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ABSTRACT
We describe an approach based on latent factor models to
the Track 2 task of KDD Cup 2011, which required learn-
ing to discriminate between highly rated and unrated items
from a large dataset of music ratings. We take the pairwise
ranking route, training our models to rank the highly rated
items above the unrated items which are sampled from the
same distribution. Using the item relationship information
from the provided taxonomy to constrain item representa-
tions results in improved predictive performance. Providing
the model with features summarizing the user rating his-
tory as it relates to the item being ranked leads to further
improvement.

Categories and Subject Descriptors
I.2.6 [Machine Learning]: Engineering applications

General Terms
Experimentation, Algorithms
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1. INTRODUCTION
Collaborative filtering deals with inferring complete user

preferences from large but incomplete collections of pref-
erence expressions [8]. Users can express their preferences
using explicit feedback, such as item ratings, or implicit feed-
back, such as item views or purchases [5]. Explicit feedback
is more reliable than implicit feedback but is typically avail-
able in much smaller quantities. This is a consequence of
requiring an effort on the part of the users to explicitly ex-
press their preferences through special actions, such as rat-
ing items. Implicit feedback, on the other hand, is much
easier to obtain in large quantities because it is produced as
a byproduct of natural use of the system. This easy avail-
ability makes modelling implicit feedback an important task,
which until recently has received surprisingly little attention.

What makes implicit feedback fundamentally different from
explicit feedback (e.g. like/dislike) is that users provide only
positive examples, that is just the items they are interested
in [5]. In other words, though users can express their interest
in an item by selecting it, they have no way to express their
disinterest. Note that not having expressed interest in an
item is not the same as having expressed disinterest. After
all, the set of items a user has expressed interest in is almost

certainly incomplete due to the user’s budgetary and time
constraints as well as incomplete knowledge of the inven-
tory. As a result, the set of items not selected by a user can
contain both interesting and uninteresting items. It is this
uncertainty about the unobserved items that makes implicit
feedback more difficult to model than its explicit counter-
part.

The simplest way to deal with this uncertainty is to ig-
nore it and use all items not selected by the user as negative
examples. Approximating the resulting dense binary user-
item matrix with a product of two low-rank matrices [5, 10,
9] is the most popular approach to modelling implicit feed-
back. Such models are typically trained using alternating
least squares in time linear in the number of positive exam-
ples but cubic in the number of latent factors.

A recently introduced approach, called Bayesian Person-
alized Ranking (BPR), makes more realistic assumptions
about the unobserved items [11]. Instead of assuming that
the unobserved items are uninteresting, it only assumes that
they are less interesting than the observed items. The model
is trained to rank the positive items above the negative ones
in positive-negative item pairs, with the negative items sam-
pled from the uniform distribution. Both users and items
are represented using latent factor vectors which are learned
using stochastic gradient ascent, ensuring excellent scalabil-
ity. In this paper we apply BPR to the Track 2 task of
KDD Cup 2011, modifying the training algorithm to use a
popularity-based distribution of negative examples and ex-
tending the model to take advantage of the item taxonomy.

1.1 The task
In this paper we describe our approach to the Track 2

task of KDD Cup 2011, which deals with music recommen-
dation using a dataset of item ratings collected from the
Yahoo! Music service. The dataset consists of ratings as-
signed to music items of four types (tracks, albums, artists,
and genres) by about 249K users of the site. The dataset
set contains about 64M ratings on a scale from 0 to 100 for
over 296K items, about 224K of which are tracks. See [4]
for a more detailed description of the data.

The Track 2 task is to learn to discriminate between the
highly rated (ratings 80 and above) and the unrated tracks
for each user. The test set contains six tracks per user,
three of which are highly rated and three are unrated. Note
that because this rated/unrated breakdown is known, it is
possible to discriminate between items in the test set even
with a model that ranks items instead of classifying them.

