Large near-optimal Golomb rulers, a
 COMPUTATIONAL SEARCH FOR THE VERIFICATION OF
 ERDOS conJecture on Sidon sets

Apostolos Dimitromanolakis
joint work with Apostolos Dollas (Technical University of Crete)

Definition of a Golomb ruler

|nt Golomb ruler: a set of positive integers (marks) $a_{1}<a_{2}<\ldots<a_{n}$ such that all the positive differences $a_{i}-a_{j}, i>j$ are distinct.
|nw Goal: minimize the maximum difference $a_{i}-a_{j}$, the length of the ruler. Usually the first mark is placed in position 0.

1	1	1	1
0	1	4	9

|nw This ruler measures distances $1,2,3,4,5,7,8,9,10,11$ and has length 11.
$\boldsymbol{G}(\boldsymbol{n})$ is defined as the minimum length of a ruler with n marks (an optimal ruler).

NIII No closed form solution exists for $G(n)$.

Applications of Golomb rulers

Radio-frequency allocation for avoiding third-order interference (Babock 1953)

Generating C.S.O.C. (convolutional self-orthogonal codes) (Robinson 1967)
|nI Linear telescope arrays in radioastronomy for maximization of useful observations (Blum 1974)

Snsensor placement in crystallography etc.

Near-optimal Golomb rulers

nut No algorithm for finding optimal Golomb rulers exists apart from exhaustive (exponential in the number of marks).
(1nt Up to now optimal Golomb rulers are known for up to 23 marks (applications need a lot more!).
nut To find the 23 -mark ruler, 25000 computers were used in a distributed effort for several months (co-ordinated by distributed.net / project OGR).
|nw Not possible to apply exhaustive search for a large number of marks.
nu* Near-optimal rulers: a ruler whose length is close to optimal (in our context this means length less than n^{2})

Length of known optimal rulers

Sidon sets

Definition:

A Sidon set (or B_{2} sequence) is a subset $a_{1}, a_{2}, \ldots, a_{n}$ of $\{1,2, \ldots, n\}$ such that the sums $a_{i}+a_{j}$ are all different.
, $F_{2}(d)$: maximum number of elements that can be selected from $\{1,2, \ldots, d\}$ and form a Sidon set.

Known limits for $F_{2}(d)$

IIII Upper bounds

- Trivial: $F_{2}(d) \leqslant \sqrt{2} d^{1 / 2}$.
- Erdős 1941: $F_{2}(d)<d^{1 / 2}+O\left(d^{1 / 4}\right)$
- Lindstrom 1969: $F_{2}(d)<d^{1 / 2}+d^{1 / 4}+1$

Inlot Lower bounds

- much harder (usually one has to exhibit an actual ruler to prove)
- Constructions prove that $\boldsymbol{F}_{2}(\boldsymbol{d})>d^{1 / 3}$
- Asymptotic bound:

$$
F_{2}(d)>d^{1 / 2}-O\left(d^{5 / 16}\right)(\text { Erdős 1944) }
$$

Equivalence of the two problems

ne* Sidon sets and Golomb rulers are equivalent problems! See that

$$
a_{i}+a_{j}=a_{k}+a_{l} \Longleftrightarrow a_{i}-a_{k}=a_{l}-a_{j}
$$

IIII Fragmentation of the research community. Sometimes results were proven again.

IIII In 1967 Atkinson et al proved that asymptotically Golomb rulers have length n^{2}, already proven in 1944 by Erdős

Differences between the two problems

|nut Golomb rulers:
Δ have 0 as a element
$\Leftrightarrow G(n)$ is the mininum length of ruler with n marks
InI Sidon sets:
\Leftrightarrow minimum element is 1
$\Rightarrow F_{2}(n)$ is the maximum number of elements that can be selected from $1, \ldots, n$

Easy things to prove

If a value is know for \boldsymbol{F}_{2} :

In a value is known for $G(n)$:

$$
G(n)=d \quad \Longleftrightarrow \quad \begin{aligned}
& F_{2}(d)=n-1 \\
& F_{2}(d+1)=n
\end{aligned}
$$

Inverse relations between G and F_{2}

nut The next theorem allows easy restatement of bounds between the two problems.
|"

$$
l(d)<F_{2}(d)<u(d) \Rightarrow u^{-1}(n)<G(n)+1<l^{-1}(n)
$$

lut and also for the other direction: For any functions l and u,

$$
l(n)<G(n)<u(n) \Rightarrow u^{-1}(d) \leqslant F_{2}(d) \leqslant l^{-1}(d)
$$

"IIt F_{2} and G are essentially inverse functions.

