The Journaling Operator Shell (JOSH)
Anna N. Popivanova

Dept. of Computer Science

University of Toronto

Toronto, ON, M5S 2E4, Canada

anna@cs.toronto.edu

Abstract

Delegation of root privileges in UNIX comes down to physical distribution of the root password and does not allow for fine graining of execution and access permissions. In this paper, I present an implementation of JOSH which provides a portable, lightweight, and secure solution to the problem of setuid-root executions of programs and file access from arbitrary users.
I. Introduction

     Historically UNIX systems do not offer secure way to delegate administrative privileges.  The root account must be passed to all system administrators who perform any UNIX administrative tasks, thus increasing the probability that the account will be misused or compromised.. Furthermore, there is no way to effectively establish accountability for important system administration functions. Since only a generic username is used for the superuser, there is no way to identify who has logged in as the superuser.
     The goal of the project was to implement the setuid-root Journaling Operator Shell (JOSH). Its main objective was to provide fine-tuning of root privileges based on configuration files, which explicitly list users, programs and files and give read, write or execute permissions. In this way, all users would access resources on a need-to-know basis (to access files or run a program). Such an approach has several advantages. First, any damage from a malicious attack is minimized and contained to the maximum privileges allowed. Secondly, JOSH limits the physical distribution of the root password. Finally yet importantly, JOSH was supposed to monitor and log users’ activities pertaining to privileges escalation, thus assisting system security auditing.
     The outline of the paper is as follows. The next section discusses related work. Section 3 gives a description of the implemented architecture specifics and discusses design decision from security perspective. Section 4 gives installation and setting up instructions. Section 5 gives performance considerations and addresses some constraints and problems encountered. A security audit for the JOSH implementation of Catalin Drula follows in Section 6. Finally, I conclude in Section 8 with some suggestions for future work.

II. Related work

     There are a number of utilities, which provide variations of setuid functionality for UNIX together with users’ activities logging.

     The most widely used is sudo (superuser do), first implemented in 1980 by Bob Coggeshall and Cliff Spencer, and currently maintained by Todd Miller. Sudo is different from my JOSH implementation in that it only allows a program to run setuid-root (as opposed to arbitrary uid) and does not manage file permissions. However, sudo has additional functionality that will physically protect a session. It prompts the invoking user for her/his password and provides a lifetime of the privilege modifications (currently set at 5 minutes). Permissions are managed through a specific file, sudoers.
     OSH is a setuid-root shell, first introduced in [sans]. Most recently it was discovered that due to inadequate bounds checking OSH contains buffer overflows, which can be exploited to execute arbitrary code. JOSH, OSH and sudo are comparatively characterized in Figure 1.
     The runas utility is yet another tool to allow a process to be executed as any user or group in a non-interactive manner. However, runas is known to contain a formatting string security vulnerability that would enable local users to execute arbitrary code. 

     One commercial solution, Symark’s PowerBroker flaunts a most impressive list of supported features. Some of these I was unable to verify, there are also reports suggesting that various problems pertaining to PowerBroker architecture are possible. For example, certain circumstances allow race conditions. In addition, it is unclear what happens in case the server (master daemon) responsible for permission checking goes down or becomes disconnected. Overall, it is questionable that the advantages of using PowerBroker outweigh its cost, considering free alternatives like sudo.
Figure 1: Comparison between JOSH, OSH, and sudo
	feature
	JOSH
	OSH
	sudo

	interface
	any program
	complete shell
	command line

	access control
	programs and files
	programs and files
	programs only

	commands run as
	any user
	root only
	root only

	logging
	command, its success or failure, reasons for failure
	command and its success or failure
	attempts to run sudo


