
CSC2412:Algorithms for Private Data Analysis Updated Fall 2020

Projection Mechanism

Aleksandar Nikolov Scribe: Tyrone Strangway, Sepehr Abbasi Zadeh

1 Review: the Query Release Problem

Let us recall the query release problem. An instance of this problem is defined by a set of k linear
queries, Q = {q1, . . . , qk} and a dataset X, which is a multiset of n elements from the universe X .
For a single point x, qi(x) ∈ [0, 1]} and qi(X) = 1

n

∑
x∈X qi(x). When qi(x) ∈ {0, 1} for all x ∈ X ,

we can think of qi(x) as a property, and of qi(X) as the fraction of points in X with that property.
We want to accurately estimate the query answers Q(X) = (q1(X), . . . , qk(X)) on X using an
(ε, δ)-differentially private mechanismM. I.e., for all i, we want to have |M(x)i− qi(x)| ≤ α. The
main question we ask is, given Q, what is the smallest dataset size n for which this task is solvable
for all X.

In this course, we have seen a couple of mechanisms to solve this problem:

1. Gaussian Mechanism: For each i ∈ [k] output qi(X) + Zi, where Zi ∼ N (0, k
n2ρ

). That
is we add independent Gaussian noise to each query answer. We showed that for some
ρ = ρε,δ ≈ ε2

log 1
δ

, the Gaussian Mechanism is (ε, δ)-differentially private. It is easy to show

that to get accuracy α for every query, we need to set n �
√
k log k

√
log 1

δ

αε . The running time
of the Gaussian Mechanism is O(kn), assuming each query can be evaluated in constant time
on a dataset point.

2. Private Multiplicative Weights: We try to learn a distribution that approximates the
empirical distribution of X, by starting with the uniform distribution, and iteratively refining
it. The refinement is based on the multiplicative weights method, hence the name. This

mechanism is (ε, δ)-differentially private with an accuracy of α when n �
log k
√

log |X |
√

log 1
δ

α2ε
.

This mechanism requires running time O(knL|X |), where L = O(log |X |
α2) is the number of

refinements we execute.

The Gaussian mechanism is conceptually simple, but does not get the same accuracy performance
as the more complex multiplicative weights mechanism. On the flip side the Gaussian mechanism
is far faster, and does not run in time relative to |X | which can often be exponential in the size of
a natural dataset representation.

2 The Projection Mechanism

Here we study the Projection Mechanism. This is a conceptually very simple mechanism, as it
is a slight modification of the Gaussian Mechanism, and has accuracy comparable to that of the
Multiplicative Weights Mechanism. But there is a caveat: the error guarantee we give will no

1

longer be in the worst case but instead on average. This turns out not to be a huge burden, since
there are methods that can turn average error guarantees into worst case guarantees, by utilizing
the technique of boosting from machine learning.

The Projection Mechanism is also interesting because it and its analysis make use of the geometry
of the query space. What we mean by this is that we view {Q(X) : X ∈ X n} ⊆ Rk as a set of
points in k dimensional space, and the vector of query answers on some dataset is just a point in
this k-dimensional set. We utilize the geometric properties of this set of feasible query answers
in the mechanism and its analysis. This geometric analysis also allows us to get improved error
guarantees for “nice” query sets Q.

Finally, the Projection Mechanism is appealing because it outputs query answers that are consistent
with some dataset, although usually not with the actual private dataset. This makes the answers
easier to interpret.

2.1 Specifying the Mechanism

Before we introduce the Projection Mechanism we need the following definitions:

Definition 1. The convex hull of a set S ⊆ Rk is the minimal (with respect to inclusion) convex
set which contains S. A convex set is a set where the line segment connecting any two points in
the set is itself entirely contained in the set.

For a finite set of points S, the convex hull can also be equivalently defined as conv(S) = {
∑

x∈S αxx :
∀x αx ≥ 0,

∑
x∈S αx = 1}. For an infinite set S, we can take conv(S) to be the closure of

{
∑

x∈S αxx} over all (αx)x∈S with finite support that satisfy αx ≥ 0 for all x and
∑

x∈S αx = 1, as
above.

Let SQ = {Q({x}) : x ∈ X}, i.e., all possible query answers on single point datasets. For any size
n dataset X, we get

Q(X) =
1

n

∑
x∈X

Q({x}) ∈ conv(SQ).

