A fast and simple algorithm for training neural probabilistic language models

Andriy Mnih & Yee Whye Teh Gatsby Computational Neuroscience Unit University College London

Overview

- In spite of their superior performance, neural probabilistic language models (NPLMs) are far less widely used than n-gram models due to their notoriously long training times.
- We introduce a simple training algorithm for NPLMs based on noise-contrastive estimation, with time complexity independent of the vocabulary size.
- -Over an order of magnitude faster than maximumlikelihood estimation.
- The resulting models perform just as well.
- We demonstrate the algorithm's scalability by training several large neural language models on the MSR Sentence Completion Challenge dataset, achieving state-of-the-art results.

Statistical language modelling

- Goal: Model the joint distribution of words in a sentence.
- Applications: speech recognition, machine translation, information retrieval.
- Markov assumption:
- The distribution of the next word depends only on kwords that immediately precede it.
- Though clearly false, the assumption makes the task much more tractable without making it trivial.

n-gram models

- Task: predict the **next word** w_n from n-1 preceding words $h = w_1, ..., w_{n-1}$ (called the **context**).
- n-gram models are conditional probability tables for $P(w_n|h)$.
- Estimated by smoothing word *n*-tuple counts.
- Most widely used statistical language models due to their simplicity and good performance.
- Cannot take advantage of similarity between words / contexts.
- Curse of dimensionality:
- -The number of model parameters is exponential in the context size.
- Cannot take advantage of large context sizes.

Neural probabilistic language models

- Neural probabilistic language models use **distributed** representations of words to deal with the curse of dimensionality.
- -Words are represented with real-valued feature vectors learned from data.
- A neural network maps contexts (sequences of word feature vectors) to next word distributions.
- -Word feature vectors and neural net parameters are learned jointly.
- NPLMs generalize well because smooth functions map nearby inputs to nearby outputs.
- Similar representations are learned for words with similar usage patterns.
- Main drawback: very long training times.

Training neural language models

- A NPLM quantifies the compatibility between a context h and a candidate next word w using a scoring function $s_{\theta}(w, h)$.
- The distribution for the next word is defined in terms of scores:

$$P^h_{\theta}(w) = \frac{1}{Z_{\theta}(h)} \exp(s_{\theta}(w,h)),$$

where $Z_{\theta}(h) = \sum \exp(s_{\theta}(w', h))$.

Maximum-likelihood estimation

• The gradient of the log-likelihood is

$$\begin{aligned} \frac{\partial}{\partial \theta} \log P_{\theta}^{h}(w) &= \frac{\partial}{\partial \theta} s_{\theta}(w,h) - \frac{\partial}{\partial \theta} \log Z_{\theta}(h) \\ &= \frac{\partial}{\partial \theta} s_{\theta}(w,h) - \sum_{w'} P_{\theta}^{h}(w') \frac{\partial}{\partial \theta} s_{\theta}(w',h). \end{aligned}$$

- Computing $\frac{\partial}{\partial \theta} \log Z_{\theta}(h)$ is expensive the time complexity is linear in the vocabulary size.
- Can approximate $\frac{\partial}{\partial \theta} \log Z_{\theta}(h)$ using importance sampling (Bengio and Senécal, 2003):
- -Sample words from a proposal distribution and reweight the gradients.
- -Stability issues: need either a lot of samples or an adaptive proposal distribution.

Noise-contrastive estimation

 $E_{P^{\prime}}$

Speedup over MLE

The NCE parameter update is $\frac{cd+V}{cd+k}$ times faster than the ML update. • Here c is the context size, d is the feature vector dimensionality, V is the vocabulary size, and k is the number of noise samples.

• Idea: Fit a density model by learning to discriminate between samples from the data distribution and samples from a known noise distribution (Gutmann and Hyvärinen, 2010).

• If noise samples are k times more frequent than data samples, the posterior probability that a sample came from the data distribution is

$$P^{h}(D = 1|w) = \frac{P_{d}^{h}(w)}{P_{d}^{h}(w) + kP_{n}(w)}$$

• To fit a model $P^h_{\theta}(w)$ to the data, use $P^h_{\theta}(w)$ in place of $P_d^h(w)$ and maximize $J^h(\theta) =$

$${}_{h}^{h}\left[\log\frac{P_{\theta}^{h}(w)}{P_{\theta}^{h}(w)+kP_{n}(w)}\right]+kE_{P_{n}}\left[\log\frac{kP_{n}(w)}{P_{\theta}^{h}(w)+kP_{n}(w)}\right]$$

• NCE allows working with unnormalized distributions $P_{A0}^{h0}(w)$.

-Set $P^h_{\theta}(w) = P^{h0}_{\theta^0}(w)/Z^h$ and learn Z^h .

 $-\theta^0$ are the parameters of the unnormalized distribution and $\theta = \{\theta^0, \log Z^h\}$.

• The gradient of the objective for context h is

$$\frac{\partial}{\partial \theta} J^{h}(\theta) = E_{P_{d}^{h}} \left[\frac{kP_{n}(w)}{P_{\theta}^{h}(w) + kP_{n}(w)} \frac{\partial}{\partial \theta} \log P_{\theta}^{h}(w) \right] + kE_{P_{n}} \left[\frac{P_{\theta}^{h}(w)}{P_{\theta}^{h}(w) + kP_{n}(w)} \frac{\partial}{\partial \theta} \log P_{\theta}^{h}(w) \right].$$

 Much easier to estimate than the importance sampling gradient because the weights on $\frac{\partial}{\partial \theta} \log P_{\theta}^{h}(w)$ are always between 0 and 1.

- Can use far fewer noise samples as a result.

• The global NCE objective is a sum of the per-context objectives weighted by the empirical context probabilities P(h):

$$J(\theta) = \sum_{h} P(h) J^{h}(\theta).$$

Penn Treebank results

TRAINING ALG. ML NCE NCE NCE NCE

Sentence completion results

Task: given a sentence with a missing word find the correct completion from a list of candidate words. Training set: 522 19th-century novels (48M words) • Test set: 1,040 sentences from five Sherlock Holmes

- novels

	•	•		
Method	CONTEXT	LATENT	TEST	PERCENT
	SIZE	DIM	PPL	CORRECT
CHANCE	0			20.0
3-GRAM	2		130.8	36.0
5-GRAM	4		121.5	38.7
6-GRAM	5		121.7	38.4
LSA	SENTENCE	300		49
RNN	SENTENCE	?	?	45
LBL	2	100	145.5	41.5
LBL	3	100	135.6	45.1
LBL	5	100	129.8	49.3
LBL	10	100	124.0	50.0
LBL	10	200	117.7	52.8
LBL	10	300	116.4	54.7
LBL	10×2	100	38.6	44.5

Conclusions

- Over an order of magnitude faster than maximumlikelihood estimation.
- Models trained using NCE with 25 noise samples per datapoint perform as well as the ML-trained ones.

Data: news stories from Wall Street Journal Training/validation/test set: 930K/74K/82K words

• Vocabulary: 10K words

à	NUM. OF	TRAINING	PPL W. NOISE				
	SAMPLES	TIME (H)	UNIGRAM	UNIFORM			
		21	163.5	163.5			
	1	1.5	192.5	291.0			
	5	1.5	172.6	233.7			
	25	1.5	163.1	195.1			
	100	1.5	159.1	173.2			

• Five candidate completions per sentence.

Noise-contrastive estimation provides a fast and simple way of training neural language models: