Reward Machines for Deep RL in Noisy and Uncertain Environments
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TL;DR

We show how to leverage formal reward function specifications (e.g. Reward Ma-
chines, LTL) in RL environments where key properties/events are uncertain.

Example: Gold Mining Robot

Robot’s (@) task: dig at any square with gold (‘+), then go to the depot (@&).
Uncertain property: the robot cannot reliably detect gold () because it looks like
fool’s gold (“u).

How can the agent reliably solve the task?

(Each grid square is labelled with the agent's probabilistic belief it yields gold.)
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Key Concepts
1. The reward function is defined by an RM over propositional symbols AP (e.g.
).

2. The ground-truth interpretation of AP is a binary function of state transitions
provided by a hidden labelling function £ : S x A x S — 247 (hard to obtain!).

3. An abstraction model M : H — Z (e.g. a VLM or sensors) is a noisy mapping
from the observable history to an arbitrary feature space 7 (easier to obtain!).

Agent’s goal: Optimize performance with respect to the ground-truth interpretation L,
while deciding actions according to a noisy abstraction model M.

Motivation

Formal specifications expose reward function structure to enable sample-
efficient RL.

Q Current methods often assume an oracle detects key properties/events in the en-
vironment (a labelling function).

A In the real world, key properties/events can be uncertain due to partial observ-
ability, sensor noise, or classifier error.

Contributions

1. A deep RL framework for Reward Machines (RMs) where the evaluation of the
symbolic vocabulary is uncertain.

2. A suite of RL algorithms that exploit RM structure and can be deployed
without an oracle labelling function.

3. An analysis showing serious pitfalls when naively addressing uncertainty (and
how to overcome these pitfalls!).

Our framework extends RMs to POMDP environments.

We show how noisy sensors and vision-language models can be incorporated
into an RM framework.

Methods

Question: How can we leverage high-level reward function structure using only a
noisy abstraction model M? We consider policies decoupled into two modules:

£ Inference: Predict a belief over RM states at each step from the history with the
help of the abstraction model M.

& Decision making: Output actions based on observations + RM state belief.

Naive algorithm: Given M : H — 247 (a discrete predictor of AP), update the RM
state by treating outputs of M as the ground truth.

Pitfall: A prediction error at time ¢ propagates to all future RM states at time
t+1,t+2,...

Independent Belief Updating (IBU): Given M : H — A(247) (a probabilistic predic-
tor of AP), maintain a distribution over RM states at each timestep.

Pitfall: Assumes outputs from M are independent. The inferred RM state
distribution can get arbitrarily bad over time!

Temporal Dependency Modelling (TDM): Given M : H — AU (a probabilistic se-
quence predictor of RM states), directly output the predicted RM state distribution
at each timestep.

£ Can be practically implemented using RNNs, Transformers, etc.
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Research Questions:
1. Which methods are robust to noisy abstraction models when applied to our RM
framework?

2. Which methods improve downstream RL sample efficiency?

We target environments with partial observability and high-dimensional observa-
tions, while abstraction models include neural network classifiers trained from data,
and zero-shot GPT-4o0.

Traffic Light (above) and Kitchen (below left), are MiniGrids with image observations,
where key propositions are partially observable.

Colour Matching (above right) is a MuJoCo robotics environment where the agent must
identify colour names by their RGB values to solve a sequential reach-avoid task.
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Our methods can be deployed with noisy abstraction models, instead of an ora-
cle.

TDM is significantly more sample efficient than Recurrent PPO!
A RL makes little progress when task structure is not exploited.

A Naive and IBU can lead to dangerous outcomes due to RM state modelling errors!




