all models, we use a horizon H = 0.5 s, and downsample
our observed data to 50 Hz. We use N = 2500 hidden units
for each of six neural networks in the ReLU Network model.
The three baseline models are fit to the training set first. Each
takes about 10 minutes to train over the entire training set,
for all components. The ReLU Network Model is trained
with SGD over 200,000 iterations, taking less than 1 hour
for each component on a 6-core Intel i7 server with 32GB
RAM.

Empirically, we find that the up-down acceleration direc-
tion is the most difficult component of f̃ to predict (see
Figure 5), likely because the main rotor thrust is the strongest
force on the helicopter. For this reason, we focus on the
up-down component in displaying prediction results. The
RMS error in up-down acceleration is measured in units of
ms−2, and results should be interpreted with the yardstick
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Fig. 5. Performance Comparison of the ReLU Network Model and
baseline models from Section III. Top: Overall RMS prediction error of the
Linear Acceleration Model over all acceleration components, each denoted
by a different color. Middle: Overall RMS prediction error of the ReLU
Model over all acceleration components. Accross all maneuvers, this result
represents a 58% improvement in RMS error over the Linear Acceleration
Model above. Bottom: RMS Error in predicting the up-down acceleration
of the helicopter on test-set trajectories, which is empirically found to be
the most difficult component to predict. The Linear Acceleration Model
(blue) is outperformed successively by the Linear Lag Model which accounts
for control lag, and the Quadratic Lag Model which accounts for some
simple nonlinearities. The ReLU Network Model significantly outperforms
all baselines, demonstrating the importance of accounting for hidden system
state. Performance is displayed separately for each maneuver, but the labels
are not used during training. Across all maneuvers, the ReLU Network
Model reduces up-down RMS error of the Linear Acceleration Model by
60%. Note that the Linear baseline models actually correspond to nontrivial
nonlinear dynamics models (see Section III).
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Fig. 6. Training and validation set performance as a function of the
number of hidden units (N) used in the ReLU Network Model. Training
time increases linearly with N. Training set performance continues to
improve as more units are added, but validation set performance levels out
indicating that further model complexity is not required. In our performance
experiments we use N = 2500 hidden units.

of gravity g = 9.8ms−2 in mind. Figure 3 shows the up-
down acceleration as measured over three difficult trajectory
segments, along with predictions along those trajectories
from the Linear Acceleration Model and the ReLU Network
Model. The baseline model captures some gross patterns,
but the local corrections provided by ReLU Network Model
perform much better.

E. Number of Hidden Units

Figure 5 shows the ReLU Network Model’s RMS error
on the testing set over all components, as well as for
the up-down direction in particular. The ReLU Network
significantly outperforms the baselines, showing that directly
regressing from state-control history space P to acceleration
captures important system dynamics structure. In overall
prediction error, the ReLU Network model improves over the
Linear Acceleration baseline by 58%. In up-down accelera-
tion prediction, the ReLU Network model has 60% smaller
RMS prediction error than the Linear Acceleration baseline,
improving from 6.62ms−2 to 2.66ms−2. The performance
improvements of the Linear Lag and Quadratic Lag Models
over the Linear Acceleration Model are also significant, and
show that control lag and simple nonlinearities are useful
parts of the helicopter system to model. In Figure 5 the
errors are shown separately across maneuvers, to illustrate
the relative difficulty of some maneuvers over others in terms
of acceleration prediction. Maneuvers with very large and
fast changes in main rotor thrust (aggressive freestyle, chaos)
are the most difficult to predict, while those with very little
change and small accelerations overall (forward/sideways
flight) are the easiest.

It is important to note that there are more inputs to
the ReLU Network Model than to the baseline models.
Specifically, the past states xt−H ,xt−H+1, ...xt−1 are included
in the input to the ReLU Network Model, while the baseline
models only have access to xt . This raises the question
of whether a simpler model given the same input would
be able to capture system dynamics as effectively as the

Fig. 7. Activations of a random selection of hidden units, along a
test-set trajectory. Green lines are zero activity for each unit displayed.
Interestingly, the hidden units are inactive over most of the trajectory, and
only become active in particular regions. This observation corresponds well
to the intuition that motivated the ReLU Network Model, as explained in
Section IV.

ReLU Network Model. To answer this question, we train
an extended Linear Lag Model using both past states and
past controls as inputs. This model has the same input
at prediction time as the ReLU Network Model. We find,
however, that this extended Linear Lag Model performs
only marginally better than the original Linear Lag Model;
performance on up-down acceleration prediction is improved
by only 2.3%. Thus the ReLU Network Model’s ability to
represent nonlinear locally corrected dynamics in different
regions of the input space allow it to extract structure from
the training data which such simpler models cannot.

Our work in developing the ReLU Network Model was
inspired by the challenges of helicopter dynamics modeling,
but the resulting performance improvements indicate that this
approach might be of interest in system identification beyond
helicopters.

In Figure 6 we show the results of an experiment evalu-
ating the impact of changing the number of hidden units in
the ReLU Network Model. We find that, as expected, having
more hidden units improves training set performance. Per-
formance on the held out validation set, however, improves
more slowly as N is increased, and there are diminishing
returns. Gradient computation time for training is linear in
N, which is why we chose N = 2500 as a suitable number
of hidden units for the experiments in Section V-D.



F. Sparse Activation

The ReLU Network Model outperforms the Linear Ac-
celeration Model baseline by a large margin. Some of the
improvement is due to accounting for control lag and simple
nonlinearity (as in the Linear and Quadratic Lag Models),
and the remainder is due to the flexibility of the neural
network. Along with quantifying the performance of the
ReLU Network Model, it is important to investigate the
intuition motivating the model, namely that the hidden units
of the neural network partition the space P and their pattern
of activations corresponds to different regions which have
similar dynamics. A simple way to understand the influence
of each hidden unit is to visualize the activations of the
hidden units along a particular trajectory. Figure 7 shows
normalized activations of a random subset of hidden units
along a trajectory from a single maneuver.

Interestingly, each hidden unit is mostly inactive over the
trajectory shown, and smoothly becomes active in a small
part of the trajectory. We find this to be true in all the
trajectory segments we have visualized. This observation fits
well with the motivating intuition behind the ReLU Network
Model.

VI. CONCLUSION AND FUTURE WORK

In this work, we define the ReLU Network Model and
demonstrate its effectiveness for dynamics modeling of the
aerobatic helicopter. We show that the model outperforms
baselines by a large margin, and provide a complete method
for initializing parameters and optimizing over training data.
We do not, however, answer the question of whether this new
model performs well enough to enable autonomous control
of the helicopter through aerobatic maneuvers. Future work
will aim to answer this question, either through simulation
with MPC in the loop, or through direct experiments on a
real helicopter. We will also investigate the efficacy of this
model for modeling other dynamical systems.
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