An improved limit for $G(n)$

|III Lindstom (1969) proved that $F_{2}(d)<d^{1 / 2}+d^{1 / 4}+1$
Nult Using theorem 1 it follows that:

$$
G(n)>n^{2}-2 n \sqrt{n}+\sqrt{n}-2
$$

(not known to the Golomb ruler community)

A conjecture

|III A conjecture for Golomb rulers:

$$
G(n)<n^{2} \text { for all } n>0
$$

|ll First mentioned by Erdős in the 40's in an equivalent form: $\boldsymbol{F}_{2}(n)>$ \sqrt{n}

Known to be true for $n \leqslant 150$ (but the rulers obtained are not proven optimal).

Our goal:

extend this computational verification of the conjecture, and

InI exhibit the near-optimal Golomb rulers for use in applications.

Constructions for Golomb rulers

|llt For finding near-optimal rulers with $\geqslant 24$ marks exhaustive search is not a possibility.

Inl Our approach: use constructive theorems for Golomb rulers/Sidon sets.
||III A simple construction: For any n the set

$$
n a^{2}+a \quad, \quad a=\{0,1, \ldots, n-1\}
$$

is a Golomb ruler with n marks. Maximum element: $n^{3}-2 n^{2}+2 n-1$
A construction by Erdős: When p is prime

$$
2 p a+\left(a^{2}\right)_{p}, \quad 0 \leqslant a<p
$$

forms a Golomb ruler with p marks. Maximum element: $\approx 2 \boldsymbol{p}^{2}$

Modular constructions

The next 3 constructions are modular:
"III Every pair a_{i}, a_{j} has a different difference modulo some integer m : $a_{i}-a_{j} \neq a_{k}-a_{l}(\bmod m)$

Each pair generates two differences: $a_{i}-a_{j}(\bmod m)$ and $a_{j}-$ $a_{i}(\bmod m)$
$n(n-1)$ instead of $\frac{1}{2} n(n-1)$ different distances: so $m \geqslant n(n-1)$

Ruzsa construction (1993)

$$
R(p, g)=p i+(p-1) g^{i} \bmod p(p-1) \quad \text { for } 1 \leqslant i \leqslant p-1
$$

\boldsymbol{p} : prime number
$g:$ primitive element $Z_{p}^{*}=\mathrm{GF}(p)$
$n=p-1$ elements modulo $p(p-1)$
|nw Maximum element: $\approx n^{2}+n$ for a ruler with n elements (but $n+1$ must be prime!).
|nw Possible to extract subquadratic Golomb rulers
Int for example ($g=3, p=7$) generates the modular Golomb ruler $\{6,10,15,23,25,26\} \bmod 42$

Bose-Chowla construction (1962)

$$
B(q, \theta)=\left\{a: 1 \leqslant a<q^{2} \text { and } \theta^{a}-\theta \in G F(q)\right\}
$$

q : prime or prime power p^{n}
θ : primitive element of Galois field $\boldsymbol{G F}\left(q^{2}\right)$
$n=q$ elements modulo $q^{2}-1$
Int relatively slow construction (operations on 2nd degree polynomials required)
"math length of ruler generated $<n^{2}-1$ (already subquadratic but works only for prime powers)

Singer construction (1938)

There exist $q+1$ integers that form a modular Golomb ruler

$$
d_{0}, d_{1}, \ldots, d_{q} \bmod q^{2}+q+1
$$

whenever q is a prime or prime power p^{n}
$n=q+1$ elements modulo $q^{2}+q+1$
IIII very unpractical to apply (3rd degree polynomial calculations)
"III maximum element $<n^{2}-n+1$

Generating a Golomb ruler from a modular set

From a modular construction with n marks Golomb rulers with $n, n-1, \ldots$ marks can be extracted:

$$
\{1,2,5,11,31,36,38\} \quad \bmod 48 \quad \text { (Bose-Chowla) }
$$

|m* a ruler with 7 marks: $\{1,2,5,11,31,36,38\}$
n" a ruler with 6 marks: $\{1,2,5,11,31,36\}$

Rotations

Int If $a_{i} \bmod q$ is a modular Golomb ruler then so is $a_{i}+k \bmod q$.
Int Rotating a modular construction may result in a shorter Golomb ruler being extracted.

