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Abstract

We introduce a deep, generative autoencoder ca-
pable of learning hierarchies of distributed rep-
resentations from data. Successive deep stochas-
tic hidden layers are equipped with autoregres-
sive connections, which enable the model to be
sampled from quickly and exactly via ancestral
sampling. We derive an efficient approximate
parameter estimation method based on the mini-
mum description length (MDL) principle, which
can be seen as maximising a variational lower
bound on the log-likelihood, with a feedforward
neural network implementing approximate infer-
ence. We demonstrate state-of-the-art generative
performance on a number of classic data sets:
several UCI data sets, MNIST and Atari 2600
games.

1. Introduction

Directed generative models provide a fully probabilistic ac-
count of observed random variables and their latent rep-
resentations. Typically either the mapping from observa-
tion to representation or representation to observation is in-
tractable and hard to approximate efficiently. In contrast,
autoencoders provide an efficient two-way mapping where
an encoder maps observations to representations and a de-
coder maps representations back to observations. Recently
several authors (Ranzato et al., 2007; Vincent et al., 2008;
Vincent, 2011; Rifai et al., 2012; Bengio et al., 2013b)
have developed probabilistic versions of regularised au-
toencoders, along with means of generating samples from
such models. These sampling procedures are often itera-
tive, producing correlated approximate samples from pre-
vious approximate samples, and as such explore the full
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distribution slowly, if at all.

In this paper, we introduce Deep AutoRegressive Networks
(DARNSs), deep generative autoencoders that in contrast
to the aforementioned models efficiently generate indepen-
dent, exact samples via ancestral sampling. To produce a
sample, we simply perform a top-down pass through the
decoding part of our model, starting at the deepest hidden
layer and sampling one unit at a time, layer-wise. Train-
ing a DARN proceeds by minimising the total informa-
tion stored for reconstruction of the original input, and
as such follows the minimum description length principle
(MDL; Rissanen, 1978). This amounts to backpropagating
an MDL cost through the entire joint encoder/decoder.

There is a long history of viewing autoencoders through
the lens of MDL (Hinton & Van Camp, 1993; Hinton &
Zemel, 1994), yet this has not previously been consid-
ered in the context of deep autoencoders. MDL provides
a sound theoretical basis for DARN’s regularisation, whilst
the justification of regularised autoencoders was not im-
mediately obvious. Learning to encode and decode ob-
servations according to a compression metric yields rep-
resentations that can be both concise and irredundant from
an information theoretic point of view. Due to the equiv-
alence of compression and prediction, compressed repre-
sentations are good for making predictions and hence also
good for generating samples. Minimising the description
length of our model coincides exactly with minimising the
Helmholtz variational free energy, where our encoder plays
the role of the variational distribution. Unlike many other
variational learning algorithms, our algorithm is not an ex-
pectation maximisation algorithm, but rather a stochastic
gradient descent method, jointly optimising all parameters
of the autoencoder simultaneously.

DARN and its learning algorithm easily stack, allowing
ever deeper representations to be learnt, whilst at the same
time compressing the training data — DARN allows for
alternating layers of stochastic hidden units and determin-
istic non-linearities. Each stochastic layer within DARN is
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Figure 1. Left: DARN’s decoder as a generative model. Top-
down, ancestral sampling through DARN’s decoder starts with
the deepest stochastic hidden layer Ha, sampling each unit in turn
before proceeding downwards to lower layers, ending by produc-
ing an observation X. Centre: DARN’s encoder as inference.
Conditioned upon the observation X, and sampling left-to-right,
bottom-up, DARN’s encoder infers the representation H1, Ha of
an observation. Right: DARN as an autoencoder. During train-
ing, the encoder infers a suitable representation H;, H2 and the
decoder predicts this representation and the observation. The pa-
rameters of the encoder and decoder are then simultaneously min-
imised with respect to the implied coding cost. This cost equals
the Helmholtz variational free energy.

autoregressive: each unit receives input both from the pre-
ceding layer and the preceding units within the same layer.
Autoregressive structure captures much of the dependence
among units within the same layer, at very little compu-
tational cost during both learning and generation. This is
in marked contrast to other mechanisms for lateral connec-
tions, such as introducing within-layer undirected edges,
which often come at a prohibitively high computational
cost at training and/or generation time.

