ety

P(\O\/QA i

C)QQSS

22.4 Analysis of union by rank with path compression 453

A(4,1). But we also have that

A1) = A(3,2)

2
- }16
5"

= 2 ,

which is far greater than the estimated number of atoms in the observable
universe (roughly 10%0). It is only for impractically large values of 7 that
A(4,1) < Ign, and thus a(m, n) < 4 for all practical purposes. Note that
the O(mlg* n) bound is only slightly weaker than the O(ma(m, n)) bound;

lg* 65536 = 4 and 1g* 26%33¢ = 5, s0 ig* n < 5 for all practical purposes.

Properties of ranks

In the remainder of this section, we prove an O(mlg’ n) bound on the
running time of the disjoint-set operations with union By rank and path
compression. In order to prove this bound, we first prove some simple
properties of ranks.

Lemma 22.2

For all nodes x, we have rank[x] < rank[p[x]], with strict inequality if
x # p[x]. The value of rank{x] is initially O and increases through time
until x # p[x]; from then on, rank{x] does not change. The value of
rank{p[x]] is a monotonically increasing function of time.

Proof The proofisa straightforward induction on the number of opera-
tions, using the implementations of MAKE-SET, UNION, and FIND-SET that
appear in Section 22.3. We leave it as Exercise 22.4-1. =

We define size(x) to be the number of nodes in the tree rooted at node x,
including node x itself.

Lemma 22.3
For all tree roots x, size(x) > 241,

Proof The proof is by induction on the number of LINK operations. Note
that FIND-SET operations change neither the rank of a tree root nor the
size of its tree.

Basis: The lemma is true before the first LINK, since ranks are initially O
and each tree contains at least one node.

Inductive step: Assume that the lemma holds before performing the op-
eration LINK(x,). Let rank denote the rank just before the LINK, and let
rank’ denote the rank just after the LINK. Define size and size' similarly.

If rank[x] # rank[y], assume without loss of generality that rank[x] <
rank{y]. Node y is the root of the tree formed by the LINK operation, and

size'(y) = size(x)+ size(y)

Ole#we &3"(!«)

454

Chapter 22 Data Structures for Disjoint Sets

2rank[x] + 2rank[y]

v v

2rank[y]

2rank’[y] .

No ranks or sizes change for any nodes other than y.
If rank({x] = rank[y], node y is again the root of the new tree, and

size'(y) = size(x) + size(y)
zmnk[x] + 2rank[y]

v

2rank[y]+l

Lemma 22.4
For any integer r > 0, there are at most n/2” nodes of rank r.

Proof Fix a particular value of r. Suppose that when we assign a rank r
to a node x (in line 2 of MAKE-SET or in line 5 of LiNK), we attach a
label x to each node in the tree rooted at x. By Lemma 22.3, at least 2’
nodes are labeled each time. Suppose that the root of the tree containing
node x changes. Lemma 22.2 assures us that the rank of the new root (or,
in fact, of any proper ancestor of x) is at least r + 1. Since we assign labels
only when a root is assigned a rank r, no node in this new tree will ever
again be labeled. Thus, each node is labeled at most once, when its root is
first assigned rank r. Since there are n nodes, there are at most n labeled
nodes, with at least 2" labels assigned for each node of rank r. If there
were more than n/2" nodes of rank r, then more than 2. (n/2") = n nodes
would be labeled by a node of rank r, which is a contradiction. Therefore,
at most n/2" nodes are ever assigned rank r.]

Corollary 22.5
Every node has rank at most |{lgn].

Proof 1If we let r > lgn, then there are at most n/2” < 1 nodes of rank r.
Since ranks are natural numbers, the corollary follows. [

Proving the time bound

We shall use the aggregate method of amortized analysis (see Section 18.1)
to prove the O(mlg” n) time bound. In performing the amortized analysis,
it is convenient to assume that we invoke the LINK operation rather than
the UNION operation. That is, since the parameters of the LINK procedure
are pointers to two roots, we assume that the appropriate FIND-SET oper-
ations are performed if necessary. The following lemma shows that even

2rank'[y] . ™

224 Analysis of union by rank with path compression 455

i if we count the extra FIND-SET operations, the asymptotic running time
! remains unchanged.

[/ Lemma 22.6

e ey \‘(A) Suppose we convert a sequence S’ of m' MAKE-SET, UnioN, and FIND-
) [SET operations into a sequence S of m -MAKE-SET, LINK, and FIND-SET
T ' operations by turning each UNION 1nto two FIND-SET operations followed
Ce . ! by a Link. Then, if sequence S runs in O(mlg" n) time, sequence S’ runs

. wee 005 . in O(m’1g" n) time.
o | Proof Since each UNION operation 1n sequence S’ is converted into three
o (operations in S, we have m' < m < 3m’. Since m = O(m'), an O(mlg" n)
\ time bound for the converted sequence S implies an O(m' g’ n) ume
bound for the original sequence S’. [

In the remainder of this section, we shall assume that the initial sequence
of m' MAKE-SET, UNION, and FIND-SET operations has been converted to
- a sequence of m MAKE-SET, LINK, and FIND-SET operations. We now
prove an O(mlg' n) time bound for the converted sequence and appeal to
Lemma 22.6 to prove the O(m'1g" n) running time of the original sequence
of m’ operations.

