
CSC 364S Notes University of Toronto Spring, 2003

Computability and Noncomputability

Up to now, we have been concerned with how efficiently various problems can be computed.
Now we will address the issue of which problems can be computed at all, even when we
have no concern about efficiency. This work was initiated by Alan Turing in 1936 when he
introduced (what are now called) Turing Machines as a model of computation.

From now on, for convenience, we will assume Σ is a fixed finite input alphabet. All our
Turing machines will have Σ as their input alphabet, and whenever we encode stuff using
brackets (〈, 〉) it will be over the alphabet Σ. We will also assume that Σ contains the symbols
0 and 1. Here are our basic definitions. Note that Sipser, in his book, uses “recognizable”
instead of “semi-decidable”. (The reader should also note that in some of the literature, the
term “recursive” is used instead of “decidable”, and the term “recursively enumerable” is
used instead of “semi-decidable”. The reasons for this are historical, and we will not go into
them here.)

Definition 1. We say f : Σ∗ → Σ∗ is computable if there is a Turing machine M that
computes f .

We say L ⊆ Σ∗ is decidable (or, equivalently, computable) if there is a Turing machine M
such that L = L(M) and M halts on every input.

We say L ⊆ Σ∗ is semi-decidable (or, equivalently, partially decidable or semi-computable or
partially computable or recognizable) if there is a Turing machine M such that L = L(M).

Notation: We use D to stand for the class of decidable languages, and SD for the class of
semi-decidable languages.

The intuition is that a language is decidable or computable if there is an algorithm that, on
each input x, eventually halts saying whether or not x is in the language. To say that a
language L is semi-decidable means that there is an algorithm that accepts precisely the
strings in L; however, for a string x /∈ L, the algorithm will either reject or not halt. In
order for this intuition to be valid, we have to accept the Church-Turing Thesis.

Church-Turing Thesis:
Anything that intuitively deserves to be called an “algorithm” can be simulated by a Turing
Machine. So any function that can be computed (or any language decided or semi-decided)
by some kind of “algorithm” is actually computable (or decidable, or semi-decidable) in our
sense.

This Thesis is very widely accepted, because any other kind of algorithm that we are able to
think of can be easily simulated by a Turing Machine (although not necessarily efficiently).
For example, it is easy to see how to simulate other variations of Turing machines by a

1

Turing Machine: examples of such variations are many tapes, one-way infinite tapes, and
multi-dimensional tapes. It is also easy to see how to simulate RAMs (Random Access
Machines). It is also easy to see how to simulate “probabilistic” machines or ”quantum”
machines (although not efficiently), but we will not define these machines here. The thesis
has been challenged by some who (unlike those working in AI) believe that there is something
about the Human brain (perhaps based on quantum mechanics) that fundamentally cannot
be simulated by a Turing Machine.

It is trivial to see that every function in FP is computable and that every language in P is
decidable. The following is sightly less obvious.

Lemma 1. NP ⊆ D.

Proof: Let c, d ∈ N and let R be a 2-place, (polynomial-time) computable predicate such
that for all x ∈ Σ∗,
x ∈ L ⇔ for some y ∈ Σ∗, |y| ≤ c|x|d and R(x, y).
Let M be a Turing Machine that determines membership in R.

Given an input x ∈ Σ∗, the following algorithm decides whether or not x ∈ L: for each string
y ∈ Σ∗ of length less than or equal to c|x|d, run M on (x, y); if at least one of these runs of
M accepts, then we halt and accept x; otherwise we reject x.

Therefore L is decidable. In fact, we have shown that L can be decided by a Turing Machine
that runs in time exponential in the length of the input, that is, in time ≤ 2|x|

d

for some d.

It is clear that if L is a decidable language, then L is also semidecidable. In fact, we have
the following chain of containments:

P ⊆ NP $ D $ SD $ {L | L ⊆ Σ∗}

Analogy: P is to NP as D is to SD.

Notice that the definitions of P and D are almost the same. The difference is that for D we
drop the requirement that the accepting Turing machine runs in polynomial time. Similarly
we can characterize SD in the same style as the definition of NP (see Definition 1, page
1 in the notes “NP and NP-Completeness”). In fact, we need only delete the words “in
polynomial time”, and remove the bound on the length of the certificate y.