This task is most naturally viewed as an implicit feedback
modelling problem because the goal is to learn to discrim-



inate between the observed positive examples (the highly
rated tracks) and the unobserved negative examples (the
unrated tracks). However, the Track 2 task differs from the
classic implicit feedback problem in two important ways.
First, models are evaluated at discriminating between three
positive items and three negative items that come from the
same distribution. This makes it impossible to use item
popularity for discrimination between positive and negative
examples, which is not the case in the classic setting where
negative examples are effectively uniformly distributed. Sec-
ond, in addition to the identities of the positive items, which
are also available in the classic setting, we have access to the
item taxonomy and item ratings. We will show how to take
advantage of these extra sources of information to improve
model performance.

2. BASIC LATENT-FACTOR MODEL
We represent both users and items using D-dimensional

real-valued vectors, which will be learned automatically from
the data. We will refer to entries in these vectors as la-
tent factors to emphasize that they are learned. Though
latent factors are sometimes called features in the collabo-
rative filtering literature (e.g. in [12]), we will use the term
features to refer only to the quantities precomputed using
hand-designed rules and given to the learning algorithm as
(fixed) inputs. For example, the number of items rated can
be one of the features associated with a user. Though such
hand-engineered features can sometimes be used to boost
system performance, designing effective features is a diffi-
cult and time-consuming task, which is why our approach
will rely mostly on learned representations.

2.1 The scoring function
Our approach to the problem is based on learning a scor-

ing function for each user to capture their preferences. Since
the task of interest is discrimination between positive and
negative items, we would like to learn functions that assign
higher scores to positive items than to negative ones. Once
the scoring function for a user has been learned, we can rank
any set of items by ordering them according to their scores.

We restrict our attention to scoring functions of the form

su(i) = U>u Vi + bi, (1)

where Uu and Vi are the latent factor vectors for user u and
item i respectively. bi is the item-specific bias term that
models the popularity of the item. We do not include a user-
specific bias term because adding a constant to the function
has no effect on the induced ranking. In spite of their simple
parametric form, such scoring functions are very expressive
because the factor vectors they operate on are learned from
the data and can be as high-dimensional as necessary.

In order to learn scoring functions we need to introduce
an objective function that links item scores to observations.
Unfortunately, the classification error rate, which is the of-
ficial Track 2 performance metric, is discontinuous which
makes optimizing it difficult. We take the probabilistic ap-
proach instead and use the (penalized) log-likelihood as the
objective function, which is much easier to optimize because
it is smooth.

2.2 Classification and ranking objective func-
tions

Our first model tries to classify items into positive and
negative (for each user) by computing the probability that
the item is positive based on its score. The probability of the
item being positive is obtained from its score by applying
the logistic function:

P (i ∈ Pu) =
1

1 + exp(−su(i))
, (2)

where Pu is the set of positive items for user u. This model
can be seen as a logistic regression classifier with the item
factor vector serving as the input and the user factor vector
as the weights.

While this model is appealing because of its simplicity, it
is trying to solve a harder problem then necessary by esti-
mating the probability of an item being positive. After all,
in collaborative filtering we are typically interested in rank-
ing items based on some criterion, e.g. potential interest to
the user, as opposed to classifying them. Since ranking is
in a sense an easier task than classification because there is
no need to decide on a score threshold for separating the
positive and the negative items, we also tried learning scor-
ing functions by training a probabilistic ranking model. We
take the pairwise ranking approach used by BPR [11] and
model the probability that user u prefers item i to item j
as the logistic function of the difference between the item
scores:

P (i >u j) =
1

1 + exp(−(su(i)− su(j)))
. (3)

The model is trained on positive item i / negative item j
pairs. We describe how the negative items are generated in
Sec. 3.3.

To make predictions with either model on the test set, we
rank the items for each user according to their scores, and la-
bel the three top-scoring ones as positive and the remaining
three as negative.

3. INCORPORATING TAXONOMY INFOR-
MATION

One distinguishing feature of the dataset is that items
come in several types: tracks, albums, artists, and genres.
We are also given a taxonomy that links items of different
types, which provides the album, the artist, and the list of
genres for each track, as well as the artist and the list of
genres for each album.

