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ABSTRACT. A non-interactive proof with certificates, that a given positive
integer n is an RSA modulus, is given. It is based on a modification of the
Goldwasser-Kilian method for primality proving.

1. INTRODUCTION

The paper gives a method for certifying that a given positive integer is the
product of two suitably large primes. More specifically, a prover creates a certificate
that a verifier can use to efficiently and deterministically verify that the given integer
n is the product of two suitably large primes, without learning of the factorization.
The method relies on a simple modification of the Goldwasser-Kilian technique [8].
The term ‘suitably large’ will mean that both primes in the factorization of n are
at least as large as n?, for some a € (1/3,1/2).

Two recent contributions to the problem of verifying RSA modulii are [5] and
[14]. Both produce efficient statistical zero-knowledge interactive proofs of the
factorization of the given modulus. Both papers contain an interesting array of
results beyond the RSA certification problem, although that problem appears to
be their main motivation. It is felt that the deterministic nature of this work, once
given the certificate, is of interest and complements the approach of these papers.

In the next section some background material on elliptic curves over the integers
modulo a composite integer n is given. Section 3 recalls the Goldwasser-Kilian
method of primality proving. Its extension to RSA modulii is given in Section 4
and the final two sections consider the complexity of the method and comment on
other aspects of the problem.

2. ELLIPTIC CURVES OVER Z,,
For an odd prime p > 3 denote by E,(A, B) the set of solutions (z,y) € E, x E,
to an equation of the form
y*> =2° + Az + B.
By the Hasse-Weil theorem it is known that
p+1-2p< #E,(A,B) <p+1+2/p

and several results are available (eg. [11]) on the distribution of #E,(A, B) as A, B
are chosen at random in F,. Denote by O, the point at infinity of the curve. There
is a natural addition on E,(A, B) under which it forms a commutative group and
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this has been a rich source of groups for a variety of applications in cryptography
and number theory.

Of interest here is in the extension of the set of solutions to this equation to
Z, ie. Any solution (z,y) € E,(An,B,) to the equation over Z, can also be
seen to be seen a solution to the equation modulo a prime, by restriction of the
scalars. This is expressed as (zp,yp) € Ep(Ap, Bp) where subscripts on points and
coefficients will be used to indicate the modular ring or field of definition under
consideration. The operation of point addition in E, (A,,B,) is as in E,(A4,, By)
with all operations in F, replaced by those in Z,,. There is a very small probability
that some required arithmetic operation, such as inversion, may not be possible in
which case a factorization of n would be produced. There is a bijection between
E,(Ay, By,) and E, and E, given by:

(Pp, Py) = {(2p,yp) € Ep(Ap, Byp), (x4,yq) € Eq(Aq, By)} n = pg.

A point in E,(Ap, Bp) and one in E;(A,, B,) can yield one in Z, using the Chinese
Remainder Theorem (CRT) in the usual manner. If Op, O, and O, are the points at
infinity in the respective modular fields and ring, then O,, corresponds to (Op, O,)
and the addition operation on E,(A,,, B,) is equivalent to component-wise addition
on E,(Ap, By) x E4(Aq, By) and this operation is undefined precisely when one of
the points chosen is a point at infinity ([20]).

From the fact that if Q = k- P, P.Q € E,(A,,B,), Qp=k-P,and Q, =k - P,
the order of Q € E,(A,, By,) is the lem of the orders if F, and F,, it seems that
the order #E, (A, By,) is the lem(#E,(A,, By), #E,(44,B,) (see [20], [12], [10]
for further details on E,(A,, B,)), although this is not needed here.

Finally denote the order of a point P € E,(A,, B,) by O,(P), the smallest
positive integer such that k- P = O,,, and similarly for points in £, and E,.

3. GOLDWASSER-KILIAN CERTIFICATES

The Goldwasser-Kilian technique for deterministically verifying a prime, given
a certificate, depends on the following simple and elegant result (Lemma 2 of [8]).
As it is central to this work it is reproduced here.

Lemma 3.1 (Goldwasser and Kilian [8]). For all positive integers n not divisible
by 2 or 3, if there exists a point P, on an elliptic curve E,(An, By), ged(n, 443 +
27B?) = 1, of prime order q, where ¢ > (n'/* + 1), then n is a prime.

