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Discrepancy of Set Systems

Given: System of m subsets S = {Si,...,Sn} of [n] = {1, Idots, n}.

Color each element of P red or blue, so that each set is as balanced as
possible.
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Discrepancy of a coloring: maximum imbalance (above: 1).
Discrepancy of S: discrepancy of the best coloring.

disc S = x:[n]Ti{n—l,l} ml,aX’jezS:i X(J')‘
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Beck-Fiala

Theorem ([Beck and Fiala, 1981])

Suppose each i € [n] appears in at most t sets of S. Then discS < 2t — 1.J

Beck-Fiala Conjecture. discS = O(/t).
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Beck-Fiala

Theorem ([Beck and Fiala, 1981])

Suppose each i € [n] appears in at most t sets of S. Then discS < 2t — 1.J

Beck-Fiala Conjecture. discS = O(/t).

@ Recently improved to 2t — log* t [Bukh, 2013]

@ No better bound known in terms of t only!

@ The proof of the theorem is an (efficient) algorithm!
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Komlos Conjecture

Komlos Conjecture. For any vectors uy, ..., u, € R™ with
max; ||ui|l2 < 1, there exist signs €1, ..., &, for which

= 0(1).

o0
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Komlos Conjecture

Komlos Conjecture. For any vectors uy, ..., u, € R™ with
max; ||ui|l2 < 1, there exist signs €1, ..., &, for which

‘ E Eilj
i

e O(1) is independent of m and n.

= 0(1).

o0

@ Implies the Beck-Fiala Conjecture: Take u; to be the j-th column of
the incidence matrix of S, scaled by t~1/2.

» j-th column of incidence matrix: indicator vector of {i : j € S;}.
> V| > €ijllo is the discrepancy of the coloring x(j) = €;.
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Banaszczyk's Theorem

Theorem ([Banaszczyk, 1998])

Let X be a standard m-dimensional Gaussian, and let K be a convex body
in R™ such that Pr[X € K] > 1/2.
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Banaszczyk's Theorem

Theorem ([Banaszczyk, 1998])

Let X be a standard m-dimensional Gaussian, and let K be a convex body
in R™ such that Pr[X € K] > 1/2.

For any vectors ux,...,u, € R™ with max;||uj||2 < 1/5, there exist signs

€1,...,Ep for which
Zs;u; € K.
i
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Banaszczyk's Theorem

Theorem ([Banaszczyk, 1998])

Let X be a standard m-dimensional Gaussian, and let K be a convex body
in R™ such that Pr[X € K] > 1/2.
For any vectors uy, .

.., up € R™ with max; ||uj|l2 < 1/5, there exist signs
€1,...,&p for which

Zs;u; € K.
i

@ The proof is not an efficient algorithm!

e By taking K = O(y/logm) - [-1,1]™, we get a bound of O(+/log m)
for Komlos and O(+/t log m) for Beck-Fiala.

» Recent algorithmic proof of these bounds, but not the full theorem,
in [Bansal, Dadush, and Garg, 2016].
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Banaszczyk's Theorem

Theorem ([Banaszczyk, 1998])

Let X be a standard m-dimensional Gaussian, and let K be a convex body
in R™ such that Pr[X € K] > 1/2.
For any vectors uy, .

.., up € R™ with max; ||uj|l2 < 1/5, there exist signs
€1,...,&p for which

Zs;u; € K.
i

@ The proof is not an efficient algorithm!

e By taking K = O(y/logm) - [-1,1]™, we get a bound of O(+/log m)
for Komlos and O(+/t log m) for Beck-Fiala.

» Recent algorithmic proof of these bounds, but not the full theorem,
in [Bansal, Dadush, and Garg, 2016].

@ Also used in approximation algorithm for hereditary discrepancy,
bounds on discrepancy of boxes, vector-rearrangement problems.
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Interlude: Subgaussian Random Variables

Definition
A real-valued random variable X is s-subgaussian if

t2
Prl|X| > t] <2 —— .
X1 2 1 < 2000 (- 5
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Interlude: Subgaussian Random Variables

Definition

A real-valued random variable X is s-subgaussian if
#2

Pr[|X| >t] <2 -—— .

X1 2 1 < 2000 (- 5

A random variable Y € R is s-subgaussian if for every unit vector
6 € S™1 the marginal (0, Y) is s-subgaussian.

DGLN Vector Balancing 6 /12



Interlude: Subgaussian Random Variables

Definition

A real-valued random variable X is s-subgaussian if
#2

Pr[|X| >t] <2 -—— .