III. Implementation

     The most important design decision was to implement JOSH not as setuid-root itself. Instead, a new setuid-root "helper" program was introduced. This program helps JOSH in turn to offer full operator shell capabilities. Whenever JOSH detects that a function requiring root is requested, it will execv() the helper to invoke that function. Such an approach makes the helper utility highly portable in that it is possible to use it with any program and in particular with a full-featured shell, such as csh or bash, by modifying them appropriately to call the helper program and pass arguments. That being said, the major programming effort was spend on the josh_helper.c. The modifications on the original josh.c file are minor and are easily identifiable as these are surrounded in #ifdef JOSH. 
3.1. Security Features
     Securing arbitrary programs (or fully featured shells for that matter), which may have thousands of lines of code is a tedious if not impossible task. Even the rather tiny josh.c consists of more than thousand lines, which can hide various security flaws. If JOSH were allowed to run setuid-root, the existence of such security holes would be devastating. Thus, using an external helper program has the added benefit that any possible vulnerabilities in the underlying program (buffer overflows, etc.), will be of no consequence provided the helper is secured. Since the size of the helper program is minuscule (ca. 300 lines of code), providing security guarantees for it should be much more straightforward. 

     Furthermore, inside the josh_helper.c itself, the permission checking code also does not run as root. This has the added benefit, that any buffer overflows in the permission checking functions (or alternatively in the lib functions that they call) cannot be easily exploited to gain root. This is implemented by running the permission checks in a child process. The child process' uid is irrevocably set to non-root before performing these checks. Once finished the child process will then exit with a status code indicating whether the requested operation should be accepted or be rejected. It is then the parent's decision how to handle the request, based on this status code. In the case when the random uid feature is disabled, the helper will proceed to do its permission checks inside the main process as root.

      Obvious from the way the josh_helper is implemented, we should not run the child process under the current user's uid. Doing so would allow the user to potentially to hijack the process (by attaching to it with a debugger) and manipulate the returned status code to her/his advantage (Using random uids does not fully solve this problem, however it will effectively slow down such an attack to consider it impossible in reality). Switching to a constant uid such as nobody proved to be not such a good idea neither. The reason lies within the possibility for a user to gain nobody status by exploiting a potential buffer overflow. At that moment, it will be a matter of running the helper once more to hijack the child process this time using the newly acquired nobody uid. The approach I chose to overcome any such security holes was inspired by the stack address randomizing patch. In the case of JOSH every time the child process runs, it must do so with a different uid and one that is not already allocated to any user on the system. This should work nicely on systems supporting 32-bit uids (e.g. Linux 2.4 or later, also some previous versions are patched to support 32-bit uids), since most of the available uids will not be allocated to any user. Although an attacker who can exploit the child process it would still be possible to gain root, it would take much longer time for her/him to accomplish this. In the meantime, since each start of the josh_helper is being sent to syslog (LOG_DEBUG level), the system administrators will have better chances at catching her/him. Systems, which use only 16-bit uids may still (although limited) benefit from randomizing the uids. The assumption is that there will be still sufficiently many unused uids. However, care must be taken to ensure that the uid range used by josh_helper does not overlap with any uids that are or will be potentially present on the system. Further to the security, an attacker should not be able to predict a uid that the josh_helper will use. Thus, it is imperative that the uids used should be genuinely random. On systems such as Linux, this can be easily accomplished by reading from /dev/random, which supposedly provides true (crypto-grade) random numbers. 

3.2. Configuration files

     Access to files or permissions to execute programs as setuid-root are governed by special configuration file, called .josh_access. The josh_helper also allows each user to keep their own .josh_access file, thus managing other users’ privileges to access or execute files owned by that user. If user configuration files are disabled at compilation, the josh_helper will only work for root access (not allowing users to share files) and would minimize the possibility that a user can launch an exploit by feeding the helper a "bad" configuration file. 

To simplify manipulation, lines in the josh_access files can be commented out with # at the beginning of the line.