Theorem 1. L ∈ SD iff there is a two-place predicate R ⊆ Σ∗ × Σ∗ such that R is com-
putable, and such that for all x ∈ Σ∗

x ∈ L ⇔ there exists y such that R(x, y)

The proof is left as an exercise.

2

We will prove shortly that there are languages that are not semi-decidable, and that there are
semi-decidable languages that are not decidable. Of course, it is an open question whether
P is properly contained in NP.

We will prove later that there are decidable languages that are not in NP; in fact, there are
decidable languages than cannot be decided by any Turing Machine that runs in exponential
time. An interesting example is from Mathematical Logic. Consider the predicate calculus
language that has a 2-place function symbol +, and let PR be the set of sentences that are
true in the structure with domain N where + is interpreted as addition; this language is
called “Presburger Arithmetic”.
An example of a formula in PR is ∃x∀y∀z(x = y + z → [y 6= z ∧ (x = y ∨ x = z)]).
We can prove that PR is decidable. But we can also prove that there is a constant c > 0

such that every Turing Machine that decides PR requires time at least 22
n
c

on sufficiently
large inputs of size n. Since for every language L ∈ NP there is a machine that decides L
in time 2n

d

, we see that PR /∈ NP.

Define ATM = {〈M,w〉 |M is a Turing Machine and M accepts w}.

We will show later that ATM is not decidable. For now, we show that it is semi-decidable.

Lemma 2. ATM ∈ SD

Proof Outline: The following algorithm accepts precisely the strings in ATM :
Given a string x, check if x is of the right form 〈M,w〉, and if not, reject.
So say x = 〈M,w〉. Then simulate machine M running on input w; if the simulation halts,
then accept if M accepts and reject if M rejects. Clearly this algorithm accepts precisely
ATM .

Note that this algorithm does not halt on every input, since if M doesn’t halt on w, then
the algorithm doesn’t halt on 〈M,w〉.

Note that the above algorithm is essentially an interpreter; that is a program which takes
as input both a program P and an input w to that program, and simulates P on input w.
In this case the program P is given by a Turing machine M . A Turing machine interpreter
is often called a universal Turing machine. Turing described a universal Turing machine in
some detail in his original 1936 paper, an ideal which paved the way for later interpreters
operating on real computers.

The following are some basic properties of the classes of decidable and semi-decidable lan-
guages. Note that the complement of every decidable language is decidable, but (as we will
see a bit later) it is not the case that the complement of every semi-decidable language is
semi-decidable. (By L, we mean the complement Σ∗ − L.)

Notation: Let L ⊆ Σ∗. Let CL : Σ∗ → Σ∗ be defined by:
CL(x) has value 1 if x ∈ L, and value 0 otherwise. Then CL is the characteristic function of
CL.

3

Lemma 3. For any language L ⊆ Σ∗, L is decidable ⇔ CL is computable.

Proof: An easy exercise.

Lemma 4. Let L1, L2 ⊆ Σ∗ be decidable languages. Then
L1, L1 ∪ L2 and L1 ∩ L2 are all decidable languages.

Proof: An easy exercise.

Lemma 5. Let L1, L2 ⊆ Σ∗ be semi-decidable languages.
Then L1 ∩ L2 and L1 ∪ L2 are also semi-decidable.

Proof: Say that L1 = L(M1) and L2 = L(M2).

To show that L1 ∩ L2 is semi-decidable, we want to construct a machine M3 such that
L(M3) = L1 ∩ L2. We design M3 as follows. On input x, M3 runs M1 on x; if M1(x) halts
and rejects, then M3 rejects; if M1(x) halts and accepts, then M3 runs M2 on x, halting if
and when M2 halts, and accepting if and only if M2 does.

To show that L1 ∪ L2 is semi-decidable, we want to construct a machine M4 such that
L(M4) = L1 ∪ L2. This is harder than the previous construction, since we cannot first
run M1 and then run M2, since if M1 doesn’t halt we will never get a chance to run M2

(which is necessary if we want to accept the union of L1 and L2). Instead, we will run M1

and M2 together, in effect interleaving their computations. This idea of running different
computations at the same time is commonly called “dovetailing”.
(Apparently this use of the word “dovetail” comes from card shuffling, and its use there
comes from a certain kind of interleaved joint in cabinet making, and its use there comes
from the fact that a part of the joint resembles a dove’s tail.)