Proof. Suppose to the contrary that n is composite. Then there exists a prime
P, p|n, p < 4/n. Since q - P, = O,,. By restriction of scalars to E,, the order of P
mod p must divide ¢, O,(P,)|q. Since O,(P,) < #E,(4A,,B,) < p+ 1+ 2p'/? <
n'/2 +1+2n'/? < q. Since q is prime then O,(P,) = 1 which implies that P, = O,
which implies that P, = O, giving a contradiction. O

(XX Explain the condition gcd(n,44% + 27B?%) = 1XX

The Lemma says that in order to demonstrate that n is prime it is sufficient
to find an elliptic curve over Z,, which has a prime order subgroup of size at least
(n'/* + 1)2. Note that the order of the subgroup, beyond the property noted, is
unrelated in any other way to the integer n.

By means of this Lemma, generating a suitable prime ¢ and an elliptic curve
with the desired properties will show that n is prime. Goldwasser and Kilian [8]
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apply the lemma to successively generate a sequence of primes and elliptic curves,
randomly and using a probabilistic primality test, with decreasing orders, to create a
‘certificate’, a process referred to as a ‘run-down’ process [2]. In the final stage of the
certificate generation, a deterministic primality test is applied to a relatively small
number. With the certificate a user can, by successive applications of the lemma,
verify each step of the ‘run-up’ process and be convinced, in a deterministic manner,
that the original number is indeed a prime, since at each step the satisfaction of the
Lemma will be verified. During the certificate generation phase it is sufficient to
use probabilistic primality tests to determine the likelihood of a given integer being
a prime. Should one of these tests in fact give a false prime, (indicate a number is
prime when it is composite) it will show up when the final integer is deterministically
shown to be a composite. The interesting notion of using probabilistic tests to derive
a deterministic one is commented on in [8].

The Goldwasser-Kilian technique for generating certificates for a prime is given
in algorithm form below, using our own notation and minor embellishments. In the
original work, elliptic curves were sought at each stage of the algorithm such that
their order was of the form twice a prime. The order of a randomly chosen curve
is found by point counting methods. Goldwasser and Kilian suggested the original
algorithm of Schoof [18], an operation of O(logp®) (or less, depending on the type
of arithmetic used). Since that work appeared other more efficient algorithms have
been found and these are commented on in a later Section 5. It has also been
suggested [1] that using the complex multiplication (CM) technique of generating
an elliptic curve of given order over a prime field would also make the algorithm
more efficient and this is also commented upon.

A way to make the algorithm more efficient is to find a prime divisor ¢ of the
curve order as close to (nl/ 1 +1)? as possible to reduce the sequence of primes
(and speed up the down-run process) as quickly as possible, to result in fewer
steps of the algorithm and a smaller certificate. This is perhaps more difficult to
implement since it would require a factoring algorithm, precisely which we assume
is not available. As noted, the CM method of curve generation will be useful in
this regard.

For the moment we note that it is relatively easy to include a trial divide step
on the order of a curve generated, to some appropriate bound of perhaps a few
million, which would reduce the number of curves that would have to be generated
to achieve one with the desired property i.e. in the original version of the algorithm,
a curve whose order was not of the form twice a prime was discarded and another
curve tried. With a trial divide included, some of these discarded curves might be
suitable, containing a subgroup of an appropriate prime order. Thus after the trial
divide routine the remainder of the order is tested for being a prime that satisfies
the requirement. These issues are also discussed in [2] where the elliptic curve
primality proving algorithm of Lenstra, Atkin and Morain are considered.

The following algorithm uses a few standard routines. In choosing an elliptic
curve at random, we want one whose order #E,, (4;, B;), for some given integer p;
that has passed a probabilistic primality test, is divisible by a prime g; greater than
(p/* +1)2 for two suitable (probabilistic) primes p; and g; (which will become p; 41
at the next stage - the primes form a decreasing sequence).

The routine TrialDivide(n, bd) returns an integer n’ which is n divided by all
primes (and all their powers) less than bd. It is possible that suitable curves will



4 TAN F. BLAKE AND ANNA POPIVANOVA

still be rejected by this routine as well but some suitable curves will be found that
the original test would have rejected.

The routine ProbPrime(n) returns true if the integer n passes a standard prob-
abilistic primality test (eg. Miller-Rabin, Solovay-Strassen) for some fixed number
of rounds. Otherwise it returns false. It is assumed that at the last stage of the
algorithm both the prover and verifier have available a deterministic primality test
for the last prime used in the certificate - this step is omitted. (e.g. [11]) run on
small numbers at the last stage of certificate generation that guarantees at the start
of certificate verification the initial number is a prime. It also returns either true
or false.

