

¹University of Toronto ²Vector Institute ³Cornell University ⁴Schwartz Reisman Institute ⁵Georgian.io ⁶Pontificia Universidad Católica de Chile ⁷Centro Nacional de Inteligencia Artificial [†]Work done while at the University of Toronto

TL;DR

We show how to leverage formal reward function specifications (e.g. Reward Machines, LTL) in RL environments where key properties/events are uncertain.

Example: Gold Mining Robot

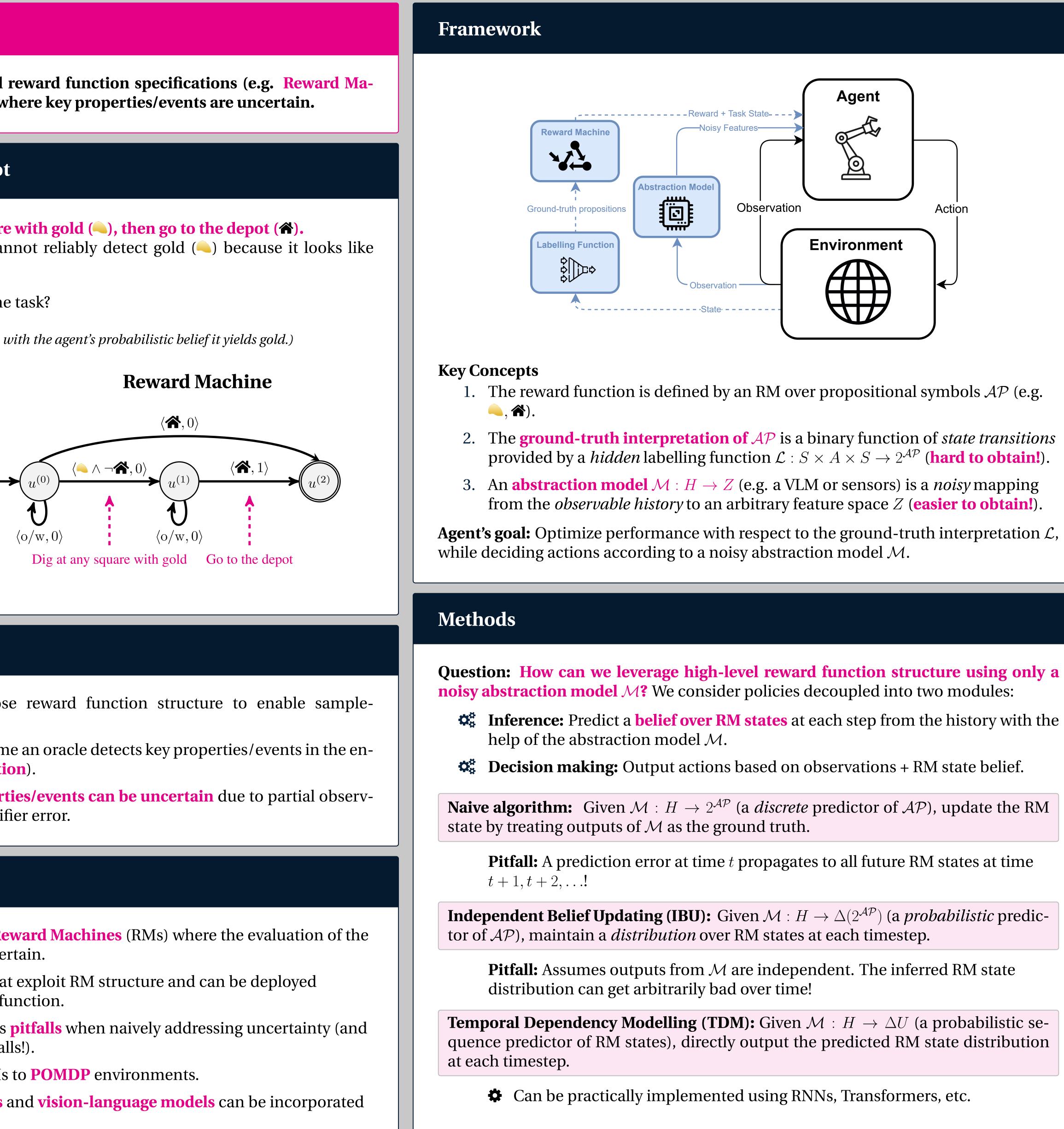
Robot's () task: dig at any square with gold (), then go to the depot (). **Uncertain property:** the robot cannot reliably detect gold (<) because it looks like fool's gold (🔍).