Recently, several authors have exploited autoregression for
distribution modelling (Larochelle & Murray, 2011; Gregor
& LeCun, 2011; Uria et al., 2013). Unlike these models,
DARN can have stochastic hidden units, and places autore-
gressive connections among these hidden units. Depending
upon the architecture of the network, this can yield gains in
both statistical and computational efficiency.

The remainder of the paper is structured as follows. In Sec-
tion 2 we describe the architecture of our model, Section 3
reviews the minimum description length principle and its
application to autoencoders. Section 4 describes the ap-
proximate parameter estimation algorithm. Section 5 has
the results of our model on several data sets, and we con-
clude with a brief summary in Section 6.

2. Model Architecture

Our model is a deep, generative autoencoder; an example is
shown in Figure 1 with two hidden layers. DARN has three
components: the encoder ¢(H|X) that picks a representa-

tion H for a given observation X, a decoder prior p(H)
which provides a prior distribution on representations H
for generation, and a decoder conditional p(X|H) which,
given a representation H, produces an observation X. We
shall use uppercase letters for random variables and lower-
case for their values. We shall first describe our model with
a single stochastic hidden layer and later show how this is
easily generalised to multiple layers.

We begin by describing the decoder prior on the repre-
sentation h. The decoder prior on the representation h
is an autoregressive model. Let h;.; denote the vector

(h1,ha, ..., h;) where each h; € {0,1}, then
p(h) = [ p(hjlh1;-1) ()
j=1

where h = (hy,ha,...,hy, ) denotes the representation
with ny, hidden stochastic units. p(h;|h1.;_1) is the prob-
ability mass function of h; conditioned upon the activities
of the previous units in the representation hy.;_;.

In DARN, we parameterise the conditional probability
mass of /; in a variety of ways, depending upon the com-
plexity of the problem. Logistic regression is the simplest:

p(H; = Uhigo1) = o (W™ - by +557), @)

J

where o(z) = The parameters are Wj(H) € RITY

1
which is the weight vector, and bg»H) € R, which is a bias
parameter.

The conditional distributions of the decoder p(X|H) and
of the encoder ¢( H|X) have similar forms:

p(zlh) = Hp($j|$1:j—17h)a 3)
j=1

a(hlz) = [ alhslhsj—1, ), (4)
j=1

where, as with the decoder prior, the conditional probabil-
ity mass functions can be parameterised as in Eq. 2 (we
shall explore some more elaborate parameterisations later).
Consequently,

p(Xj = 1|$1:j—17h) = O’(Wj(XIH) . (xlzj—la h) + ng\H))

®)
q(H; = 1|hyj_1,7) = U(W;Hm - b;H‘X)) ©
where (z1.;_1,h) denotes the concatenation of the vec-
tor x1.;_1 with the vector A, WJ.(X‘H) € RI—HH7n gpnd

WJ-(H‘X) € R™= are weight vector parameters and b;_H\X)

and bg-XlH) are the scalar biases. Whilst in principle, Eq. 6
could be made autoregressive, we shall typically choose not
to do so, as this can have significant computational advan-
tages, as we shall see later in Section 2.3.
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2.1. Deeper Architectures

The simple model presented so far is already a universal
distribution approximator — it can approximate any (rea-
sonable) distribution given sufficient capacity. As adding
extra hidden layers to models such as deep belief networks
strictly improves their representational power (Le Roux &
Bengio, 2008), we could ask whether that is also the case
for DARN. Although every distribution on H may be writ-
ten as Eq. 1, not every factorisation can be parameterised as
Eq. 2. Thus we propose boosting DARN’s representational
power in three ways: by adding stochastic hidden layers, by
adding deterministic hidden layers, and by using alternate
kinds of autoregressivity. We now consider each approach
in turn.

Additional stochastic hidden layers. We con-
sider an autoencoder with hidden stochastic layers
HW, . H0we) each with ngll), . ,n;n“ym) units,
respectively. For convenience we denote the input layer
by H® = X and let H(™wet1) = (). The decoder and

encoder probability distributions become

O]
Ty

p(HOHD) = [T p |1 HEY), )
j=1

(k)
nh

g(H® | HEV) = T] a(uzP [ HE=D)  @8)
j=1

forl =0,...,Nayers and &k = 1, ..., Nyayers.