Finally by the notation €g is meant a random choice, uniform over the set being
considered.

ALGORITHM 3.1: Goldwasser-Kilian certificate generation for the prime p

INPUT: A prime number p

OUTPUT: A certificate for the primality of p, CERT_PRIME(p)

1. Imnitialization: ¢ =0, pg =p, lower bound = bd, FLAGl = false:
FLAG2 = false, CERT_PRIME(p) = ¢

2. While p; > bd:

3 Repeat the steps until FLAG1 = true:

4. Choose A;, BiegZy,, gcd(4A? +27B%,p;) =1

5. Compute #UE,, (A4;,B;) and let N; = TrialDivide(#E,,(A;, B;,bd)

6 If ProbPrime(N;) = true and N; > (py4 +1)? Set FLAG1 = true

7 Repeat the steps until FLAG2 = true:

8 Choose Py erEp,(A4;,B;) until N;- Py, = Oy,

9. Set FLAG2 = true

10. Pi+1 :Ni, CERT_PRIME(p) = CERT_PRIME(p) U{pi,Ai,B,’,Pp“pi_’_O

11. t=1+1

12. Return CERT_PRIME(p)

As commented on in [8], this test terminates in expected polynomial time on
all but at most a vanishingly small fraction of inputs, where the step requiring the
determination of a suitable elliptic curve might not decide within some finite time.
However, given a certificate, the test verifies primality in deterministic polynomial
time. Given a certificate, the correctness of the primality is certain, even though
probabilistic tests are used in the certificate generation.

Notice that if, at any stage, the probabilistic primality test gave a false answer,
i.e. it declares an integer to be a prime when it is a composite, then the final
deterministic primality test would fail and the whole procedure would be repeated.

It is straightforward now to recursively check the information in the certificate
to verify deterministically that the original integer p is a prime.

The next section shows how this approach can be generalized for RSA modulii.

4. CERTIFICATES FOR RSA MODULII

The Goldwasser-Kilian Lemma of the previous section is emulated to provide a
result that will be used to generate RSA certificates. We have in mind to generate
a certificate for the RSA modulus ng, a product of the primes pg, qo.
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Lemma 4.1. Let ng be a positive integer not divisible by 2 or 3. Suppose the
positive integer ny (< mg) is the product of two prime numbers, both of which
are greater than (n(l)/6 + 1)2. Then if there exists a point P,, on an elliptic curve
En(Ang, Bnyo), ged(no, 4Ang®+27B2 ) = 1 of order ny thenng can have no divisors

less than ng'/3.

Proof. Suppose to the contrary that ng has a divisor r less than n(l)/ 3 By assump-
tion
anno = Ono = mP. =0, = OET (PT) | ni.

bt Op,(P.) < #E.(Ar,B,) <r+1+2r!/?

< ny®+ 2% 41
which is strictly less, by assumption, than either of the prime factors of n;. Hence,
P, = O, which implies that P, = O,, which gives a contradiction. O

The conditions of Lemma, are sufficient to verify that the integer ng is a product
of at most two primes. In the final algorithm we will remove the possibility that
it is prime by providing a witness to the compositeness of n ie. an integer a such
that a™ Z a (mod n). We designate such a witness by w,(a). The generation of
witnesses will be discussed in Section 5. Again, such witnesses will be found by
repeated random selection, but once found they provide deterministic evidence of
the compositeness n. Since n is a product of at most two primes there must exist
such witnesses since it cannot be a Carmichael number (a composite integer n for
which a”™ = a (mod n)) which always has at least three prime factors [13].

The certificate generation process for the RSA modulus ng = pogo will generate
two primes p; and ¢; that satisfy the above Lemma. It then provides a witness
for the compositeness of ng and two GK certificates for the primes p; and ¢; to
complete the evidence that ng is an RSA modulus.

ALGORITHM 4.1: GK certificate generation for the RSA modulus ng = poq,

INPUT: An RSA number ng = poqo
OUTPUT: A certificate for the RSA modulus CERT_RSA(ng)