On input x, we define M4 to work as follows. M4 runs M1 on x and M2 on x for 1 step each,
then M4 runs M1 on x and M2 on x for 2 steps each, then M4 runs M1 on x and M2 on x
for 3 steps each, etc. (Note that when we say to “run Mi on x for k steps”, we mean that we
run Mi on x for k steps or until it halts, whichever comes first.) This continues until (which
may never happen) either M1(x) or M2(x) is discovered to accept, at which point M4 halts
and accepts. Clearly L(M4) = L1 ∪ L2.

Theorem 2. Let L ⊆ Σ∗. then
L is decidable ⇔ both L and L are semi-decidable.

Proof:
Proof of ⇒: Say that L is decidable. By a previous Lemma, L is also decidable. Since
every decidable language is also semi-decidable, both L and L are semi-decidable.

Proof of ⇐: Say that L = L(M1) and L = L(M2). We want to construct a machine M
such that on any input x, M halts, deciding whether or not x ∈ L.

4

We define M to work on input x as follows. We will use dovetailing.
M runs M1 on x and M2 on x for 1 step each, then M runs M1 on x and M2 on x for 2
steps each, then M runs M1 on x and M2 on x for 3 steps each, etc. Since M2 accepts the
complement of M1, eventually M will discover that one of these two machines accepts x.
If M finds that M1 accepts x, then M halts and accepts;
if M finds that M2 accepts x, then M halts and rejects.

So L(M) = L and M halts on every input, so L is decidable.

We will now give an alternative characterization of the notion of semi-decidable. It turns
out that a language L is semi-decidable if and only if it can be “enumerated” by a Turing
Machine. To make this precise we have to define the notion of an Enumerating Turing
machine. An Enumerating Turing Machine Me will have no inputs, but rather will always
start with a blank tape. The machine will have, in addition, an “output tape”; this tape
is initially blank, and it contains a head that can only write, and that at each step either
stays where it is or moves one square to the right; this head can only write symbols from
Σ∪{$}. If and when the output head has written a string α$ where α ∈ Σ∗, then the output
tape is erased and we say that Me has printed (or enumerated, or outputted) the string α.
Note that Me may eventually halt, or may run forever; Me may output no strings, a finite
sequence of strings, or an infinite sequence of strings; some strings may be enumerated by
Me more than once. We define E(Me) to be the set of strings α such that Me, at some point,
outputs α.

Theorem 3. Let L ⊆ Σ∗. Then
L is semi-decidable ⇔ L = E(Me) for some Enumerating Turing Machine Me.

Proof:
Proof of ⇐: Let Me be an Enumerating Turing Machine such that L = E(Me). We want
to construct a Turing Machine M such that L(M) = L.

We define M to work on input x as follows.
M simulates Me (where Me starts with an initially blank tape), checking to see if Me ever
outputs x. If and when Me outputs x, M halts and accepts; if Me halts without ever having
outputted x, M halts and rejects. (Note that if Me runs forever without outputting x, then
M will run forever.) Clearly L(M) = L.

Proof of ⇒: Let M be a Turing Machine such that L = L(M). We want to construct an
Enumerating Turing Machine Me such that E(Me) = L. We will use dovetailing, simulating
(in parallel) M running on all possible inputs.

We define Me to work (starting with the blank tape) as follows.
Me will simulate M running on all strings of length at most 1 for 1 step; then Me will
simulate M running on all strings of length at most 2 for 2 steps; then Me will simulate M
running on all strings of length at most 3 for 3 steps; etc;
whenever one of the simulations of M on a string x is discovered to halt and accept, then
Me, before continuing with its simulations, outputs the string x. Clearly E(Me) = L.

5

Proving Undecidability

We wish to show that some languages are not decidable, and in particular that ATM is not
decidable. Toward this end, we will define a language DIAG in such a way as to make it as
easy as possible to show DIAG is not decidable; we will then use the fact that DIAG is not
decidable to show that ATM is not decidable.