Additional deterministic hidden layers. The second
way of adding complexity is to insert more complicated
deterministic functions between the stochastic layers. This
applies both to the encoder and the decoder. If we wished
to add just one deterministic hidden layer, we could use a
simple multi-layer perceptron such as:

dV = tanh(URHD) )
l l
p(H = 1h{ ) hY)
H l
= o (W, (n)

L dDy o) 10)
where U € R" xng, T is a weight matrix, ng is the num-
ber of deterministic hidden units, ngH) € Ri—Hna jg a

weight vector, and b;H) is a scalar bias.

Alternate kinds of autoregressivity. Finally, we can in-
crease representational power by using more flexible au-
toregressive models, such as NADE (Larochelle & Mur-
ray, 2011) and EoNADE (Uria et al., 2013), instead of the
simple linear autoregressivity we proposed in the previous
section.

The amount of information that can be stored in the rep-
resentation H is upper bounded by the number of stochas-
tic hidden units. Additional deterministic hidden units do
not introduce any extra random variables and so cannot in-
crease the capacity of the representation, whilst additional
stochastic hidden units can.

2.2. Local connectivity

DARN can be made to scale to high-dimensional (image)
data by restricting connectivity, both between adjacent lay-
ers, and autoregressively, within layers. This is particularly
useful for modelling larger images. Local connectivity can
be either fully convolutional (LeCun et al., 1998) or use
less weight sharing. In this paper we use the periodic local
connectivity of Gregor & LeCun (2010) which uses less
weight sharing than full convolutional networks.

2.3. Sampling

Sampling in DARN is simple and efficient as it is just an-
cestral sampling. We start with the top-most layer, sample
the first hidden unit hy ~ p(H f"l“y"“)) and then for each ¢
in turn, we sample h; ~ p(Hi(""‘y“S) hgf?“ff)). We repeat
this procedure for each successive layer until we reach the
observation. Sampling from the encoder works in exactly
the same way but in the opposite direction, sampling each

hidden unit from q(H " |h{")_, h(=1)) successively.

A DARN without a stochastic hidden layer but with an au-
toregressive visible layer is a fully visible sigmoid belief
network (FVSBN; Frey, 1998). Thus FVSBN sampling
scales as O(n2). In NADE (Larochelle & Murray, 2011;
Gregor & LeCun, 2011), autoregression is present in the
visibles, but only deterministic hidden units are used. Sam-
pling then scales as O(n,ng) where n, is the number of
visibles and ng4 is the number of deterministic hidden units.
The complexity of sampling from a fully autoregressive
single stochastic hidden layer DARN is O((ny, + n,)?). If
we omit the autoregressivity on the observations, we obtain
a time complexity of O(np(ng + np)). Furthermore, if the
stochastic hidden layer is sparse, such that at ns units are
active on average, we obtain an expected time complex-
ity of O(ns(ny + np)). We call this sparse, fast version
fDARN. As more stochastic or deterministic hidden lay-
ers are added to DARN, the advantage of DARN becomes
greater as each part of the decoder need only be com-
puted once for DARN per datum, wheras deeper NADE-
like models (Uria et al., 2013) require re-computation of
large parts of the model for each unit.
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3. Minimum Description Length and
Autoencoders

Autoencoders have previously been trained by an MDL
principle derived from bits-back coding (Hinton &
Van Camp, 1993). This yields generative autoencoders
trained to minimise the Helmholtz variational free energy
(Hinton & Zemel, 1994). Here we extend this work to
deeper, autoregressive models trained by a stochastic ap-
proximation to backpropagation as opposed to expectation
maximisation.

According to the MDL principle, we shall train this autoen-
coder by finding parameters that try to maximally compress
the training data. Suppose a sender wishes to communicate
a binary sequence of n, elements, z, to a receiver. We
shall first sample a representation of ny, binary elements,
h, to communicate and then send the residual of x relative
to this representation. The idea is that the representation
has a more concise code than the original datum z and so
can be compressed effectively: for example, by arithmetic
coding (MacKay, 2003).