Executable programs
     My implementation of JOSH uses a single file for both executable and access permissions, called .josh_access. The syntax of the configuration file is UNIX-like, in that it involves flags for each read, write or execute permissions. Each entry in that file can have an x flag, indicating that for the respective user execution is allowed. For security reasons, the x flag is not applied recursively.  
     The entries in the josh_access are one per line and conform to the following format:

     userid:filepath:perms

Here, userid is a user's login name; filepath is some absolute file name; and perms is of the form [+-]flags.  A + grants a positive right and a – takes away a previously granted right.
File access

     The file access rules (read and write) in the josh_access file are given by two more flags, w and r in  the usual manner.
     To speed up execution and simplify parsing, it is not allowed to have multiple entries for the same file within the configuration files. Instead, the first matching entry will be assimilated. To clarify, to allow Alice read access to the whole /etc tree excluding certain files, use:


alice:/etc/shadow:-

alice:/etc:+r
     Entries that are more specific must precede less-specific entries in the configuration files. For example, to allow Bob write access to the whole /etc tree, but limit read access to certain files:


bob:/etc/shadow:+r


bob:/etc:+w

Negative entries may also be flagged, however flags will be ignored. The reason is that by default a negative entry should be interpreted as a rejection of any permission for the file.

     On a side note, the recursive delegation of writing permissions should be disallowed in a real-life system. 
User-specific configuration files

     Sharing user files is implemented so that it works independently of the shell's current directory. That is, any file that a user is attempting to access with extra privileges is checked for ownership. In case it is owned by root, then permissions will be set according to /etc/josh_access. Otherwise (if owned by user), the ~user/.josh_access will be checked.

     If higher security is needed, one can disable this functionality at compile time.

3.3. Editor

     The josh package also includes an editor edit.c, which is a small program which invokes vi, copies the file to be modified into a temporary file in the home directory and then updates (if permitted) the original file. Inherent to the way the setuid-root helper utility is used, using an editor within the shell will not enable a malicious user to modify files for which s/he does not have required rights.
     On a side note, the edit command can also be implemented as an external program that similarly to JOSH also uses the helper to access files requiring root. Alternatively, it could be built-in within JOSH.
3.4. Journaling

     Providing users with the ability to execute and access files under a different uid, and in particular as root, makes JOSH one very powerful and at the same time prone to attacks tool. Thus JOSH’s proper functioning requires special consideration, so to help monitoring users’ behaviour JOSH keeps journals of users’ activities.
     Using a setuid-root josh_helper, separate from the shell has a few implications on logging. Keeping josh.c non-setuid-root will allow any user on the system to modify her/his own copy of it and use that to bypass logging. Thus, the administrator would only be interested in activity logs pertaining to the setuid-root code. Therefore, all logging is performed inside the helper. Obviously full logging of pipelines would then be impossible. Instead, only commands that are executed, together with respective arguments and redirections, are logged. 

     Status codes used for logging are OK, FAILED, DENIED, FATAL, and ERROR. The latter two are used to fine tune failed attempts to execute or open. To account for the helper utility aborting on wrong permissions within the configuration file or a configuration file that for some reasons cannot be parsed, the status code FATAL is defined. If however something not related to permissions failed, an ERROR code will be logged. This is to distinguish between cases when for example a user attempts to exec a file that can not be opened (even as root) and was allowed to do so (ERROR). On the other hand, if s/he attempts to open a file not listed in the configuration file a FAILED code will be recorded. OK and DENIED are intuitive.
     Finally yet importantly, when a user executes a command with an id different from the requesting user's id, the id used during execution of the command is also logged.

     All syslogging within the josh_helper is also performed with random uid, in other words syslog() is not executed as root. This is intentional, since older versions of syslog() had buffer overflows.

IV. Compilation Modes and Installation Instructions
4.1 Compilation modes

     Features of the helper are configured at compile time by the following #defines: 
RAND_SOURCE 
– device to read random numbers from (default set to /dev/random) 
RAND_UID_MIN
– minimal uid to use for the child process (default set to 1G) 
RAND_UID_MAX
– maximal uid to use for the child process (default set to 2G)

JOSH_ROOT
– name of the root configuration file (default set to /etc/josh_access)

JOSH_USER
– name of the user configuration file (default set to .josh_access)

DJOSH_NO_USER
– disable users’ configuration files

(For security implications of these features on JOSH, please refer to the functionality section.) 