The language DIAG will be defined using the technique of “diagonalization”. The idea is
that we want to define DIAG so as to make sure it is different from L(M) for every Turing
Machine M (this will actually imply that DIAG is not even semi-decidable); we will do this
by making sure that DIAG differs from L(M) on the string 〈M〉.

We define
DIAG = {〈M〉 |M is a Turing machine and 〈M〉 /∈ L(M)}.

Lemma 6. DIAG 6∈ D

Proof: We will actually show that DIAG is not even semi-decidable.
Assume, to the contrary, that there is a Turing Machine M such that L(M) = DIAG.
Consider the string 〈M〉. By definition of DIAG, 〈M〉 ∈ DIAG ⇔ 〈M〉 /∈ L(M). But since
L(M) = DIAG, 〈M〉 /∈ L(M) ⇔ 〈M〉 /∈ DIAG. So 〈M〉 ∈ DIAG ⇔ 〈M〉 /∈ DIAG, which is
impossible.

To see why the above proof is called a “diagonal argument”, consider an enumeration
M1,M2, ... of all possible Turing machines (obtained by enumerating the strings that de-
scribe them). Consider an infinite matrix, in which the columns and rows are each labeled
successively by M1,M2, The entry in column Mi and row Mj is either Y or N depending
on whether 〈Mi〉 ∈ L(Mj). The language DIAG is obtained from the diagonal of this matrix
by interchanging Y and N.

Theorem 4. ATM 6∈ D.

Proof: Assume, to the contrary, that M0 is a Turing Machine such that L(M0) = ATM and
such that M0 halts on every input. We can now construct a Turing Machine M1 that halts
on every input and accepts DIAG.

Define M1 to work as follows on input x.
If x is not of the form 〈M〉 where M is a Turing machine, then M1 rejects.
So assume x = 〈M〉.
Now M1 runs M0 on 〈M, 〈M〉〉;
if M0 accepts, then M1 rejects;
and if M0 rejects, then M1 accepts.

Clearly L(M1) = DIAG and M1 halts on every input, implying that DIAG is decidable,
which is a contradiction.

Remark: Looking ahead to Definition 2 below, the above proof essentially shows that
DIAG ≤m ATM .

6

Corollary 1. ATM 6∈ SD.

Proof: We know that ATM is semi-decidable. If ATM were also semi-decidable, then by a
previous Theorem, ATM would be decidable, and we have just shown that it isn’t.

Corollary 2. Let L1 = {〈M,w〉 |M is a Turing machine and w /∈ L(M)}.
Then L1 is not semi-decidable.

Proof: L1 is close to being the complement of ATM , except that L1 only contains strings
that are of the form 〈M,w〉. One way of seeing that L1 is not semi-decidable is as follows.
Letting L0 = {x | x is not of the form 〈M,w〉}, we see that ATM = L1 ∪ L0. Clearly L0

is decidable, and hence semi-decidable. If L1 were also semi-decidable, then by a previous
Lemma we would have ATM semi-decidable. Hence, L1 is not semi-decidable.

An important natural language is the “blank tape halting problem”. Define
HB = {〈M〉 |M is a Turing machine and M halts on the blank input tape}.

Theorem 5. HB is semi-decidable, but not decidable.

Proof: To show that HB is semi-decidable, we observe that HB = L(M0) where M0 is as
follows.
On input x, M0 checks if x is of the form 〈M〉, and if not, rejects. So say x = 〈M〉. M0 then
runs M on the blank tape; if and when M halts, M0 halts and accepts.

We now want to show that HB is not decidable. Assume, to the contrary, that HB is
decidable. Say that HB = L(M1), where M1 is a Turing Machine that halts on every input.
We will construct a Turing Machine M2 such that ATM = L(M2) and M2 halts on every
input.

Define M2 to work as follows on input x.
If x is not of the form 〈M,w〉, then M2 halts and rejects. So assume that x = 〈M,w〉. M2

constructs a new machine M ′ that when started on a blank tape, writes w on the tape and
runs M on w; if M halts and accepts w, then M ′ will halt and accept; if M halts and rejects
w, then M ′ will go into an infinite loop.
Clearly M accepts w if and only if M ′ halts on the blank tape.

M2 then runs M1 on 〈M ′〉.
Clearly M2 halts on every input, and L(M2) = ATM . This means that ATM is decidable, a
contradiction.

