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Projection Mechanism Analysis

Theorem 1. The projection mechanism has an average error of at most α when n ≥ 2σε,δ`
∗(KQ)√
mα2 .

Proof. Assuming that each coordinate of ỹ and y corresponds to a reported query answer and a true
query answer, respectively, and ŷ is the projection of the ỹ, we want to show E( 1

m ‖ŷ − y‖
2
2) ≤ α2

when n ≥ 2σε,δ`
∗(KQ)√
mα2 . Here, the euclidean norm squared is the sum of squared errors and we are

averaging it over m queries. Forgetting about the expectation, we can rewrite the distance inside
the expectation as (see Figure 1):

‖ŷ − y‖22 = 〈ŷ − y, ỹ − y〉+ 〈ŷ − y, ŷ − ỹ〉 (1)

we claim that:
〈ŷ − y, ŷ − ỹ〉 ≤ 0 ≤ 〈ŷ − y, ỹ − y〉 (2)
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Figure 1: Vector view of query answers.

Now let us prove this claim. Considering the convex hull KQ, we define line ` such that ` ⊥ (ŷ− ỹ)
and ŷ ∈ ` (see Figure 2). It can be shown that ` separates KQ and ỹ (` does not intersect KQ),
because if it was not the case, then we could find a closer ŷ to ỹ than the current one. Since ŷỹ ⊥ `
and yŷ is inside KQ we can infer that β should be an obtuse angle. Because if it was not, then the
projection mechanism could find a closer point than the current ŷ. Thus:

β ≥ π/2⇒ 〈ŷ − y, ŷ − ỹ〉 = ‖ŷ − y‖ . ‖ŷ − ỹ‖ . cosβ ≤ 0 (3)

Since the distance in equation 1 is a positive value, we can infer claim 2 using equation 3. In
addition, we can get:

‖ŷ − y‖22 ≤ 〈ŷ − y, ỹ − y〉 (4)

Please note that the value ỹ − y can be interpreted as the value of the noise that was added to
the true answer of the query (w in Figure 1). So we can replace it with a Gaussian noise of
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Figure 2: ŷ is the projection of ỹ to the convex hull KQ.

w = (σε,δ.
√
m/n)g where g is a normal Gaussian noise (i.e., g ∼ N (0, I) and I is the identity

matrix). Now we replace this noise in our last equation and take its expectation after dividing it
by m:

E(
1

m
‖ŷ − y‖22) = E(

1

m
〈ŷ − y, ỹ − y〉) = E(

1

m
〈ŷ − y, w〉)

= 1/m
(
E(〈ŷ, w〉) + E(〈y,−w〉)

)
≤ 1/m

(
E(hKQ(w)) + E(hKQ(−w))

)
=

1

m

σε,δ
√
m

n

(
E(hKQ(g)) + E(hKQ(−g))

)
=

2σε,δ√
mn

`∗(KQ)

We used the facts that hKQ(tw) = thKQ(w) for any nonnegative real t, and also that a centered

Gaussian random variable g has the same distribution as −g. Finally, plugging in n ≥ 2σε,δ`
∗(KQ)√
mα2

into the previous equation would give E( 1
m ‖ŷ − y‖

2
2) ≤ α2.

Marginal Queries

Consider a database X n where X ∈ {0, 1}d (i.e., a database of n rows of records with d binary
attributes).

Definition 2. A k-way marginal query is query over a conjunction of a subset of size k of attributes
or their negations. It evaluates to one for a row, if this row satisfies this query and to zero otherwise.
The answer to a marginal query on X n is the fraction of rows which evaluate to one.

For example, c1 ∧ c2 ∧ c3 a 3-way conjunction query which evaluates to one for querying a row x
if and only if x1 = 1, x2 = 0, and x3 = 1 for this specific row. For example, c1, c2, and c3 can
respectively encode the gender, whether this person is smoking or not, and does he/she have lung
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cancer in each row. This specific query asks for the fraction of male people in this database who
do not smoke and have lung cancer.

It can be seen that we have
(
d
k

)
2k different k-way marginal queries.

Like before, we can compute lower bounds for n when we want to have less than α error on
running distinct mechanisms such as Private Multiplicative Weights (PMW) and Gaussian Noise
with marginal queries:

n ≥


Cdk/2

√
log 1/δ

αε Gaussian
C
√
d log d

√
log 1/δ

α2ε
PMW

In the above equations, C denotes a large enough constant which is independent from ε, δ and α.

We can show that the Gaussian noise mechanism’s running time is poly(n, dk) and PMW’s running
time is poly(n, 2d).

When we are using the projection mechanism, we want to solve the following minimization problem:

argmin
z∈KQ⊆Rm

{‖ỹ − z‖22}

Basically, it means that we are minimizing a convex function subject to a convex constraint. To do
so, we need a separation oracle. A separation oracle for a convex set KQ ⊆ Rm is an algorithm
which takes a point z ∈ Rm as the input and returns “inside” if it is inside KQ or otherwise it
returns a hyperplane that separates KQ and the queried point.

By having a polynomial separation oracle for the KQ we can solve the minimization problem of the
projection mechanism. However, the structure of the KQ polytope is so complicated when we have
k-way marginal queries for k ≥ 3. Next time we will talk more specifically about 2-way marginals
and their separation oracles.
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