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Variance and Chebyshev

* Let X4, ..., X,, € {0,1} be independent random variables
* Not necessarily uniform or identically distributed

* Remember, for X = Y7"; X;:
E[X] = Y™, E[X;] Var(X) =", Var(X;) < E[X]

* By Chebyshev’s inequality:
Var(X) 1

P(X 2 (1+ OEXD < 5rms < 5pm
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The Chernoff Bound

* Let X4, ..., X,, € {0,1} be independent random variables
* Not necessarily uniform or identically distributed

* Chernoff Bound: if X = )7, X; and E[X] < u
o0
PX=>0+56 <
o= 4o = (555
* For 0 < § < 1, theright hand side is < e~S%1/3

* Compare with ﬁ from Chebyshev.

(1+8)u
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Proof Idea

e “Chernoff trick”: for any t = 0, by Markov’s inequality

IE[etX]
_ tX t(1+6)E[X]
P(X = (1+&EX]) =P(e™* =e ) < et (1+8)E[X]
* By independence of Xl, ---;Xn - n - n
E[etX] = E[et(X1+'“+Xn)] — [E Hetxi = HIE[etXi]
=1 1 =1

e Using 1 + z < e, E[etXi] < eIE[Xi](et—l)’ so E[etX] < cElX](et-1)
* Choosing t = In(1 + §) gives the best bound.
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Balls and Bins o

* Suppose we throw n balls into n bins

e Each ball lands in a uniformly random bin, independently from the others
: 1 : 1
* Theorem With prob. = =, no bin has more than O ( 67 ) balls
2 loglogn

* X;j = 1 & ballj lands inlbin 1. X; = Z?=1Xij number of balls in bin i.
 E[X;| =P(X;; =1) = ~ so E[X;] = 1.

e Chernoff: P (X- > Clnn) < — for all large enough ¢, n

L= Inlnn 2n
clnn e® (1+9) —clnn —c
. Use,u—1,1+6—lnlnn.Then ((1+6)) ~ e =n
. } clnn 1 1
* Union bound:IP(EIl:Xi = ) <n-—=-=
Inlnn 2n 2
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Multicommodity Flow Problem

* Motivation: given a chip with “wire channels”, connect locations with
wires, so that no channel is overloaded

* Multicommodity Flow: Given an undirected graph ¢ = (V, E), and
vertices s; tq, ..., Sk, ty, find paths P; in G connecting s; and t; so that
the maximum number of paths going through any edge is minimized.

Squares -> vertices

Boundaries -> edges
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LP Relaxation

 P; = all paths between s; and t;. P = Ué‘=1iPi
* Exponential size relaxation: introduce a variable x, for every P € P

min W min W
No edge used by St
more than W
paths z xp <W Ve€eE z yvp <W Ve€eE
PeEP:eeP PeEP:eeP
One path 2 xp=1 Vie€lk] 2 yp=1 Vielk]
between s; and PEP; PEP;
t; for each i. xp € {0,1} VPEP yp=0 VPEP

* Can be solved in polynomial time, and only poly-many yp, are not 0

S0
o‘-yw
8 E8)
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min W
S.t.

Randomized Rounding > ypsw veek

PEP:e€EP

zyp=1 Vi € [K]

* Solve the LP to get optimal yp, with value LP = W PEP;

yp=0 VPEP
* {yp: P € P;} give a probability distribution over P;
* Independently for each i € [k]:
* Sample P; € P; with probability yp
*Zei=1oe€eb.Z, = i‘ 1 Ze i isthe load on edge e
* ElZe] = Xpep.ecep Yp < LP < OPT
. . logn .
Theorem. With prob. = = maerE Z, =20 (loglog n) OPT

* Same calculation as Balls & Bins, with u = OPT = 1.
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More on Multicommodity Flow

* Much better approximation if LP (or OPT) is large

*E.g., if LP = 101nmn, then, with prob. = 1/2, randomized rounding
finds a solution with value < LP + V10 LPlnn < 2 LP.

* Under an assumption slightly stronger than P = NP (NP doesn’t have
: : L . 0
randomized algorithms running in expected time n'°8 W ™), the

| T S
0 ( 227 ) approximation is best possible in the worst case.
loglogn
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