The description length of a random variable taking a par-
ticular value indicates how many bits must be used to com-
municate that particular value. Shannon’s source coding
theorem shows that the description length is equal to the
negative logarithm of the probability of the random vari-
able taking that particular value (MacKay, 2003). Hence,
when communicating a datum z, having already commu-
nicated its representation h, the description length would
be

L(alh) = —log, p(c]h). an

We wish for the parameters of the autoencoder to compress
the data well on average, and so we shall minimise the ex-
pected description length,

L(x) =) q(hlz)(L(h) + L(z|h)), (12)

h

where L(h) denotes the description length of the represen-
tation h, and ¢(h|x) is the encoder probability of the repre-
sentation h. As we are using bits-back coding, the descrip-
tion length of the representation A is

L(h) = —logy p(h) + logy q(h|z). (13)

Substituting Eq. 11 and Eq. 13 into Eq. 12 we recover the
Helmbholtz variational free energy:

L(z) = =Y q(h|z)(logy p(x, h) — log, q(hlz)). (14)
h

Picking the parameters of ¢(H|X) and p(X, H) to min-
imise the description length in Eq. 14 yields a coding

scheme that requires the fewest expected number of bits
to communicate a datum x and its representation h.

As Eq. 14 is the variational free energy, the encoder
q(H|X) that minimises Eq. 14 is the posterior p(H|X).
Variational learning methods sometimes refer to the neg-
ative expected description length —L(x) as the expected
lower bound as it serves as a lower bound upon log, p(z).
Note here that we shall be interested in optimising the pa-
rameters of ¢(H|X) and p(X, H) simultaneously, whereas
variational learning often only optimises the parameters of
q(H|X) and p(X, H) by co-ordinate descent.

4. Learning

Learning in DARN amounts to jointly training weights and
biases 6 of both the encoder and the decoder, simultane-
ously, to minimise Eq. 12. The procedure is based on gra-
dient descent by backpropagation and is based upon a num-
ber of approximations to the gradient of Eq. 12.

We write the expected description length in Eq. 12 as:

1 1
L(x) = Z Q(h1|x) e Z Q(hnh hl:nh—lvx)
h1=0 hyy, =0

x (logy q(hlz) —logy p(x, k) (15)

Calculating Eq. 15 exactly is intractable. Hence we shall
use a Monte carlo approximation.

Learning proceeds as follows:

1. Given an observation x, sample a representation h ~
q(H|x) (see Section 2.3).

2. Calculate gq(h|z) (Eq. 4), p(x|h) (Eq. 3) and p(h)
(Eq. 1) for the sampled representation h and given ob-
servation x.

3. Calculate the gradient of Eq. 15.

4. Update the parameters of the autoencoder by follow-
ing the gradient Vg L(x).

5. Repeat.

We now turn to calculating the gradient of Eq. 15 which
requires backpropagation of the MDL cost through the
joint encoder/decoder. Unfortunately, this pass through the
model includes stochastic units. Backpropagating gradi-
ents through stochastic binary units naively yields gradients
that are highly biased, yet often work well in practice (Hin-
ton, 2012). Whilst it is possible to derive estimators that
are unbiased (Bengio et al., 2013a), their empirical perfor-
mance is often unsatisfactory. In this work, we backpropa-
gate gradients through stochastic binary units, and then re-
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weight these gradients to reduce bias and variance. Details
are given in Appendix A.

Finally note that when the encoder is not autoregressive,
the entire system can be trained using standard matrix oper-
ations and point-wise nonlinearities. Hence it is easily im-
plementable on graphical processing units. The decoder’s
autoregressive computation is expressed as a full matrix
multiplication with a triangular matrix.

5. Results

We trained our models on binary UCI data sets, MNIST
digits and frames from five Atari 2600 games (Bellemare
etal., 2013).

The quantitative results reported here are in terms of the
probability the decoder assigns to a test datum: p(x).
For small DARN models, we can evaluate the likelihood
p(x) exactly by iterating over every possible representa-
tion: p(x) = >, p(x,h). As the computational cost of
this sum grows exponentially in the size of the representa-
tion, for DARN models with more than 16 stochastic hid-
den units, we use an importance sampling estimate using
the encoder distribution:

il (s)
pla) 5 SO B,

2 4(h)[a)
where s indexes one of S samples. As this estimate can
have high variance, we repeat the estimation ten times and
report the 95 per cent confidence interval. In our experi-
ments, the variance of the estimator was low. Where avail-
able, we used a validation set to choose the learning rate
and certain aspects of the model architecture, such as the
number of hidden units. We used the Monte Carlo approx-

imation to expected description length in Eq. 15 of the val-
idation set to select these.