Multiplication

If $a_{i} \bmod q$ is a modular Golomb ruler and $(g, q)=1$ then $g \cdot a_{i} \bmod q$ is also a modular ruler.
nut The number of possibly multipliers is the number of integers $<q$ such that $(g, q)=1$: Euler ϕ function

Ant A multiplication of a modular construction may also result in extracting a shorter Golomb ruler.

The computational search

The conjecture: $G(n)<n^{2}$ for all $n>0$
|"LI Up to now verified for $n \leqslant 150$: Lam and Sarwate (1988)
${ }^{\text {IIIL }}$ Goal of our work: extend this result for $\boldsymbol{n} \leqslant 65000$.

Approach

|nll For the this search we used two of the constructions (Ruzsa \& BoseChowla)
${ }^{\text {IIII }}$ These constructions only apply when n is a prime or prime power.
Not possible to directly generate a ruler for number of marks between two primes directly!
|nI For the cases where n is not prime we used the construction for the next larger prime and removed the extra elements.
|nearch through all possible multipliers and rotations to find the shortest ruler.

Algorithms

Two algorithms were implemented for an efficient search:
nut Ruzsa-Extract $\{l, p\}$: Uses Ruzsa construction for prime p and returns the best rulers found with $l, l+1, \ldots, p-1$ marks. Running time $T_{1}(l, p)=O\left(p^{2}(p-l)\right)$
nut Bose-Extract $\{l, p\}$: Uses Bose-Chowla construction for p prime and produces rulers with $l, l+1, \ldots, p$ marks. Running time $T_{2}(l, p)=$ $O\left(p^{3} \log p+p^{2}(p-l)\right)$
nut Ruzsa-Extract was the main workhorse and Bose-Chowla was used to settle the remaining cases.

Int The algorithms check for each number of marks which is the shortest ruler we can extract from the next larger possible construction.

The technical details

Int Both algorithms were implemented in C using the LiDIA library for computations in Galois fields.
${ }^{\text {NIIL }}$ C was chosen for speed, Mathematica would take years to finish.
Alw distributed network of 101.5 GHz personal computers running Linux was used for 5 days for the computation of RUZSA-ExTRACT up to 65000 marks.

Results (0-1000 marks)

Results (1000-4000 marks)

Results (4000-30000 marks)

Results (30000-65000 marks)

Negative results

Int The algorithm was unable to find sub-quadratic length rulers precisely in the cases where there is a large prime gap. In total 72 out of 65000 rulers turned out to be of length $\geqslant \boldsymbol{n}^{2}$:

number of marks	prime gap	length of gap
113	$113-127$	14
$1327-1330$	$1327-1361$	34
$19609-19613$	$19609-19661$	52
25474	$25471-25523$	52
$31397-31417$	$31397-31469$	72
$34061-34074$	$34061-34123$	62
$35617-35623$	$35617-35671$	54
$40639-40643$	$40639-40693$	54
$43331-43336$	$43331-43391$	60
$44293-44301$	$44293-44351$	58
45893	$45893-45943$	50

In For these cases the much slower Bose construction was used to find subquadratic rulers.

A bad case with a large prime gap

A bad case settled

Conclusion - Summary

nut We proved a theorem that allows the easy restatement of bounds between $G(n)$ and $F_{2}(n)$. An improved bound for $G(n)$ followed: $G(n)>n^{2}-2 n \sqrt{n}+\sqrt{n}-2$

Nut We extended the verification of Erdős conjecture and computationally proved that

$$
G(n)<n^{2} \text { for } n \leqslant 65000
$$

(previously it has been verified for up to 150 marks).
n" In Sidon set terms: $F_{2}(n)<\sqrt{n}$ for all $n \leqslant 4.225 .000 .000$.
ne* The results and the code can be found at the thesis web page (relocated in Toronto): http://www.cs.utoronto.ca/~apostol/golomb
nut In the future: extend the search for even larger Golomb rulers (will be much slower though)