Moreover, it is not hard to see that conv(SQ) is the closure of the set of all possible answer vectors
Q(X) on all possible data sets X of all possible sizes n. Let us use the notation KQ = conv(SQ)
from now on.

We can now define the Projection Mechanism.

Algorithm 1 Projection Mechanism, with D.B. x and parameters ε, δ, α:

1: Let Ỹ = Q(X) + Z, where Z ∼ N (0, k
n2ρε,δ

· I) (I is the identity matrix and ρε,δ ≈ ε2

log 1
δ

)

2: Return Ŷ = arg min{‖Ỹ − y‖2 : y ∈ KQ}

The first line is the (ε, δ)-differentially private Gaussian Mechanism. This mechanism may push
the answer vector far away from Q(X), and it may end up outside the set of feasible answers KQ.
The second line simply projects the answer back onto the closest point in KQ. If the first line did
not move the answer out of KQ, then the second line does nothing. We will see that, in a certain
sense, this second step can only improve the accuracy, and often does so significantly.

2

2.2 Privacy of the Mechanism

Theorem 2. The projection mechanism is (ε, δ)-differentially private.

The proof of this is straightforward. As shown in a previous lecture, the Gaussian Mechanism
with the above parameters is (ε, δ)-differentially private. The actual projection step is simply post
processing: it only relies on publicly available information, and thus it is (0, 0)-differentially private.
By composition, the Projection Mechanism is (ε, δ)-differentially private.

2.3 Accuracy of the Mechanism

We first formalize the notion of average error.

Definition 3. A mechanism M has average error (equivalently, root mean squared error) α if for
all datasets X of size n we have√√√√E

1

k

k∑
i=1

(M(X)i − qi(X))2 ≤ α.

This can be equivalently formulated as√
E

1

k
‖M(X)−Q(X)‖22 ≤ α.

Above, the expectation is taken over the randomness of the mechanism.

If the average error is small, it is still possible that for some queries the error is quite high, while
on others it is very low. In contrast, for worst case error error analysis we required each of the k
queries be close to what the mechanism returned. Rather than measuring the error in expectation,
we can ask for a high probability guarantee, and introduce another parameter β for the probability
that the average error is larger than α. For the projection mechanism this would increase the lower
bound on n by a log 1

β term. We do not pursue this further, and instead stick with expectation to
avoid dealing with yet another parameter.

We now state our first result regarding the accuracy of the Projection Mechanism.

Theorem 4. The Projection Mechanism has average error at most α as long as n�
√

log |X |·
√

log 1
δ

α2·ε .

To show this, we will prove a refined average error guarantee that relies on the geometry of KQ,
and in particular on its size. The less precise result in Theorem 4 is useful for comparison with
other mechanisms, like the Multiplicative Weights Mechanism. Indeed, the bound on n is better
than the one for the Multiplicative Weights by a log k factor, albeit holding only for average error.

Before we state the refined geometric bound, we need to define some measure of the “size” of KQ.
To do so we first introduce the notion of a support function:

Definition 5. The support function hK : Rk → R of a set K ⊆ Rk is defined by hK(y) =
sup{〈x, y〉 : x ∈ K}.

3

For some intuition, we mention that when y is of unit Euclidean norm, i.e. ‖y‖2 = 1, then hK(y) +
hK(−y) is its width in the direction of y. I.e. it is the smallest w so that we can sandwich K
between two parallel hyperplanes, both orthogonal to y, and distance w apart.

The support function satisfies the following properties for all k-dimensional vectors x and y:

1. ∀t ≥ 0, hK(t · y) = t · hK(y)

2. hK(x+ y) ≤ hK(x) + hK(y)

3. if K ⊆ L, then for any y we have hK(y) ≤ hL(y).

Since KQ = conv(SQ), we can write hKQ(y) as max{〈x, y〉 : x ∈ SQ}, where y ∈ Rk.

Now we can introduce a way to measure the average width of KQ . We first define the mean width:

Definition 6. The mean width of a convex set K is M∗(K) = EhK(Y), where Y is chosen
uniformly at random from the set of vectors where y with ‖y‖2 = 1. I.e., y is chosen according to
the unique rotationally invariant probability measure on the unit sphere centered about the origin.