How can the agent reliably solve the task?

(Each grid square is labelled with the agent's probabilistic belief it yields gold.)

Gridworld			
0 •	0	0	0.8
0	0.3	0	0.8
0	0.6	0	0.8
0 *	0	0	0.8

$\langle \bigstar, 0 \rangle$



Motivation

- ✓ Formal specifications expose reward function structure to enable sampleefficient RL.
- **Q** Current methods often assume an oracle detects key properties/events in the environment (a **labelling function**).
- A In the real world, **key properties/events can be uncertain** due to partial observability, sensor noise, or classifier error.

Contributions

- 1. A deep RL framework for Reward Machines (RMs) where the evaluation of the symbolic vocabulary is uncertain.
- 2. A **suite of RL algorithms** that exploit RM structure and can be deployed without an oracle labelling function.
- 3. An **analysis** showing serious **pitfalls** when naively addressing uncertainty (and how to overcome these pitfalls!).
- Our framework extends RMs to **POMDP** environments.
- We show how noisy **sensors** and **vision-language models** can be incorporated into an RM framework.

Reward Machines for Deep RL in Noisy and Uncertain Environments

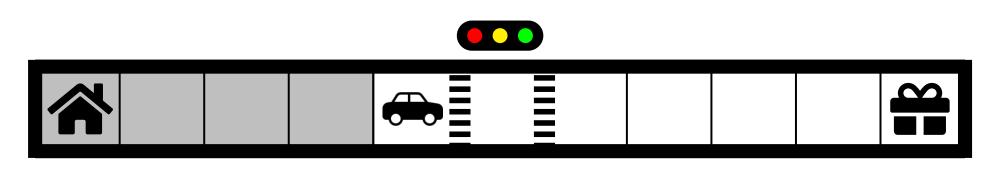
Andrew C. Li¹² Zizhao Chen^{3†} Toryn Q. Klassen¹²⁴ Pashootan Vaezipoor²⁵ Rodrigo Toro Icarte⁶⁷ Sheila A. McIlraith¹²⁴

Experiments

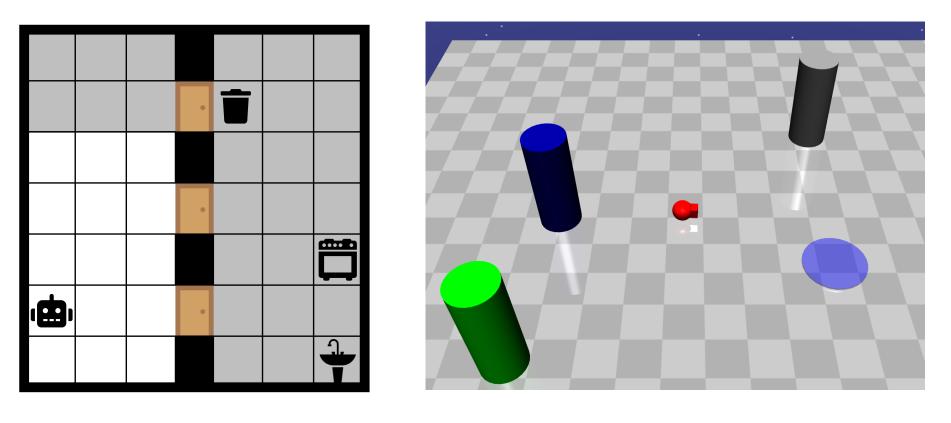
Research Questions:

- framework?
- 2. Which methods improve downstream RL sample efficiency?

