
A fast and simple algorithm for training neural probabilistic language models
Andriy Mnih & Yee Whye Teh
Gatsby Computational Neuroscience Unit
University College London

Overview

• In spite of their superior performance, neural proba-
bilistic language models (NPLMs) are far less widely
used than n-gram models due to their notoriously long
training times.
•We introduce a simple training algorithm for NPLMs

based on noise-contrastive estimation, with time
complexity independent of the vocabulary size.
– Over an order of magnitude faster than maximum-

likelihood estimation.
– The resulting models perform just as well.
•We demonstrate the algorithm’s scalability by train-

ing several large neural language models on the MSR
Sentence Completion Challenge dataset, achieving
state-of-the-art results.

Statistical language modelling

•Goal: Model the joint distribution of words in a sen-
tence.
•Applications: speech recognition, machine transla-

tion, information retrieval.
•Markov assumption:

– The distribution of the next word depends only on k
words that immediately precede it.

– Though clearly false, the assumption makes the task
much more tractable without making it trivial.

n-gram models

•Task: predict the next word wn from n − 1 preceding
words h = w1, ..., wn−1 (called the context).
•n-gram models are conditional probability tables for
P (wn|h).
– Estimated by smoothing word n-tuple counts.
– Most widely used statistical language models due to

their simplicity and good performance.
•Cannot take advantage of similarity between words /

contexts.
•Curse of dimensionality:

– The number of model parameters is exponential in
the context size.

– Cannot take advantage of large context sizes.

Neural probabilistic language models

•Neural probabilistic language models use distributed
representations of words to deal with the curse of
dimensionality.
– Words are represented with real-valued feature vec-

tors learned from data.
– A neural network maps contexts (sequences of word

feature vectors) to next word distributions.
– Word feature vectors and neural net parameters are

learned jointly.
•NPLMs generalize well because smooth functions

map nearby inputs to nearby outputs.
•Similar representations are learned for words with

similar usage patterns.
•Main drawback: very long training times.

Training neural language models

•A NPLM quantifies the compatibility between a con-
text h and a candidate next word w using a scoring
function sθ(w, h).
•The distribution for the next word is defined in terms of

scores:

P h
θ (w) =

1

Zθ(h)
exp(sθ(w, h)),

where Zθ(h) =
∑
w′

exp(sθ(w
′, h)).

Maximum-likelihood estimation

•The gradient of the log-likelihood is

∂

∂θ
logP h

θ (w) =
∂

∂θ
sθ(w, h)−

∂

∂θ
logZθ(h)

=
∂

∂θ
sθ(w, h)−

∑
w′

P h
θ (w

′)
∂

∂θ
sθ(w

′, h).

•Computing ∂
∂θ logZθ(h) is expensive – the time com-

plexity is linear in the vocabulary size.
•Can approximate ∂

∂θ logZθ(h) using importance sam-
pling (Bengio and Senécal, 2003):
– Sample words from a proposal distribution and

reweight the gradients.
– Stability issues: need either a lot of samples or an

adaptive proposal distribution.

Noise-contrastive estimation

• Idea: Fit a density model by learning to discrim-
inate between samples from the data distribution
and samples from a known noise distribution (Gut-
mann and Hyvärinen, 2010).
• If noise samples are k times more frequent than data

samples, the posterior probability that a sample came
from the data distribution is

P h(D = 1|w) = P h
d (w)

P h
d (w) + kPn(w)

.

•To fit a model P h
θ (w) to the data, use P h

θ (w) in place of
P h
d (w) and maximize Jh(θ) =

EP h
d

[
log

P h
θ (w)

P h
θ (w) + kPn(w)

]
+ kEPn

[
log

kPn(w)

P h
θ (w) + kPn(w)

]
.

•NCE allows working with unnormalized distribu-
tions P h0

θ0 (w).
– Set P h

θ (w) = P h0
θ0 (w)/Z

h and learn Zh.
– θ0 are the parameters of the unnormalized distribu-

tion and θ = {θ0, logZh}.
•The gradient of the objective for context h is

∂

∂θ
Jh(θ) =EP h

d

[
kPn(w)

P h
θ (w) + kPn(w)

∂

∂θ
logP h

θ (w)

]
−

kEPn

[
P h
θ (w)

P h
θ (w) + kPn(w)

∂

∂θ
logP h

θ (w)

]
.

•Much easier to estimate than the importance sam-
pling gradient because the weights on ∂

∂θ logP
h
θ (w)

are always between 0 and 1.
– Can use far fewer noise samples as a result.
•The global NCE objective is a sum of the per-context

objectives weighted by the empirical context probabil-
ities P (h):

J(θ) =
∑
h

P (h)Jh(θ).

Speedup over MLE

The NCE parameter update is cd+V
cd+k times faster than

the ML update.
•Here c is the context size, d is the feature vector di-

mensionality, V is the vocabulary size, and k is the
number of noise samples.

Penn Treebank results

Data: news stories from Wall Street Journal
•Training/validation/test set: 930K/74K/82K words
•Vocabulary: 10K words

TRAINING NUM. OF TRAINING PPL W. NOISE

ALG. SAMPLES TIME (H) UNIGRAM UNIFORM

ML 21 163.5 163.5
NCE 1 1.5 192.5 291.0
NCE 5 1.5 172.6 233.7
NCE 25 1.5 163.1 195.1
NCE 100 1.5 159.1 173.2

Sentence completion results

Task: given a sentence with a missing word find the cor-
rect completion from a list of candidate words.
•Training set: 522 19th-century novels (48M words)
•Test set: 1,040 sentences from five Sherlock Holmes

novels
•Five candidate completions per sentence.

METHOD CONTEXT LATENT TEST PERCENT

SIZE DIM PPL CORRECT

CHANCE 0 20.0
3-GRAM 2 130.8 36.0
5-GRAM 4 121.5 38.7
6-GRAM 5 121.7 38.4

LSA SENTENCE 300 49
RNN SENTENCE ? ? 45
LBL 2 100 145.5 41.5
LBL 3 100 135.6 45.1
LBL 5 100 129.8 49.3
LBL 10 100 124.0 50.0
LBL 10 200 117.7 52.8
LBL 10 300 116.4 54.7
LBL 10×2 100 38.6 44.5

Conclusions

Noise-contrastive estimation provides a fast and simple
way of training neural language models:
•Over an order of magnitude faster than maximum-

likelihood estimation.
•Models trained using NCE with 25 noise samples per

datapoint perform as well as the ML-trained ones.

1