We also define the Gaussian width as:

Definition 7. The Gaussian width of a convex set K is `∗(K) = EhK(G), where G ∼ N (0, I) and
I is the k-dimensional identity matrix. That is G is chosen according to the standard k dimensional
Gaussian centered about the origin.

It turns out the Gaussian width and the mean width are closely related: we have `∗(K) = (E‖G‖2) ·
M∗(K) = ck ·M∗(K) where ck =

√
2Γ(k+1

2)
Γ(k2)

= Θ(
√
k).

We can now state our refined accuracy measure, which is in terms of the Gaussian width, and thus
also the mean width.

Theorem 8. The Projection Mechanism has average error α if n�
`∗(KQ)

√
log 1

δ√
kα2ε

, or, equivalently,

n�
M∗(KQ)

√
log 1

δ

α2ε
.

Now that we have the geometric bound, we can prove Theorem 4. To do so we will show that
`∗(KQ) .

√
k log |X |. Plugging this into Theorem 8 proves Theorem 4.

We need the following three facts:

1. For any query qi and data point x, qi(x) ∈ [0, 1], so SQ ⊆ [0, 1]k. Thus, we get that ∀y ∈
SQ, ‖y‖2 ≤

√
k.

2. The Gaussian moment generating function: for any y ∈ Rk, and a standard Gaussian G ∼
N(0, I), E[e〈y,G〉] = e‖y‖

2
2/2.

3. Jensen’s inequality: for any random variable A ∈ R, and any concave function f : R → R,
E[f(A)] ≤ f(E[A]).

4

We have, for any λ > 0,

`∗(KQ) = EhKQ(G) = Emax{〈y,G〉 : y ∈ KQ}
= Emax{〈y,G〉 : y ∈ SQ}

= E
1

λ
ln max{eλ〈y,G〉 : y ∈ SQ}

≤ 1

λ
lnEmax{eλ〈y,G〉 : y ∈ SQ}

≤ 1

λ
ln
∑
y∈SQ

E eλ〈y,G〉

=
1

λ
ln
∑
y∈SQ

eλ
2‖y‖22/2

≤ 1

λ
ln(|X |eλ2k/2) =

1

λ
ln |X |+ λk

2
.

The second line follows because KQ is the convex hull of the points in SQ. The third line uses the
monotonicity of the logarithm to exchange max and ln. The fourth line follows from the concavity
of ln and from Jensen’s inequality. The fifth line follows since the maximum of any non-negative
numbers is bounded by their sum, and also by linearity of expectation. The sixth line follows from
the formula for the moment generating function of the Gaussian, and the seventh from the bound
on the Euclidean norm of any element of SQ.

To finish the proof, we optimize over λ. The right hand side is minimized for λ =

√
2 ln |X |
k , and

gives
`∗(KQ) ≤

√
2k ln |X |.

3 Geometric Analysis

In this section we prove Theorem 8, i.e., the geometric guarantee on the accuracy of the projection
mechanism.

y

Ỹ

Z

Ŷ

Figure 1: Vector view of query answers.

We want to show E 1
k

∥∥∥Ŷ − y∥∥∥2

2
≤ α2 when n � `∗(KQ)√

kα2ρε,δ
. We can rewrite the distance inside the

expectation as (see Figure 1):∥∥∥Ŷ − y∥∥∥2

2
= 〈Ŷ − y, Ỹ − y〉+ 〈Ŷ − y, Ŷ − Ỹ 〉. (1)

5

We claim that
〈Ŷ − y, Ŷ − Ỹ 〉 ≤ 0. (2)

Geometrically, this means that the triangle formed by the points y, Ŷ , and Ỹ is obtuse, and the
obtuse angle is at Ŷ (see Figure 2).

Ỹ

Ŷ

y

KQ

Figure 2: Ŷ is the projection of Ỹ to the convex hull KQ.

Now let us prove this claim, which follows from the optimality of Ŷ as the closest point to Ỹ . One

way to see this is to use a bit of calculus. Let us define the function f(λ) =
∥∥∥Ỹ − (1− λ)Ŷ − λy

∥∥∥2

2
.