Theorem 22.7
A sequence of m MAKE-SET, LINK, and FIND-SET operations, 7 of which

are MAKE-SET operations, can be performed on a disjoint-set forest with
union by rank and path compression in Worst-case time O(m 1g" n).

Proof We assess charges corresponding 10 the actual cost of each set
operation and compute the total number of charges assessed once the entire
sequence of set operations has been performed. This total then gives us
the actual cost of all the set operations.

The charges assessed to the MAKE-SET and LINK operations are simple:
one charge per operation. Since these operations each take O(1) actual
time, the charges assessed equal the actual costs of the operations.

Before discussing charges assessed to the FIND-SET operations, we par-
tition node ranks into plocks by putting rank r into block lg"r for r =
0,1,...,lgnl. (Recall that \lgn) is the maximum rank.) The highest-
numbered block is therefore block 1g"(lgn) = Ig°n— 1. For notational
convenience, we define for integers j 2> -1,

-1 if j=—1,
1 fj=0,
B(jy=12 ifj=1,

2
2 }rﬁ fi>2
] 2 .

Then, for j=0,1,.. Llgtn—1,the jth block consists of the set of ranks

456

Chapter 22 Data Structures for Disjoint Sets

(BG-1)+1,B(j-1)+2,...,B(j)} .

We use two types of charges for a FIND-SET operation: block charges
and path charges. Suppose that the FIND-SET starts at node x; and that the
find path consists of nodes xg, x|, ..., x;, where for i = 1,2,...,/, node x;
is p[x;_1] and x; (a root) is p[x;]. For j =0,1,...,1g" n — 1, we assess one
block charge to the /ast node with rank in block j on the path. (Note that
Lemma 22.2 implies that on any find path, the nodes with ranks in a given
block are consecutive.) We also assess one block charge to the child of the
root, that is, to x;_,. Because ranks strictly increase along any find path,
an equivalent formulation assesses one block charge to each node x; such
that p[x;] = x; (x; is the root or its child) or 1g* rank[x;] < lg" rank[x;;,]
(the block of x;’s rank differs from that of its parent). At each node on the
find path for which we do not assess a block charge, we assess one path
charge.

Once a node other than the root or its child is assessed block charges, it
will never again be assessed path charges. To see why, observe that each
time path compression occurs, the rank of a node x, for which p[x;] # x;
remains the same, but the new parent of x; has a rank strictly greater
than that of x;’s old parent. The difference between the ranks of x; and its
parent is a monotonically increasing function of time. Thus, the difference
between Ig”* rank[p[x;]] and Ig* rank[x;] is also a monotonically increasing
function of time. Once x; and its parent have ranks in different blocks,
they will always have ranks in different blocks, and so x; will never again
be assessed a path charge.

Since we have charged once for each node visited in each FIND-SET
operation, the total number of charges assessed is the total number of
nodes visited in all the FIND-SET operations; this total represents the actual
cost of all the FIND-SET operations. We wish to show that this total is
O(mlg" n).

The number of block charges is easy to bound. There is at most one
block charge assessed for each block number on the given find path, plus
one block charge for the child of the root. Since block numbers range from
0 to lg" n — 1, there are at most Ig* n + 1 block charges assessed for each
FiND-SET operation. Thus, there are at most m(lg* n + 1) block charges
assessed over all FIND-SET operations.

Bounding the path charges is a little trickier. We start by observing that
if a node x; is assessed a path charge, then p[x;] # x; before path com-
pression, so that x; will be assigned a new parent during path compression.
Moreover, as we have observed, x;’s new parent has a higher rank than its
old parent. Suppose that node x;’s rank is in block j. How many times
can X, be assigned a new parent, and thus assessed a path charge, before x;
is assigned a parent whose rank is in a different block (after which x; will
never again be assessed a path charge)? This number of times is maximized
if x; has the lowest rank in its block, namely B(j — 1) + 1, and its parents’
ranks successively take on the values B(;j — 1)+ 2, B(j — 1)+ 3,..., B(j).

22.4 Analysis of union by rank with path compression 457

Since there are B(j) — B(j — 1) — 1 such ranks, we conclude that a vertex
can be assessed at most B(j) — B(j — 1) — 1 path charges while its rank is
in block j.

Our next step in bounding the path charges is to bound the number
of nodes that have ranks in block j for integers j > 0. (Recall that by
Lemma 22.2, the rank of a node is fixed once it becomes a child of another
node.) Let the number of nodes whose ranks are in block j be denoted
by N(j). Then, by Lemma 22.4,

For j = 0, this sum evaluates to
N(O) = n/2°+n/2!

= 3n/2

= 3n/2B(0).
For j > 1, we have

Bijh—(Bij—-1)+1)

. n 1
N(G) = B+ Z 2
r=0
n =1
< 3BT 2 %
r=0
_ n
= 2BG-D
- "
B(j) "

Thus, N(j) < 3n/2B(j) for all integers j > 0.

We finish bounding the path charges by summing over all blocks the
product of the maximum number of nodes with ranks in the block and the
maximum number of path charges per node of that block. Denoting by
P(n) the overall number of path charges, we have

lg* n—1
Pl S Y gy BUI=BG=1 -1
=0
R P .
< 2. 7B()) B(J)
= %n]g*n.

Thus, the total number of charges incurred by FIND-SET operations is
O(m(lg" n+ 1) + nlg" n), which is O(m1g" n) since m > n. Since there are
O(n) MAKE-SET and LINK operations, with one charge each, the total time
is O(mlg" n).]