Reducibilities

In the previous proof, we used the fact that ATM is not decidable to show that HB is not
decidable. This proof can be simplified by using the idea of reducibilities. We will introduce
the notion of language L1 being reducible, or transformable, to L2, written L1 ≤m L2, and

7

show that ATM ≤m HB. The definition of ≤m will be the same as the definition of ≤p, except
that the transforming function f is only required to be computable, instead of polynomial-
time computable. (The “m” in ≤m exists for historical reasons, and stands for “many-one”
reducible.)

Definition 2. Let L1, L2 ⊆ Σ∗. We say that L1 ≤m L2 if there is a computable function
f : Σ∗ → Σ∗ such that for all x ∈ Σ∗,
x ∈ L1 ⇔ f(x) ∈ L2.

Theorem 6. Let L1, L2 ⊆ Σ∗ such that L1 ≤m L2. Then

1) L1 ≤m L2

2) If L2 ∈ D then L1 ∈ D.
(And hence, if L1 /∈ D then L2 /∈ D).

3) If L2 ∈ SD then L1 ∈ SD.
(And hence, if L1 /∈ SD then L2 /∈ SD.)

Proof:
1) Say that L1 ≤m L2 via the computable function f . Then we also have L1 ≤m L2 via f ,
since x ∈ L1 ⇔ f(x) ∈ L2 implies that x ∈ L1 ⇔ f(x) ∈ L2.

2) Say that L2 = L(M2) where M2 is a Turing machine that halts on every input. Let M
be a Turing machine that computes f . We now define Turing machine M1 as follows.
On input x, M1 runs M on x to get f(x), and then runs M2 on f(x), accepting or rejecting
as M2 does. Clearly M1 halts on every input, and L1 = L(M1), so L1 is decidable.

3) Say that L2 = L(M2) where M2 is a Turing machine. Let M be a Turing machine that
computes f . We now define Turing machine M1 as follows.
On input x, M1 runs M on x to get f(x), and then runs M2 on f(x), accepting or rejecting
as M2 does if and when M2 halts. Clearly L1 = L(M1), so L1 is semi-decidable.

New proof that HB is not decidable:
We will show that ATM ≤m HB
Let x ∈ Σ∗, and assume that x = 〈M,w〉 where M is a Turing Machine.
(If x is not of this form, then we can let f(x) be anything not in HB. In general we will
assume that the input is “well-formed” since this will always be easy to test for.)

We will let f(x) = 〈M ′〉 where M ′ works as follows on a blank tape (we don’t care what M ′

does on a non-blank tape).
M ′ writes w on the tape, and then simulates M running on input w;
if and when M halts and accepts, M ′ halts and accepts; if and when M halts and rejects,
M ′ goes into an infinite loop.
Clearly f is computable. It is also easy to see that x ∈ ATM ⇔ f(x) ∈ HB, since
M accepts w ⇔ M ′ halts on blank tape.

8

Corollary 3. HB is not semi-decidable.

Proof: We know HB is semi-decidable but not decidable, so HB is not semi-decidable.

Let NE be the language consisting of Turing Machines that accept a nonempty language.
That is, NE = {〈M〉 |M is a Turing Machine and L(M) 6= ∅}.

Lemma 7. NE is semi-decidable, but not decidable. (Hence, NE is not semi-decidable.)

Proof: We will design a Turing Machine M0 such that NE = L(M0).
Say that the input to M0 is x = 〈M〉; M0 behaves as follows:
run M on all inputs of length ≤ 1 for 1 step;
run M on all inputs of length ≤ 2 for 2 steps;
run M on all inputs of length ≤ 3 for 3 steps; etc.
if and when it is discovered that M accepts some input, M0 halts and accepts.
Clearly NE = L(M0), so NE is semi-decidable.

To show that NE is not decidable we will prove that HB ≤m NE.
Let x be an input for HB, and assume that x is well-formed, that is, x = 〈M〉.
Define f(x) = 〈M ′〉 where M ′ works as follows.
On any input, M ′ erases its input and runs M on the blank tape;
if and when M halts, M ′ halts and accepts.
Clearly 〈M〉 ∈ HB ⇔ 〈M ′〉 ∈ NE, so HB ≤m NE, so NE is not decidable.