We used taxonomy information to parameterize track fac-
tor vectors in a more sophisticated way and to generate fea-
tures that relate items to the user’s rating history in a more
direct manner than latent factors allow.

3.1 Taxonomy-based parameterization
Learning latent factor models that generalize well can be

difficult because of the large number of free parameters that
have to be estimated from the data. For example, a model
from Sec. 2 with 100-dimensional latent vectors has over
54M parameters, which is of the same order as the number of
positive examples in the training set. If we know that some
of the parameters should take on similar values, we can im-
prove generalization by incorporating this information into
the model. We apply this principle to encourage tracks from
the same album or by the same artist to have similar rep-
resentation. We achieve this by defining new track latent



factor vectors in a hierarchical manner:

V H
i = Vi + wr

alValbum(i) + wr
arVartist(i), (4)

where album(i)/artist(i) refer to the album/artist for track
i.1 In other words, a track is now represented by a linear
combination of its old unconstrained representation (Vi) and
the representations of its album and artist. The contribu-
tions of the album and artist representations are modulated
by wr

al and wr
ar, which are learned along with all other pa-

rameters. We also define new track biases in an analogous
manner:

bHi = bi + wb
albalbum(i) + wb

arbartist(i), (5)

and use V H
i and bHi in place of Vi and bi in Eq. 1.

This kind of hierarchical parameterization encourages the
latent vectors (and biases) of tracks from the same album
and/or by the same artist to have similar representations. It
also encourages track representations to be similar to those
of its album and artist. As a result, updating the latent vec-
tor V H

i for a track will affect not only the track’s represen-
tation but also the representations of its album and artist,
as well as the representations of all other tracks sharing the
album or the artist. Similarly, updating a representation
for an album will also affect representations for all tracks
off that album. Thus this kind of parameterization should
allow effective pooling of information between all types of
items, except for genres.2

3.2 Taxonomy-based features
There is another, more direct, way to use the item rela-

tionship information provided by the taxonomy. It involves
identifying the items related to the current track (i.e. its al-
bum, artist, and tracks sharing the album or the artist) and
then computing a set of features that summarize the user’s
rating history for these items. The resulting feature vector
f(u, i) is then used as an additional input to the scoring
function:

su(i) = U>u Vi + bi + (Wu + Wi + W )>f(u, i). (6)

Here Wu, Wi, and W are the user-specific, the item-specific,
and the global feature weights respectively, which are learned
jointly with all other model parameters.

Though this approach is conceptually simple, its effec-
tiveness is heavily dependent on the choice of features. This
sort of feature based approach has been quite successful in
natural language processing [7] and computer vision [6]. De-
signing useful features however requires a reasonably good
understanding of the problem and extensive experimenta-
tion.

We experimented with a number of features and found
that while many of them reduced the training error, only
a few of them helped on the test set. We also observed
that some features help models with low-dimensional latent
factor vectors considerably, but either hurt or have no effect
on models with higher-dimensional factor vectors.

Our feature-based models used (some) of the following
features:

1If the album or artist for a track is unknown we drop the
corresponding term from Eq. 4.
2We also tried including a contribution from the genre repre-
sentations in Eq. 4 but found that it did not improve model
performance.

Table 1: The effect of the sampling distribution
Distribution of Validation ERR (%)
negative items
Uniform 9.274
Same as for positive 5.350

1. The rating given to the track’s album by the user (di-
vided by 100)

2. Is the album’s rating 80 or higher?

3. The rating given to the track’s artist by the user (di-
vided by 100)

4. Is the artist’s rating 80 or higher?

5. The fraction of the track’s genres rated by the user
(either directly or by rating an album or a track of
that genre)

6. Has the user rated (directly or indirectly) any of the
track’s genres?

7. The fraction of user’s genre ratings the track’s genres
account for

8. Has the user rated any other track from the album?

9. Has the user rated any other track by this artist?

10. The mean rating of the track’s genres that have been
rated by the user (divided by 100)

In general, we found that only the first four of these features
improved model performance in all cases. As we show in
Sec. 5, using too many features can easily lead to overfitting
in models with a large number of latent factors.