For any λ ∈ [0, 1], the point Ŷλ = (1 − λ)Ŷ + λy lies on the line segment between Ŷ and y, and,

since KQ is convex, Ŷλ is also in KQ. The function f(λ) is simply
∥∥∥Ỹ − Ŷλ∥∥∥2

2
. For Ŷ to be optimal,

it must be the case that the minimum of f(λ) over λ ∈ [0, 1] is achieved at 0, which implies

f ′(0) = 2〈Ŷ − y, Ỹ − Ŷ 〉 ≥ 0 ⇐⇒ 〈Ŷ − y, Ŷ − Ỹ 〉 ≤ 0,

as we wanted.

Plugging (2) into (1), we get∥∥∥Ŷ − y∥∥∥2

2
≤ 〈Ŷ − y, Ỹ − y〉 = 〈Ŷ − y, Z〉.

We can write Z =
√
k

n
√
ρε,δ

G, where G is a standard Gaussian (i.e., G ∼ N (0, I) and I is the identity

matrix). Using the inequality above, we have

E
(

1

k

∥∥∥Ŷ − y∥∥∥2

2

)
≤ E

(
1

k
〈Ŷ − y, Z〉

)
=

1

k
E(〈Ŷ , Z〉)− 1

k
E(〈y, Z〉)

=
1

k
E(〈Ŷ , Z〉) =

1√
kn
√
ρε,δ

E(〈Ŷ , G〉)

≤ 1√
kn
√
ρε,δ

EhKQ(G)

=
1√

kn
√
ρε,δ

`∗(KQ).

Above, we used that E(〈y, Z〉) = 〈y,E(Z)〉 = 0, and that 〈Ŷ , G〉 ≤ maxx∈KQ〈x,G〉 = hKQ(G).

Finally, plugging in n� `∗(KQ)√
kα2ρε,δ

gives E(1
k

∥∥∥Ŷ − y∥∥∥2

2
) ≤ α2.

6

Marginal Queries

Consider a database X n where X ∈ {0, 1}d (i.e., a database of n rows of records with d binary
attributes).

Definition 9. A k-way marginal query is query over a conjunction of a subset of size k of attributes
or their negations. It evaluates to one for a row, if this row satisfies this query and to zero otherwise.
The answer to a marginal query on X n is the fraction of rows which evaluate to one.

For example, c1 ∧ c2 ∧ c3 a 3-way conjunction query which evaluates to one for querying a row x
if and only if x1 = 1, x2 = 0, and x3 = 1 for this specific row. For example, c1, c2, and c3 can
respectively encode the gender, whether this person is smoking or not, and does he/she have lung
cancer in each row. This specific query asks for the fraction of male people in this database who
do not smoke and have lung cancer.

It can be seen that we have
(
d
k

)
2k different k-way marginal queries.

Like before, we can compute lower bounds for n when we want to have less than α error on
running distinct mechanisms such as Private Multiplicative Weights (PMW) and Gaussian Noise
with marginal queries:

n ≥

Cdk/2

√
log 1/δ

αε Gaussian
C
√
d log d

√
log 1/δ

α2ε
PMW

In the above equations, C denotes a large enough constant which is independent from ε, δ and α.

We can show that the Gaussian noise mechanism’s running time is poly(n, dk) and PMW’s running
time is poly(n, 2d).

When we are using the projection mechanism, we want to solve the following minimization problem:

argmin
z∈KQ⊆Rm

{
∥∥∥Ỹ − z∥∥∥2

2
}

Basically, it means that we are minimizing a convex function subject to a convex constraint. To do
so, we need a separation oracle. A separation oracle for a convex set KQ ⊆ Rm is an algorithm
which takes a point z ∈ Rm as the input and returns “inside” if it is inside KQ or otherwise it
returns a hyperplane that separates KQ and the queried point.

By having a polynomial time separation oracle for the KQ we can solve the minimization problem
of the projection mechanism. However, the structure of the KQ polytope is too complicated when
we have k-way marginal queries for k ≥ 2. It turns out, nevertheless, that there is another convex
body L such that 1

CL ⊆ K ⊆ L for an absolute constant C > 0, and, moreover, there is an efficient
separation oracle for L. This meansthat we can run the projection mechanism so that we project
on L rather than K, and we can do so efficiently. Moreover, since `∗(L) ≤ C`∗(K), this does not
cost us more than a constant factor in terms of the error bound we can guarantee.

7

