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Paper Code

TL;DR

We show how to leverage formal reward function specifications (e.g. Reward Ma-
chines, LTL) in RL environments where key properties/events are uncertain.

Example: Gold Mining Robot

Robot’s (Æ) task: dig at any square with gold ( ), then go to the depot (�).
Uncertain property: the robot cannot reliably detect gold ( ) because it looks like
fool’s gold ( ).

How can the agent reliably solve the task?

(Each grid square is labelled with the agent’s probabilistic belief it yields gold.)
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Figure 2: The Gold Mining Problem is a Noisy RM Environment where the agent’s interpretation of
the vocabulary is uncertain. Left: The four rightmost cells yield gold ( ) while two cells in the
second column yield iron pyrite, which has no value. The agent cannot reliably distinguish between
the two metals—cells are labelled with the probability the agent believes it yields gold. Right: The
RM emits a (non-Markovian) reward of 1 for collecting gold and delivering it to the depot (Ñ).

abstraction modelM : H → [0, 1] mapping the robot’s current position (while ignoring the rest of
the history) to its belief that the cell contains gold.

Note that if the agent could observe L, then it could learn an optimal Markovian policy π(at|st, ut)
with a relatively simple form (ut is easily computed with access toL). Intuitively, such a policy should
collect gold while in RM state u(0) and head to the depot while in RM state u(1). Unfortunately, when
the agent does not have access toL, we cannot directly learn a policy with the simpler Markovian form
above. In the following sections, we show how the agent’s noisy belief captured by the abstraction
modelM can be leveraged to simplify the learning problem.

4 Noisy RM Environments as POMDPs

We start with an analysis of the Noisy RM Environment framework, contrasting it with a standard
RM framework. We ask: (1) What is the optimal behaviour in a Noisy RM Environment? (2) How
does the abstraction modelM affect the problem? (3) How does not observing the labelling function
L affect the problem? We provide proofs for all theorems in Appendix A.

Observe that uncertainty in the labelling function is only relevant insofar as it informs the agent’s
knowledge of the current RM state ut since rewards from an RMR are Markovian over extended states
(st, ut) ∈ S ×U . Our first result is that a Noisy RM Environment ⟨E ,R,L,M⟩ can be reformulated
into an equivalent POMDP with state space S ×U and observation space O (Theorem 4.1). Here, we
say two problems are equivalent if there is a bijection between policies for either problem such that
the policies have equal expected discounted return and behave identically given the same history ht.
Thus, optimal behaviour in a Noisy RM Environment can be reduced to solving a POMDP.

Theorem 4.1 A Noisy RM Environment ⟨E ,R,L,M⟩ is equivalent to a POMDP over state space
S × U and observation space O.

One may notice that the abstraction modelM doesn’t appear in the POMDP reformulation at all. We
later show that an appropriate choice ofM can improve policy learning in practice, but this choice
ultimately does not change the optimal behaviour of the agent (Theorem 4.2).

Theorem 4.2 (Does the choice ofM affect optimal behaviour?) Let P be a Noisy RM Environment
⟨E ,R,L,M⟩, and P ′ be a Noisy RM Environment ⟨E ,R,L,M′⟩. Then P and P ′ are equivalent.

We also contrast our proposed framework, where the agent does not have direct access to L, with
prior RM frameworks where the agent does. We show that this difference does not affect the optimal
behaviour in MDP environments, but can affect the optimal behaviour in POMDPs (Theorem 4.3).

Theorem 4.3 (Does observing L affect optimal behaviour?) Let P be a Noisy RM Environment
⟨E ,R,L,M⟩. Consider a problem P ′ that is identical to P except that the agent at time t additionally
observesL(st, at, st+1) after taking action at in state st. If E is an MDP, thenP andP ′ are equivalent.
If E is a POMDP, P and P ′ may be non-equivalent.
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Motivation

Ë Formal specifications expose reward function structure to enable sample-
efficient RL.

ü Current methods often assume an oracle detects key properties/events in the en-
vironment (a labelling function).

� In the real world, key properties/events can be uncertain due to partial observ-
ability, sensor noise, or classifier error.

Contributions

1. A deep RL framework for Reward Machines (RMs) where the evaluation of the
symbolic vocabulary is uncertain.

2. A suite of RL algorithms that exploit RM structure and can be deployed
without an oracle labelling function.

3. An analysis showing serious pitfalls when naively addressing uncertainty (and
how to overcome these pitfalls!).

� Our framework extends RMs to POMDP environments.

� We show how noisy sensors and vision-language models can be incorporated
into an RM framework.
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Key Concepts
1. The reward function is defined by an RM over propositional symbols AP (e.g.

,�).

2. The ground-truth interpretation of AP is a binary function of state transitions
provided by a hidden labelling function L : S × A × S → 2AP (hard to obtain!).

3. An abstraction model M : H → Z (e.g. a VLM or sensors) is a noisy mapping
from the observable history to an arbitrary feature space Z (easier to obtain!).

Agent’s goal: Optimize performance with respect to the ground-truth interpretation L,
while deciding actions according to a noisy abstraction model M.

Methods

Question: How can we leverage high-level reward function structure using only a
noisy abstraction model M? We consider policies decoupled into two modules:

3 Inference: Predict a belief over RM states at each step from the history with the
help of the abstraction model M.

3 Decision making: Output actions based on observations + RM state belief.

Naive algorithm: Given M : H → 2AP (a discrete predictor of AP), update the RM
state by treating outputs of M as the ground truth.

Pitfall: A prediction error at time t propagates to all future RM states at time
t + 1, t + 2, . . .!

Independent Belief Updating (IBU): Given M : H → ∆(2AP) (a probabilistic predic-
tor of AP), maintain a distribution over RM states at each timestep.

Pitfall: Assumes outputs from M are independent. The inferred RM state
distribution can get arbitrarily bad over time!

Temporal Dependency Modelling (TDM): Given M : H → ∆U (a probabilistic se-
quence predictor of RM states), directly output the predicted RM state distribution
at each timestep.

2 Can be practically implemented using RNNs, Transformers, etc.

Experiments

Research Questions:
1. Which methods are robust to noisy abstraction models when applied to our RM

framework?
2. Which methods improve downstream RL sample efficiency?

We target environments with partial observability and high-dimensional observa-
tions, while abstraction models include neural network classifiers trained from data,
and zero-shot GPT-4o.

Ñ y

Traffic Light (above) and Kitchen (below left), are MiniGrids with image observations,
where key propositions are partially observable.

Æ

�

Colour Matching (above right) is a MuJoCo robotics environment where the agent must
identify colour names by their RGB values to solve a sequential reach-avoid task.
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Ë Our methods can be deployed with noisy abstraction models, instead of an ora-
cle.

Ë TDM is significantly more sample efficient than Recurrent PPO!

� RL makes little progress when task structure is not exploited.

� Naive and IBU can lead to dangerous outcomes due to RM state modelling errors!