W)~ q(H|z),  (16)

5.1. Binary UCI data sets

We evaluated the test-set performance of DARN on eight
binary data sets from the UCI repository (Bache & Lich-
man, 2013). In Table 1, we compare DARN to baseline
models from Uria et al. (2013).

We used a DARN with two hidden layers. The first layer
was deterministic, with tanh activations. The second layer
was a stochastic layer with an autoregressive prior p(H ).
The decoder conditional p(X|H) included autoregressive
connections.

The architecture and learning rate was selected by cross-
validation on a validation set for each data set. The num-
ber of deterministic hidden units was selected from 100 to
500, in steps of 100, whilst the number of stochastic hid-
den units was selected from {8, 12,16, 32,64, 128, 256}.

We used RMSprop (Graves, 2013) with momentum 0.9 and
learning rates 0.00025, 0.0000675 or 10~5. The network
was trained with minibatches of size 100. The best results
are shown in bold in Table 1. DARN achieved better test
log-likelihood on four of eight data sets than the baseline
models reported in Uria et al. (2013). We found that regu-
larisation by adaptive weight noise on these small data sets
(Graves, 2011) did not yield good results, but early stop-
ping based on the performance on the validation set worked
well.

5.2. Binarised MNIST data set

We evaluated the sampling and test-set performance of
DARN on the binarised MNIST data set (Salakhutdinov &
Murray, 2008), which consists of 50, 000 training, 10, 000
validation, and 10, 000 testing images of hand-written dig-
its (Larochelle & Murray, 2011). Each image is 28 x 28
pixels.

We used two hidden layers, one deterministic, one stochas-
tic. The results are in Table 2 with n;, denoting the number
of stochastic hidden units. The deterministic layer had 100
units for architectures with 16 or fewer stochastic units per
layer, and 500 units for more than 16 stochastic units. The
deterministic activation function was taken to be the tanh
function. We used no autoregressivity for the observation
layer — the decoder conditional is a product of independent
Bernoulli distributions, conditioned upon the representa-
tion. Training was done with RMSprop (Graves, 2013),
momentum 0.9 and minibatches of size 100. We used a
learning rate of 3x1075. Adaptive weight noise (Graves,
2011), denoted by “adaNoise” in Table 2, was used to avoid
the need for early stopping.

After training, we were able to measure the exact log-
likelihood for networks with 16 or fewer stochastic hid-
den units. For the network with 500 hidden units,
we estimated the log-likelihood by importance sampling
given by the above procedure. For each test example,
we sampled 100,000 latent representations from the en-
coder distribution. The estimate was repeated ten times;
we report the estimated 95 per cent confidence inter-
vals. The obtained log-likelihoods and confidence inter-
vals are given in Table 2 along with those of other mod-
els. DARN performs favourably compared to the other
models. For example, a DARN with just 9 stochastic hid-
den units obtains almost the same log-likelihood as a mix-
ture of Bernoullis (MoBernoullis) with 500 components:
log, 500 =~ 9. DARN with 500 stochastic hidden units
compares favourably to state-of-the-art generative perfor-
mance of deep Boltzmann machines (DBM; Salakhut-
dinov & Hinton, 2009) and deep belief networks (DBN;
Salakhutdinov & Murray, 2008; Murray & Salakhutdinov,
2009). Notably, DARN’s upper bound, the expected de-
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Table 1. Log likelihood (in nats) per test-set example on the eight UCI data sets.

Model Adult Connect4 DNA Mushrooms NIPS-0-12 Ocr-letters RCV1 Web
MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.) | 13.19 12.58 82.31 9.68 272.38 27.31 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 28170 46.10+0 288340

/|
9|
/|
H
4
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s13716S9/9/ 584

Figure 2. Left: Samples from DARN paired with the nearest training example from binarised MNIST. The generated samples are not
simple memorisation of the training examples. Right: Sample probabilities from DARN trained on pixel intensities directly.

scription length given in the far right column, is lower than
the likelihood of NADE whilst DARN’s estimated log like-
lihood is lower than the log-likelihood of the best reported
EoNADE (Uria et al., 2013) results.