X1 2 1 < 2000 (- 5

A random variable Y € R is s-subgaussian if for every unit vector
6 € S™1 the marginal (0, Y) is s-subgaussian.

l.e., an s-subgaussian random variable shrinks about as fast as a Gaussian
with variance s in every direction.
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The Main Equivalence

Theorem

Let T = {>_; +u;j} where the vectors uy, ..., un satisfy max; ||uj||» < 1/5.
The following two are equivalent:

© Banaszczyk's theorem restricted to convex bodies K symmetric
around 0.

@ There exists an O(1)-subgaussian Y supported on T, where O(1) is
independent of m, n, or the vectors.
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The Main Equivalence

Theorem

Let T = {>_; +u;j} where the vectors uy, ..., un satisfy max; ||uj||» < 1/5.
The following two are equivalent:

© Banaszczyk's theorem restricted to convex bodies K symmetric
around 0.

@ There exists an O(1)-subgaussian Y supported on T, where O(1) is
independent of m, n, or the vectors.

@ 2. was not known before, and we know no direct proof.

o If we can sample Y efficiently, we would have an algorithmic version
of Banaszczyk's theorem!

e Using a random walk, we can sample an O(+/log m)-subgaussian Y
recovers Banaszczyk algorithmically for symmetric K, up to a factor

of O(+/log m).
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Theorem

Let X be a standard Gaussian in R™, and K C R™ be a symmetric convex
body such that Pr[X € K| > 1/2. Then, for any s-subgaussian Y,

PrlY € O(s) - K] > 1/2.

o Universal sampler: there is a single distribution on ), +u; which
works for all K.
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Proof of Theorem

||| x = min{t : z € tK}
Need: E|| Y|k = O(s). Then done by Markov.

o & E DA
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Proof of Theorem

Need: E|| Y|k = O(s). Then done by Markov.

i. [Borell, 1975] For any symmetric convex body K, and a standard
Gaussian X, Pr[X € K] >1/2 = E||X||lx = O(1).

ii. [Talagrand, 1987] For any s-subgaussian Y, and any symmetric
convex body K, E|| Y|k = O(s) - E|| X] .

From i. and ii., we get E| Y|k = O(s).

o F = = DA
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1. = 2.

Define a zero-sum game:
@ Min has strategies T = {> _; +u;}.
e Max player has strategies {v € R™}.
@ The payoff of y € T and v € R™ is (e + e_<y"’>)/eH"”§/2.
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1. = 2.

Define a zero-sum game:
@ Min has strategies T = {> ; +u;}.
e Max player has strategies {v € R™}.
o The payoffof y € T and v € R™ is (") + =) /ellvI3/2,

Using Banaszczyk's theoremm, and the von Neumann min-max principle,
we can bound the value of the game:

min max [E
Y rv.supp.on T  veR™

<Y7V> 7<Y7V>
e +2e <92
olvIZ/2

Implies E[el(Y:V)I] < 2¢llvI2/2. By Chernoff trick, Y is O(1)-subgaussian.
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Asymmetric Bodies

Does an efficient sampler for O(1)-subgaussian Y imply algorithmic
Banaszczyk for asymmetric K7
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Asymmetric Bodies

Does an efficient sampler for O(1)-subgaussian Y imply algorithmic
Banaszczyk for asymmetric K?
Bad News: Take K = {x € R" : x; <0} and Y = e;. Then:

@ Y is O(1)-subgaussian

e Pr[X € K] = 1/2 for standard Gaussian X.

@ Foranyt >0, Y ¢ tK = K.
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Asymmetric Bodies

Does an efficient sampler for O(1)-subgaussian Y imply algorithmic
Banaszczyk for asymmetric K7
Bad News: Take K = {x e R™: x; <0} and Y = ;. Then:

e Y is O(1)-subgaussian

e Pr[X € K] = 1/2 for standard Gaussian X.

@ Foranyt >0, Y ¢ tK = K.

Good news: If K's barycenter b(K) = E[X - 1{X € K}] is at the origin,
then Pr[Y € O(1) - (KN —=K)] > 1/2.

DGLN Vector Balancing 11 /12



Asymmetric Bodies

Does an efficient sampler for O(1)-subgaussian Y imply algorithmic
Banaszczyk for asymmetric K7
Bad News: Take K = {x e R™: x; <0} and Y = ;. Then:

e Y is O(1)-subgaussian

e Pr[X € K] = 1/2 for standard Gaussian X.

@ Foranyt >0, Y ¢ tK = K.

Good news: If K's barycenter b(K) = E[X - 1{X € K}] is at the origin,
then Pr[Y € O(1) - (KN —=K)] > 1/2.
We design a recentering procedure that

o Either finds signs €1, ...,&, such that ) . eju, € K,

@ Or reduces to the case when b(K) = 0.

DGLN Vector Balancing 11 /12



Open Problems

e Find a direct proof that there exists an O(1)-subgaussian Y
supported on {>; tu;}.

e Find an efficient algorithm to sample Y.

Thank you!
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