1. Initialization: FLAGl = false: FLAG2 = false, CERT_RSA(ng) = ¢

2 Repeat until FLAG1 = true:

3 Choose Ap,, Bpo€rZy,, ged(4A3 +27B2 ;po) =1 until

4. Compute #Ep,(Apy, Bpo)s Nél) = TrialDivide(#E,,(4p,, Bp,))
5. If ProbPrime(N(gl)) = true and Nél) > (n(l)/6 +1)2

6 p1 = Nél) , continue

7 Choose Ay, Bgy€rZy,, ged(4A43 +27B2 ,q;) =1 until

8 Compute #Eg (Aq,,Bg,)> NéQ) = TrialDivide(#E;, (Aqy, Bp,)
9 If ProbPrime(NéQ)) = true and NéQ) > (n(l)/G +1)?

10. q = Né2) , continue

11. Set FLAG1 = true

12. Repeat until FLAG2 = true:

13. Choose Py erE,, (Ap,, Bp,) until pq - Ppy = Op,
14. Choose Py erEy (Aqgy, Bg,) until ¢i - Py, = Oy,

15. Determine the point P,, and A,,,B,, using bijection of Equation 1.
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16. Set FLAG2 = true
17. ny =p1-q1, CERTRSA(n) = CERTRSA(n) U{ni =p1-q1,A4n,, Bngy> Prg>Wn,(a)}
18. CERTRSA(n) = CERTRSA(n) U { CERT_PRIME (p;) , CERT_PRIME (g¢;) }

19. Return CERT_RSA(n)

The verification process first verifies, through the standard Goldwasser-Kilian
process, that the numbers p; and ¢; are primes and that they satisfy the condition
of both being greater than (n(l)/ b4+ 1)2. The compositeness of ng is checked by
verifying that a™ # a (mod ng). Finally it is verified that the point P,, € E,,
has order n; = p1¢1 by showing that ny - P,y = Op,.

5. COMPLEXITY

(In this section we will give comments on the complexity of point counting, SEA,
Satoh, Kedlaya etc.) as well as a brief outline of the CM method.) T will do this.

The complexity of finding a witness for compositeness for numbers of the form
n = pq will be discussed - I think this is standard. The standard Miller-Rabin test
actually gives estimates for the number of these I think.

6. COMMENTS

Some aspects of the method of certifying RSA modulii given in the previous
section, are noted in this section.

Note that the Lemma, of the previous Section limited the primes to be greater
than approximately n(l)/ ® (and hence also less than n2/3). It is straightforward to
narrow the range and we state the following variation of the Lemma without proof:

Lemma 6.1. Let ng be a positive integer not divisible by 2 or 3. Suppose the
positive integer ny is the product of two prime numbers, both of which are greater
than (ng/2 +1)% for a € (0,1/2). Then if there exists a point P,, on an elliptic
curve Eny(Ang, Bny), gcd(no, 443 + 27B2) = 1 of order ny then no can have no
divisors less than ng?®.

Arguing informally, choosing a ~ 1/2 — € restricts the factors of ng to be in the
interval (nf;/2 +1)2, no/(n8/2 +1)2 as long as (n%/? +1)* > no. Thus if the modulus
ng is to be 1024 bits, by choosing an appropriate value for a one could ensure the
primes po and go have as close to an equal number of bits as possible.

We are tempted to label our test zero-knowledge as we know of no method to
glean any information on the factorization of the RSA modulus from the knowledge
of the primes p; and ¢;. Unfortunately we are unable to verify that no information
is leaking in this process, beyond knowledge that the given integer n is a composite
with two factors each on the order of /n.

An interesting feature of the work of [5] is that it is able to verify that the RSA
modulus is composed of safe primes i.e. primes p and g such that (p — 1)/2 and
(g —1)/2 are also primes. It would be interesting if the technique of the previous
section could be modified to include that situation as well but at this point it is
unclear how this could be achieved. (It is interesting to note however, the work of
Rivest and Silverman [17] that questions the need for using such safe primes).
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It seems that a variation of the scheme mentioned might yield a test that an
integer is the product of three suitably large primes. The obvious extension to the
basic Lemma then is:

Lemma 6.2. Let ng be a positive integer not divisible by 2 or 3. Suppose the positive

integer ny is the product of three prime numbers, all of which are greater than (n(l)/ g

1)2. Then if there exists a point P, on an elliptic curve E,,(An,, Bn,), gcd(no, 443+
27B2) =1 of order ny then ng can have no divisors less than not/4

The Lemma gives a condition that will ensure ny has at most three prime factors.
Perhaps it is possible to derive further conditions that will ensure it has exactly
three distinct factors.

Boneh at al [3] considered the problem of how to generate an RSA modulus in
a distributed manner so that the final RSA modulus and encryption exponent is
known by all parties but the factorization of the modulus is unknown and parties
receive only a share of the decryption exponent i.e. a distributed secret sharing
scheme. It would be interesting if the approach taken here might be of use in such
a scenario.
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