We performed several additional experiments. First, we
trained fDARN with 400 hidden units and 5% sparsity, re-
sulting in an upper bound negative log-likelihood of 96.1
(Table 2). The estimated speed of generation was 2.4 x 10%
multiplications per sample, which compares favourably to
NADE’s of 2.2 x 109, a nearly 100 fold speedup. While
the likelihood is worse, the samples appear reasonable by
ocular inspection.

Next, we trained a very deep, 12 stochastic layer DARN
with 80 stochastic units in each layer, and 400 tanh units
in each deterministic layer. Here we also used skip connec-
tions where each tanh layer received input from all previous
stochastic layers. Due to computational constraints we only
evaluated the upper bound of this architecture as reported
in Table 2 — where it records the best upper bound among
all DARN models, showing the value of depth in DARN.

Finally, we trained a network with one stochastic layer, 400
units, and one tanh layer (1000 units) in both encoder and
decoder on the pixel intensities directly, rather than bina-

'The script to generate the dataset is

rising the data set. We show the sample probabilities of
observables in Figure 2(right).

5.3. Atari 2600 game frames

We recorded 100, 000 frames from five different Atari 2600
games (Bellemare et al., 2013) from random play, record-
ing each frame with 1% probability. We applied an edge
detector to the images yielding frames of 159 x 209 pixels'.
Frames of these games generated by DARN are shown in
Figure 4.

To scale DARN to these larger images, we used three hid-
den layers. The stack of layers contains a locally connected
layer with weight-sharing (see Section 2.2), a rectified lin-
ear activation function, another locally connected layer fol-
lowed by a rectified linear function and a fully connected
layer followed by 300 stochastic binary units. The au-
toregressive prior on the representation was also fully con-
nected. The locally connected layers had 32 filters with a
period of 8. The first locally connected layer used stride 4
and kernel size 8. The second locally connected layer used
stride 2 and kernel size 4. The autoregressive connections

available at
https://github.com/fidlej/aledataset
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Table 2. Log likelihood (in nats) per test-set example on the bina-
rised MNIST data set. The right hand column, where present, rep-
resents the expected description length (in Eq. 15) which serves
as an upper bound on the log-likelihood for DARN.

Model —logp <
MoBernoullis K=10 168.95
MoBernoullis K=500 137.64

RBM (500 h, 25 CD steps) =~ 86.34

DBM 2hl =~ 84.62

DBN 2hl ~ 84.55

NADE 1hl (fixed order) 88.33

EoNADE 1hl (128 orderings) 87.71

EoNADE 2hl (128 orderings) 85.10

DARN nj;=9, adaNoise 138.84 145.36
DARN n;=10, adaNoise 133.70 140.86
DARN nj=16, adaNoise 122.80 130.94
DARN n;=500 84.71+0.01  90.31
DARN n;,=500, adaNoise 84.13 +0.01 88.30
fDARN n;, = 400 - 96.1
deep DARN - 87.72

Figure 3. Samples from networks of different depths. Left:
Frames generated from the network described in Figure 5. Mid-
dle: Frames generated from the network with the same sizes but
without the fully-connected top layer. Right: Frames generated
from the network with the top two layers removed.

for the visible layer used a period of 14 and kernel size 15.

The games in Figure 4 are ordered from left to right, in de-
creasing order of log probability. While DARN captures
much of the structure in these games, such as the scores,
various objects, and correlations between objects, when the
game becomes less regular, as with River Raid (second to
right) and Sea Quest (far right), DARN is not able to gen-
erate reasonable frames.

