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The landscape of artificial intelligence (AI) research has shifted dramatically in recent
years with the rise of large language models (LLMs) like GPT-4 and Gemini. In this
research statement, I argue why symbolic approaches to AI are more relevant than ever
in the age of big data and share my vision for future AI systems that augment LLMs with
symbol manipulation. I describe how my past research on neurosymbolic AI supports this
vision before concluding with a set of proposals for the future.

Why Should We Care About Symbols?

Before the deep learning revolution of the 2000s, AI systems that operated over
symbolic inputs and outputs were ubiquitous in AI research. In his seminal work
Programs with Common Sense [1], John McCarthy proposed the idea of an
“advice-taking” program that accepts and stores knowledge as declarative facts and
rules, then manipulates sentences in a formal language to reason and adapt to new
situations. These ideas culminated in the development of expert systems that pushed AI
capabilities along several frontiers—from automatically providing medical diagnoses [2]
and configuring computer systems [3] to playing chess at a superhuman level [4].

Today, with the advent of advanced chatbots and generative models, one is less likely to
think of systems operating over symbols when they think of AI1. Does this mean that
modern, data-driven machine learning systems have superseded symbolic methods in
every way imaginable? Not at all. We continue to delegate a host of important problems
to systems that are symbolic or rule-based, rather than data-driven. Compilers are
complex programs written by humans, not learned from data. Shortest path problems
continue to be delegated to explicit graph search algorithms like Dijkstra’s, not neural
nets trained on millions of graphs. Even in domains like chess, where the introduction of
neural nets proved to be revolutionary, explicit search techniques remain indispensable
for achieving strong performance [5, 6].

Systems that procedurally manipulate symbols have strengths that are difficult to emulate
with neural nets alone. Compilers and search algorithms like Dijkstra’s behave reliably for
any valid program and any graph, while neural nets, which often struggle to extrapolate
beyond their training data, would require an inordinate amount of data and training

1 The “AI Effect” is a phenomenon where behaviours previously achieved by AI are no longer perceived
as requiring intelligence. (https://en.wikipedia.org/wiki/AI_effect)



compute to reach a similar degree of reliability. Furthermore, symbolic approaches afford
a level of interpretability and transparency that neural nets do not.

Abstraction: Bridging Data and Symbols

Many real-world problems of interest operate over far more granular representations
than the symbols that classical AI systems manipulate. For example, a robot system might
take camera and haptic sensor inputs comprising hundreds of thousands of data points
per second, while outputting torques for each individual actuator. I believe this
disconnect poses the most significant barrier to the broader application of symbolic
methods in AI systems.

This barrier is overcome through a process called abstraction, in which low-level inputs
(e.g. images) are mapped to high-level manipulable symbols [7]. For instance, modern
autonomous vehicle systems achieve this by explicitly determining their position and
orientation in the environment (localization), detecting nearby objects (perception), and
inferring the intentions of other road users (prediction), all from sensory inputs, before
traditional search techniques are applied to plan a route [8].

Past Work. Broadly speaking, my research investigates how we can automatically
abstract high-dimensional data into symbols in order to bring to bear classical AI
techniques towards important real-world problems over complex inputs and outputs.

My early graduate research focuses on temporal abstraction from long time-series data.
In our AAAI 2021 paper, Interpretable Sequence Classification via Discrete Optimization
[9], we train compact sequence classifiers in the form of finite-state automata that support
explanation, counterfactual reasoning, and human-in-the-loop modification. A follow-up
work [10] shows that learning automata representations of a reward function in the
training loop of a reinforcement learning (RL) agent expedites learning.

Inspired by the disparity between modern deep RL systems and traditional belief state
techniques for POMDPs, our ICML 2023 work Learning Belief Representations for
Partially Observable Deep RL [11] introduces a state abstraction technique for deep RL
agents to capture the notion of a belief state. Operating over these abstract state
representations drastically improves agents’ ability to seek and remember salient
information.



The core of my PhD research explores how symbolic and compositional representations
of RL tasks can be leveraged to improve the reasoning ability of RL agents while
exposing the rationale behind their decision making. In our ICML 2021 work LTL2Action:
Generalizing LTL Instructions for Multi-Task RL [12], we train an RL agent to understand
temporal and logical relationships expressed in the formal language Linear Temporal
Logic (LTL). Using a prespecified symbolic abstraction, we enable the agent to model its
own task progress and solve a wide array of never-before-seen robotic tasks in a single
try. Our NeurIPS 2022 paper Learning to Follow Instructions in Text-Based Games [13]
extends this approach to a challenging text-based game. We equip an RL agent with an
internal LTL representation of tasks to improve its instruction-following capabilities and
propose an LLM-based translation tool from natural language to LTL.

Symbols and Abstraction in the Era of Large Language Models

The rise of LLMs has unlocked a wealth of new opportunities for neurosymbolic AI
systems. If abstraction is indeed the most critical prerequisite to adopting techniques
from symbolic AI, then LLMs are a massive leap forward—language is a nearly universal
abstraction encompassing everyday concepts and underpinning much of human
commonsense reasoning [14]. Modern multimodal LLMs make it possible to seamlessly
map common data-rich modalities like vision or audio to text. Thus, I envision that many
future AI systems will employ LLMs for the purpose of abstraction into everyday,
human-interpretable concepts, supported by an under-the-hood symbolic manipulation
system for reasoning.

Future Work. The challenges and opportunities related to this vision are as follows.

Firstly, neural nets (including LLMs) are notoriously error-prone when exposed to inputs
not encountered during training, and language is notoriously ambiguous [15]. Thus,
symbolic AI systems will need to be robust to a noisy abstraction process. Our recent
NeurIPS 2024 paper [16] provides an initial study into how neurosymbolic RL systems are
impacted by an imperfectly specified symbolic abstraction, and how this impact can be
mitigated.

Secondly, LLMs open the door to the development of AI that can reason in many
domains. Until recently, AI capabilities have largely been limited to singular domains or
problem settings—AlphaGo could play Go but nothing more. However, the true beauty of
human intelligence lies in our ability to rapidly master new behaviours. Humans can learn
to drive, to play a new sport, or to code in a new programming language remarkably
quickly, and Nigel Richards (a former Scrabble World Champion) famously also
conquered the French Scrabble World Championship after studying French for only nine



weeks. Our ability to rapidly adapt to new situations is in part thanks to our ability to
analogize—to reuse abstract concepts across different domains [17]. Thus, to develop AI
that excels at many problems and not just a few, we must adopt symbolic representations
that are transferable across many problems, accordingly.

Thirdly, while language offers a good starting point for general-purpose reasoning, we
must also consider abstractions beyond language, as it is not always the ideal substrate
for reasoning. For instance, language models for chess often struggle to even find legal
moves without access to a spatial representation [18]. Ideally, AI that rapidly adapts must
develop and refine its own abstract representations that are conducive to reasoning.
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