Let T be the language of “total” machines, that is, of machines that halt on every input.
T = {〈M〉 |M is a Turing Machine that halts on every input}.

Lemma 8. Neither T nor T is semi-decidable.

Proof:
We first show that HB ≤m T, implying that HB ≤m T, implying that T is not semi-decidable.
So let x be an input for HB, and assume that x is well-formed, x = 〈M〉.
Let f(x) = 〈M ′〉 where M ′ is a machine that always erases its input and runs M on the
blank tape. We have
M halts on the blank tape ⇔ M ′ halts on every input, so we are done.

We next show that HB ≤m T, implying that HB ≤m T, implying that T is not semi-
decidable. This reduction is a bit tricky.
Let x be an input for HB, and assume that x is well-formed, x = 〈M〉.
Let f(x) = 〈M ′〉 where M ′ is as follows.
On input α, M ′ simulates M on the blank tape for |α| steps;
if M halts within |α| steps, then M ′ goes into an infinite loop;
if M doesn’t halt within |α| steps, then M ′ halts (and, say, accepts).
Clearly M halts on the blank tape ⇔ M ′ is not a total machine.

Define the language INF = {〈M〉 |M is a Turing Machine and L(M) is infinite}.

9

Lemma 9. Neither INF nor INF is semi-decidable.

Proof: Exercise.

Define the language ALL = {〈M〉 |M is a Turing Machine and L(M) = Σ∗}.

Lemma 10. Neither ALL nor ALL is semi-decidable.

Proof: We will show T ≤m ALL. This implies T ≤m ALL. Since both T and T are not
semi-decidable, we have that both ALL and ALL are not semi-decidable.

So let x be an input for T, and assume x is well-formed, that is, x = 〈M〉.
Let f(x) = 〈M ′〉 where M ′ is obtained from M by changing every transfer to qreject by a
transfer to qaccept. Since the only two halting states are qreject and qaccept, it follows that
M halts on every input ⇔ M ′ accepts every input.

Define EQ = {〈M1,M2〉 |M1 and M2 are Turing machines and L(M1) = L(M2)}.

Lemma 11. Neither EQ nor EQ is semi-decidable.

Proof: As above, it is sufficient to show that ALL ≤m EQ.

Let x be an input for ALL, and assume that x is well-formed, that is, x = 〈M〉. Let
f(x) = 〈M,M0〉 where M0 is some fixed, simple Turing Machine that accepts Σ∗. Clearly
x ∈ ALL ⇔ f(x) ∈ EQ.

Some Other Undecidable Languages

All the undecidable languages we have discussed so far involve Turing Machines in some way.
However, there are many other interesting types of undecidable languages.

It is easy to see that various questions about other types of computing models are also
undecidable. For example, let
AOB= the set of 〈U〉 such that U is a C program that has no input statements, and that
causes an Array Out of Bounds reference when executed.

Lemma 12. AOB is semi-decidable, but not decidable.

Proof:
To see that AOB is semi-decidable, we construct a Turing Machine M such that L(M) = L.
M works on input x as follows.
M checks that x = 〈U〉 where U is a C program with no input statements (and if not,
rejects).
Then M simulates U ; if U halts without causing an Array Out of Bounds reference, then M
halts and rejects; if at some point U causes an Array Out of Bounds reference, then M halts
and accepts.

10

To see that AOB is not decidable, we will show that HB ≤m AOB.
So let x be an input for HB and assume that x = 〈M〉 where M is a Turing Machine.
Let f(x) = 〈U〉 where U is a C program that works as follows.
U simulates M running on the blank tape, without making any Array Out of Bounds refer-
ence; if and when M is discovered to halt, U causes an Array Out of Bounds reference (and
halts). Clearly M halts on the blank tape ⇔ U causes an Array Out of Bounds reference.

Another source of undecidable languages is Mathematical Logic. We discussed above the
language PR (Presburger Arithmetic) of predicate logic sentences that are true about N
when we have the function symbol“+” (interpreted as addition). This language is decidable,
but requires (at least) double-exponential time.

Say that we now allow the function symbol “×” as well, and let TA (for True Arithmetic)
be the set of sentences true about N when “+” is interpreted as addition and “×” as multi-
plication.