     All defaults can be overwritten by redefining them at compile time, as for example:

cc -o josh_helper -DRAND_UID_MIN=32768 -DRAND_UID_MAX=65534 josh_helper.c,
which would compile the helper for a system with 16-bit uids. 

     The random uid feature can also be entirely disabled by defining either RAND_UID_MIN or RAND_UID_MAX as zero. 

4.2. Installation Instructions
     The package contains a Makefile, which takes care of (default) compilation and installation. Instructions to do perform these actions manually follow. Compile josh.c, josh_helper.c and edit.c without any arguments. The helper binary must be installed at a fixed location in the system as setuid-root, owned by root, not writable by non-root, and executable by everyone (chmod 4711). Suggested location is /usr/local/sbin. Suggested location for the josh binary is /usr/bin; world-executable and world-readable, but only writable by owner. 

     Since the permission checking code is running as non-root, the /etc/josh_access must be world-readable. The same applies to any user configuration files. In addition, any user who has a .josh_access file, must have her/his home directory set to world-executable (not necessarily world-readable though). One may argue that keeping the files world-readable may constitute a privacy (not security) problem. However, as mentioned in the future work section VII., if JOSH is deployed in a real system, the configuration files should be kept in a precompiled (database) binary format. This will effectively take care of any potential privacy issues.
V. Flexibility,Performance and Constraints
5.1. Constraints

     To simplify the interface between josh and the helper, append to file using >> redirections is not supported. However the usual redirections for input < and overwrite > are functional.

     It is also assumed that ownership of the file to be executed with the permissions as given in .josh_access does not change between the permission check and subsequent exec() or open() calls. To validate such an assumption, files in writable directories should not be listed in josh_access files unless their home directories have the sticky bit set. If a file is listed with the x flag set (+x) in .josh_access, it is imperative that itself is not writable and in case its home directory is user-writable, the directory’s sticky bit should be set. Otherwise, an attacker could eventually exploit the race condition between the permission check and the action by unlinking the file and creating a new one on its place instead. 
     However, it is usually the case on systems to have the sticky bit set for all user-writable directories (e.g. /tmp), so this assumption is not restrictive. 

5.2. Flexibility

     Having the configuration file parsed at every command, effectively solves the problem of following symlinks to files that are either not existent or not accessible at the JOSH start-up. It also allows any changes to the configuration file to take effect immediately.
5.3. Performance considerations
     It is obvious that using the helper program would impose some computational overhead on the shell, depending on the number of times it is invoked. The reason is that not only we need to execute the helper program each time when privilege delegation is sought, but the helper must also parse its configuration files for every user request. Furthermore, in case the configuration file has wrong permissions or cannot be parsed, it is impossible for josh to "abort on start-up". It is the helper that must abort by logging the respective status. In general, the possible performance degradation is traded off for a better security and extra functionality.
VI. Security audit for Catalin Drula’s implementation of the JOSH

     Catalin Drula’s implementation features the shell itself running as setuid-root. While he has fixed some of the existing weaknesses of the original josh code, his implementation has introduced new vulnerabilities. The severity of these security flaws varies, however if properly exploited almost all of them could be used to execute arbitrary code (e.g. /bin/sh). More trivial attacks possible would be giving unauthorized data access and modification rights, possibility of logs manipulation, privilege escalation. The following vulnerabilities were discovered:
6. 1. Vulnerability 1 – User can read any file on the system

Consider line number 1203 of josh.c:

ret = openperm(file, O_WRONLY, &uid);

if (ret<0) return ret;

if (uid>=0) {

     seteuid(0);  /* Elevate privilege */

     seteuid(uid);  /* Set privileges for opening file to uid */

}

...

Function openperm returns zero for FAILED whenever a file is not listed in josh_access. However in getredir(), privilege to open a file is granted even if zero was returned. As a result, any user can read any file on the system.