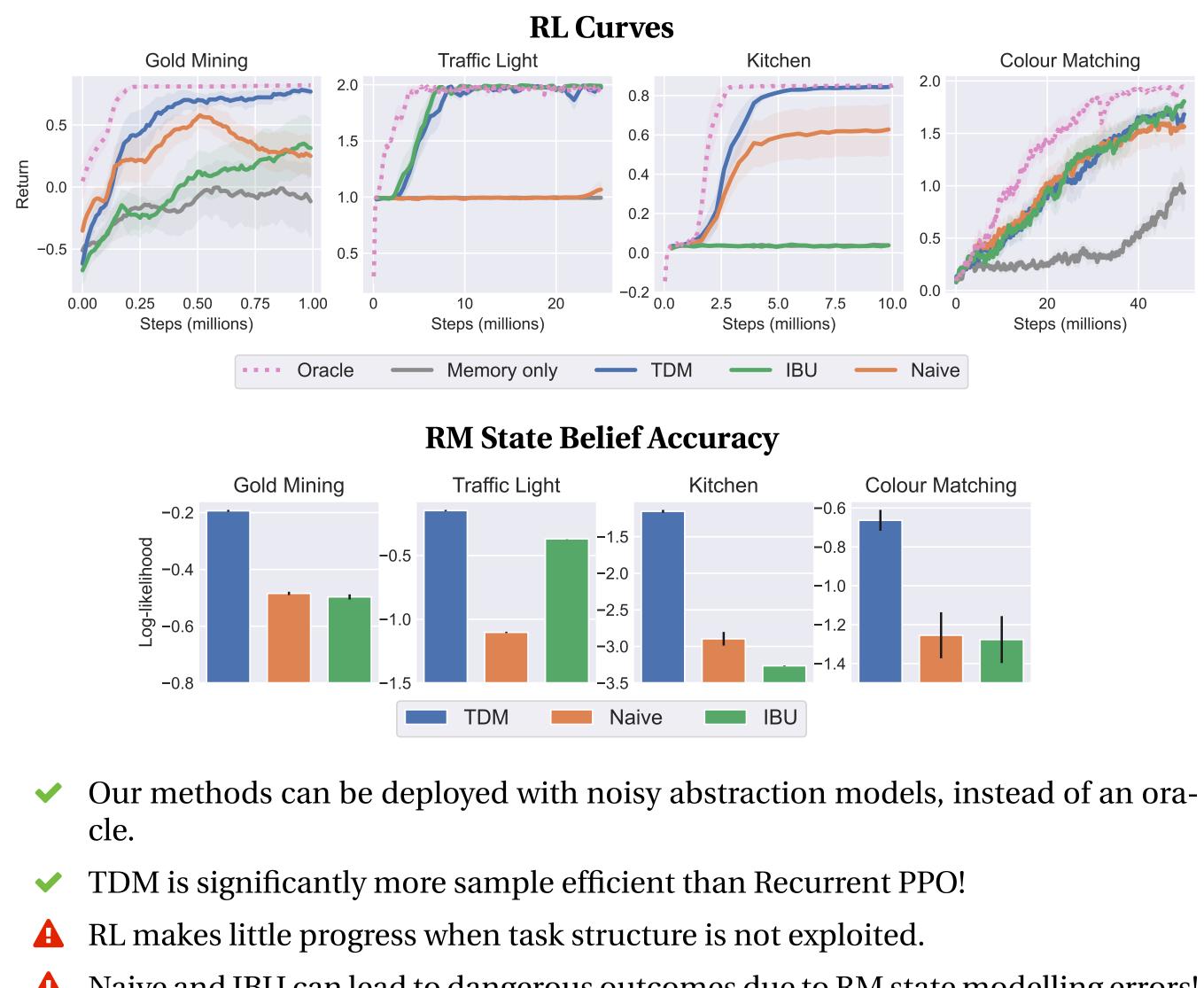
We target environments with **partial observability** and **high-dimensional observa**tions, while abstraction models include neural network classifiers trained from data, and zero-shot GPT-4o.



where key propositions are partially observable.



Colour Matching (*above right*) is a MuJoCo robotics environment where the agent must identify colour names by their RGB values to solve a sequential reach-avoid task.



Which methods are robust to noisy abstraction models when applied to our RM

Traffic Light (*above*) and **Kitchen** (*below left*), are MiniGrids with image observations,

A Naive and IBU can lead to dangerous outcomes due to RM state modelling errors!