3.3 Training
The models we described need access to both positive and

negative examples for training. We used the user-item pairs
from the training part of the dataset as positive examples.
For each user/positive-item pair we generated a negative
item by sampling from the empirical distribution of items
in the training set. We did not ensure that the sampled
negative item has not been rated by the user because we
found that the required bookkeeping noticeably increased
the running time without having much of an effect on the
predictive performance.

Since the models are evaluated based on their ability to
rank three positive items above three negative items, op-
timal performance is achieved when each of the positive
items is assigned a score larger than the score of any of
the three (randomly-sampled) negative items. We encour-
age our models to learn to rank the current positive item
above the highest-scoring of three randomly chosen negative
items by sampling three items and keeping the one with the
highest score under the model as the negative item.

We trained all our models using stochastic gradient ascent.
The algorithm iterated through the user/positive-item pairs
in the training set in a random order, generating a negative
item for each such pair before updating model parameters.
Training a model that uses features and has 100D latent
vectors takes about half a day on a several-year-old Xeon



Table 2: The effect of the training objective
Objective function Validation ERR (%)
Classification (Eq. 2) 5.556
Ranking (Eq. 3) 5.350

Table 3: The effect of taxonomy-based parameteri-
zation and features

Features Taxonomy-based Validation ERR (%)
used parameterization
— No 6.017
— Yes 5.350

Best 4 (1-4) No 3.916
Best 4 (1-4) Yes 3.708

machine. Training models without features is considerably
faster.

Model parameters were regularized using L2 weight cost
using the scheme explained in [13] as well as early stopping
on the validation set.

4. IMPLEMENTATION DETAILS
Except when explicitly stated otherwise, all reported re-

sults were obtained by training on user-item pairs with rat-
ings 50 and higher, with the contribution from pairs with
ratings between 50 and 79 downweighted by a factor of
4. The empirical distribution used for generating negative
items was based on pairs with ratings 50 and higher. Fea-
tures described in Sec. 3.2 were computed based on pairs
with ratings 10 and above, as we discovered that including
pairs with ratings between 10 and 49 to compute features
improved predictive accuracy.

We generated negative samples from the empirical dis-
tribution of items in the training set by picking a training
case uniformly at random and taking the associated item as
the sample. This is much more efficient than the naive ap-
proach that precomputes the empirical probabilities of the
items and then generates samples using those probabilities
in time linear in the number of items.

In order to compute features from Sec. 3.2 efficiently, we
stored all the necessary information about user ratings in
hash maps3 before starting training. Hash maps allow us to
compute features for a user-item pair in time that is effec-
tively constant in the number of training set ratings for the
user.

5. RESULTS
We created a validation set in order to monitor model

performance during training as well as to allow quick model
evaluation without using the KDD Cup website. For each
user present in the test set, we randomly selected three
highly rated tracks from the training set as positive exam-
ples and moved them to the validation set.4 The negative
examples were generated by sampling from the empirical
distribution of tracks rated 80 or higher in the training set.
The scores on the resulting validation set were highly corre-
lated with the corresponding test scores, with the validation

3We also tried using binary trees but found them slower,
though more memory-efficient, than hash maps.
4Users with fewer than three such tracks were not included
in the validation set.

Table 4: The interplay between the number of latent
factors and the usefulness of features

Features Number of latent Validation ERR (%)
used factors
All 0 7.186

Best 4 (1-4) 0 11.654
All 100 3.977

Best 4 (1-4) 100 3.708

scores being about 0.45% higher. In other words, a model
with a validation error rate (ERR) of 5.45% will have a test
ERR of about 5%.

Unless stated otherwise, our models used 100-dimensional
factor vectors and the taxonomy-based parameterization from
Sec. 3.1, but did not use features. The feature-based models
were trained using the best four features (features 1-4) from
Sec. 3.2. Early stopping on the validation set was performed
to prevent overfitting. We report only the validation ERR
(in percent) for these models because we had no access to
the official test set.