Let us also define VALID as the set of sentences of the predicate calculus that are valid, that
is, true in every structure. The following are important facts, but we will not prove them
here.

Theorem 7. VALID is semi-decidable, but not decidable.
TA is not semi-decidable, and neither is its complement.

The proofs that these languages are not decidable involve showing how to “simulate” Turing
Machines in them. The proof that VALID is semi-decidable involves showing the existence
of a sound and complete proof system (such as a Frege System, or a Natural Deduction
System) for the predicate calculus; we then have VALID = L(M) where M , given a formula
F , searches through all possible “proofs”, accepting if and when a proof for F is found.

Lastly, we consider the language DE (for Diophantine Equations) consisting of strings of the
form 〈Q〉 where Q is a multivariate polynomial with integer coefficients, such that there are
integer values for the variables of Q which make Q evaluate to 0. For example 〈Q〉 ∈ DE if
Q is x3 + 2xy + x2 − y − 9, since Q evaluates to 0 for [x = 2, y = −1].

It is easy to see that DE is semi-decidable (exercise). However, the following Theorem is
very difficult. In fact, it easily implies that TA is not decidable (exercise).

Theorem 8. DE is not decidable.

A Decidable Language not in NP

We wish to prove that there is a language L such that L ∈ D, but L /∈ NP (and hence
L /∈ P). We claimed earlier that the language PR has this property, but this is too hard to
prove here. Instead, we will prove this for a much less natural language L. We will obtain
L using diagonalization, in much the same way that we first described a language that was

11

semi-decidable but not decidable. In fact we will define a decidable language L such that
every Turing machine that accepts L runs in (at least) double exponential time.

Theorem 9. There is a decidable language L such that L /∈ NP.

Proof:
Define L = {〈M〉 |M is a Turing machine, and M does not accept 〈M〉 within 22

|〈M〉|
steps}.

We leave it as an exercise to prove that L is decidable.

We will now show that L /∈ NP. Assume otherwise. This implies that there is a Turing
machine M1 and constant d such that L = L(M1) and such that M1 runs in time O(2n

d

).
This implies that there is a number n0 such that for all x ∈ Σ∗ of length ≥ n0, M1 on input
x halts within 22

|x|
steps. We would like it to be the case that |〈M1〉| ≥ n0, but this may not

be true. So let M2 be such that M2 is the same as M1, except that some additional, useless
states have been added so that |〈M2〉| ≥ n0.

We now have that L = L(M2), and M2 running on 〈M2〉 halts within 22
|〈M2〉| steps. So

〈M2〉 ∈ L ⇔ 〈M2〉 ∈ L(M2) ⇔ M2 accepts 〈M2〉 within 22
|〈M2〉| steps ⇔ 〈M2〉 /∈ L.

This is a contradiction.

In fact, the above proof technique can be used to show that for every computable time bound
t(n), there is a decidable language L such that no Turing machine that accepts L runs in
time O(t(n)).

Actually, in order to make sense of this, we have to say what it means for a function t : N → N
to be computable, since so far we have only discussed what it means for a function mapping
strings to strings to be computable. However, as computer scientists we are comfortable
with the idea that strings can represent numbers and that numbers can represent strings.
For every integer n, we denote by n̂ the string of bits such that n̂ is the unique binary
representation of n that has no leading 0’s; note that this implies that 0̂ is the empty string.
We now make the following definition.

Definition 3. Let t : N → N. We say t is computable if there is a computable function

f : Σ∗ → Σ∗ such that for every n ∈ N, f(n̂) = t̂(n).

It is important to understand that this notion of computability of functions on integers does
not depend on exactly what relationship we choose between strings and numbers. If we had
chosen any other reasonable relationship, we would have defined exactly the same notion.

We can now state our theorem.

Theorem 10. Let t : N → N be a computable function. Then there is a decidable language
L such that for every Turing machine M that accepts L, M does not run in time O(t(n)).

Proof:
Let L = {〈M〉 |M is a Turing machine, and M does not accept 〈M〉 within n · t(n) steps,

12

where n = |〈M〉|}.
We leave it as an exercise to prove that L has the two desired properties.

13