To exploit: start josh, then cat < filename

To fix: change the line to 

if (ret<=0) return ret;

6. 2. Vulnerability 2 – User can write to any file on the system

Consider line number 1248 of josh.c:

ret = openperm(file, O_WRONLY, &uid);

if (ret<0) return ret;

if (uid>=0) {

     seteuid(0); /* Elevate privilege */

     seteuid(uid); /* Set privileges for opening file to uid */

}

     Function openperm returns zero for FAILED whenever a file is not listed in josh_access. However in getredir(), privilege to create a file is granted even if zero was returned. As a result, any user can overwrite or append to any file on the system.

To exploit: start josh, then cat > filename or cat >> filename

To fix: change the line to

if (ret<=0) return ret;

6.3. Vulnerability 3 – User can access files with certain names to which s/he does not have access
Consider line number 1025 of josh.c:

if (realpath(access_fn, can_access_fn) && strlen(filename)>=strlen(can_access_fn) && !strncmp(filename, can_access_fn, strlen(can_access_fn))) {

     Now suppose user is granted access to some file, for example in /etc/josh_access we have specified:


anna:/etc/sh:+r

     Then anna will get read access not only to /etc/sh but to all files which have names starting with /etc/sh (also in subdirectories), for example, /etc/shadow, /etc/shells, /etc/shared/file, etc. The same applies to write access, that is when the w flag is given.

To exploit: should only be exploited after vulnerability 1 and vulnerability 2 are fixed. Not exploitable in all configurations, however it is certainly a weakness of the implementation, since it allows exploitation of a valid configuration (not a misconfiguration).
To fix: check for slash after the name (supposed to work only for directories)

6.4. Vulnerability 4 – Buffer overflow in searchaccess()

Consider line number 958 of josh.c:

 
access_fn[i++]=c;

access_fn is an array on the stack. It can be overflowed by any user by supplying a large filename in her .josh_access file. By inserting shell code into the file, a shell can be forked with euid=0.

To exploit:

Dump core with 

cd

echo anna: | awk '{ printf $1; for (i = 0; i < 20000; i++) printf 
"x"; printf ":+rw\n" }' > .josh_access

cat < /etc/shadow

then overwrite the stack accordingly.

To fix: check i < sizeof(access_fn) before assigning.

Safety recommendation: josh should never check user's own .josh_access file (if it did not, two users would be required for such an exploit). Better yet, do not run searchaccess() as root.
6.5. Vulnerability 5 – Buffer overflow in searchexec()

     Similarly, to the previous one, but for the user .josh_exec file. To exploit, just try to execute any non-executable file (for example /etc/passwd) after placing the shell code in your .josh_exec.
6.6. Vulnerability 6 – Buffer overflow in striparg()

     It seems like there is a possibility for a buffer overflow, however I could not exploit it within the given time.
VII. Conclusions and Future Work
     In the previous sections, I presented an extension to the josh shell, which allows a user to execute programs, or access files as arbitrary user (also including as root) based on permissions within special configuration files. While the josh_helper is fully operational, possible improvements or additions to its functionality are as follows.
     If deployed in a real-life system, the configuration files should be in some "compiled" (database) binary format. This way one would eliminate repetitive parsing and name lookups and will consequently speed up the access to them. It will also eliminate potential privacy problems due to world-readability of any .josh_access files.
     Also advisable is to implement a tool for sanity checks on the configuration files. Minimize further needed modifications in order to use the helper with any program.

     Other improvements of the helper utility may include implementing some of sudo’s neat features dealing with physical security – password protection whenever privilege change is sought, time token on the helper session, also adding trusted sites (and for that matter certificates) for remote access.
VIII. References
[sudo] SUperuser DO (SUDO) project, http://www.sudo.ws/
[sans] M. Neuman, G. Christoph, The Operator Shell: A means of Privilege Distribution Under UNIX, http://www.eecg.toronto.edu/~lie/ECE1724/project/osh.sansII.ps
David Wheeler's “Secure Programming for Unix and Linux HOW TO'', http://www.dwheeler.com/secure-programs/

Linux kernel (http://www.kernel.org/)
GNU C Library (http://www.gnu.org/software/libc/).
Appendix A – source code
Tarball attached.
PAGE  
1