First, we looked at the effects of the objective function
and the distribution of the negative items on model perfor-
mance. As can be seen from Table 2, the pairwise ranking
approach outperforms the classification approach, though
not drastically. The effect of sampling negative items from
the empirical distribution of positive items instead of the
uniform distribution (used by BPR) is much more dramatic.
As shown in Table 1 it reduces the error rate by a factor of
1.7. As a result, we performed all the remaining experiments
using the ranking objective with the negative items sampled
from the empirical distribution.

We investigated the benefits of taxonomy-based param-
eterization and taxonomy-based features by training four
models, one for each possible parameterization / features
combination. The scores shown in Table 3 indicate that
the features help considerably more than the parameteriza-
tion. The two uses of taxonomy information appear to be
complementary though, as using them both results in the
best-performing model.

To explore the interplay between the features used and
the latent vector dimensionality we trained models with dif-
ferent numbers of latent factors using only the best four
features or all features. Table 4 shows the results for mod-
els with 100-dimensional latent vectors and models with no
latent factors. Using more features seems to hurt models
with many latent factors and help models without (or with
few) latent factors, which suggests that the models with a
lot of features and latent factors are beginning to overfit.
We have also observed that models without features bene-
fit from higher-dimensional latent vectors (e.g. 200D and
higher) while the models with features do not, which seems
to support the overfitting theory.

To determine the contribution of different types of feature
weights, we trained three models, each of which used only
one type of feature weights (global, user-specific, or item-
specific). The results shown in Table 5 suggest that the
user-specific feature weights do most of the work, though
the item-specific and the global weights also help.

6. OUR BEST SUBMISSION
Our best submission combined predictions from the fol-



Table 5: The contribution of different feature
weights

Feature Validation ERR (%)
weights used

All 3.708
Global only 4.051
Item only 4.003
User only 3.830

lowing models:

1. Ranker without features with 500 latent factors

2. Ranker without features with 1000 latent factors

3. Ranker without features with 2000 latent factors

4. Ranker with features 1-10 with 1000 latent factors

5. Ranker with features 1-6,10 with 100 latent factors

6. Ranker with features 1-5 with 100 latent factors

7. Classifier with features 1-5 with 100 latent factors

8. Classifier with features 1-5 with 500 latent factors

The following learning rates were used: 10−2 for user rep-
resentations and item biases, 3 × 10−2 for item represen-
tations, 10−4 for artist/album contribution weights (wr

ar /
wr

al), 10−2 for user/item feature weights, and 10−4 for global
feature weights. The weight cost for user/item represen-
tations was 10−4 in models without features and 10−3 in
models with features. The weight cost values for user/item-
specific feature weights and global feature weights were 3×
10−3 and 10−3 respectively.

Each model was trained using the above parameters until
its validation set ERR started increasing. Then the model
was finetuned by reducing all learning rates by a factor of
10 (except for the artist/album contribution weight learning
rate, which was set to 0) and training until the validation
ERR started increasing again. The finetuning process was
repeated one more time for Models 1-3 after removing the
observations with ratings lower than 80 from the training
set. The feature weights for model 4 were learned before
other model parameters and were kept fixed while learning
the remaining parameters.

Model scores were combined linearly using the weights
learned by minimizing the ranking loss (Eq. 3) on the val-
idation set. The resulting ensemble achieved the score of
2.9337 on the leaderboard.

7. DISCUSSION
In this paper we have described several improvements to

the Bayesian Personalized Ranking model [11] that make it
perform much better on Track 2 of KDD Cup 2011. They
include using a data-driven distribution to generate negative
examples and taking advantage of the item taxonomy to
better parameterize item representations. We also used the
taxonomy to provide the model with features summarizing
the user’s rating history as it relates to a particular item.

There is a number of directions we did not have time to
explore. Since BPR is based on a pairwise ranking approach
[2] introduced in the “learning to rank” literature, it might

be worthwhile to consider the more recent ranking methods
developed in that field. LambdaRank [1] as well as the list-
wise ranking methods [14, 3] seem especially promising.

Using a linear function to map features to item score con-
tributions is the simplest choice but probably not the best
one. More powerful mappings such as neural networks might
be able to make better use of the features.
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