Figure 5 shows the representation that DARN learns for a
typical frame of the game Freeway. To show the effect of
deeper layers in DARN, Figure 3 shows the frames DARN
generates using the representation from different depths. In
the game of Freeway, several cars (the white blobs) travel
along lanes, delimited by dashed white lines. Here we used
a DARN with three stochastic hidden layers. When DARN

was trained using a sparsity penalty on the activations, as
we described in Section 2.3, it learnt a representation where
the second hidden layer captures the rough outline of each
car, whereas the first hidden layer filled in the details of
each car. A global bias learns the background image. A
third hidden layer decides where to place the cars. All lay-
ers except the very top layer are locally connected. The top
layer has 100 units. The second hidden layer was locally
connected with a kernel of size 21 x 21, whilst the first hid-
den layer was locally connected with a kernel of size 7 x 7.

6. Conclusion

In this paper we introduced deep autoregressive networks
(DARN), a new deep generative architecture with autore-
gressive stochastic hidden units capable of capturing high-
level structure in data to generate high-quality samples.
The method, like the ubiquitous autoencoder framework,
is comprised of not just a decoder (the generative element)
but a stochastic encoder as well to allow for efficient and
tractable inference. Training proceeds by backpropagating
an MDL cost through the joint model, which approximately
equates to minimising the Helmholtz variational free en-
ergy. This procedure necessitates backpropagation through
stochastic units, as such yielding an approximate Monte
Carlo method. The model samples efficiently, trains effi-
ciently and is scalable to locally connected and/or convolu-
tional architectures. Results include state-of-the-art perfor-
mance on multiple data sets.

A. Derivation of Gradients

We derive the gradient of the objective function with re-
spect to the inputs to a stochastic binary hidden unit. Let
q(h;) be the probability distribution of the ith hidden unit,
f(h;) be the part of the network which takes h; as an input.
The expected value of f(h;) and its gradient are:

1

E[f(H;)] = Z q(hq) f(h) (17)
hi=0
VoE [f(H)) = > q(hi)Velogq(hi)f(hi)  (18)

h;=0

where f does not depend directly on the inputs 6 of the
q(h;) distribution. We use a Monte Carlo approximation
to estimate VoI [f(H;)] where h; is sampled from q(h;)
(Williams, 1992; Andradéttir, 1998). Monte Carlo approxi-
mations of the gradient are unbiased but can have high vari-
ance. To combat the high variance, we introduce a baseline
b, inspired by control variates (Paisley et al., 2012):

VoE [f(H:)] ~ E [VoF] (19)
VoF = Vglogq(hi)(f(hi) —b)  (20)
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Figure 4. Samples from a locally connected DARN paired with the nearest train-
ing example. Some of the generated frames have novel combinations of objects
and scores. Columns from left to right, along with upper bound negative log-
likelihood on the test set: Freeway (19.9), Pong (23.7), Space Invaders (113.0),

River Raid (139.4), Sea Quest (217.9).

where ﬁ? denotes our estimator. A good baseline should
be correlated with f(h;), have low variance, and also be
such that the expected value of Vjylogq(h;)b is zero to
get an unbiased estimate of the gradient. We chose a non-
constant baseline. The baseline will be a first-order Taylor
approximation of f. We can get the first-order derivatives
from backpropagation. The baseline is a Taylor approxi-
mation of f about h;, evaluated at a point h}:

df ()
dh;

b(hi) = f(hi) + (R — hq) 2D

To satisfy the unbiasedness requirement, we need to solve
the following equation for h}:

df (i)
dh;

0= q(hi)Valogq(hi)(f(hi) +

h;=0

(R = hi))
(22)

The solution depends on the shape of f. If f is a linear
function, any A/ can be used. If f is a quadratic function,

Figure 5. Bottom: An input frame from the
game Freeway. Lower Middle: Activations in
the encoder from the first hidden layer. Upper
Middle: Activations in the encoder from the
second hidden layer. Top: Each of 25 rows is
an activation of the fully-connected third hidden
layer with 100 units.

the solution is h} = % If f; is a cubic or higher-order func-
tion, the solution depends on the coefficients of the polyno-
mial. We will use b} = % and our estimator will be biased
for non-quadratic functions.

By substituting the baseline into Eq. 20 we obtain the final
form of our estimator of the gradient:

VoF = Vylogq(h;) J;(h ) (h; — 5) (23)
_ Voq(H; = 1) df (h)
— 2q(hy) dh; @Y

An implementation can estimate the gradient with respect
to ¢(H; = 1) by backpropagating with respect to h; and
scaling the gradient by ﬁ where h; is the sampled bi-
nary value.
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